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Abstract

As recent advances in human genetics have begun to more rapidly identify the individual genes 

contributing to risk of psychiatric disease, the spotlight now turns to understanding how disruption 

of these genes alters the brain, and thus behavior. Compared to other tissues, cellular complexity in 

the brain provides both a substantial challenge and a significant opportunity for systems biology 

approaches. Current methods are maturing that will allow for finally defining the ‘parts list’ for the 

functioning mouse and human brains, enabling new approaches to defining how the system goes 

awry in disorders of the CNS. However, the availability of tissue is certainly a challenge for 

systems biology of neuroscience, compared to systems biology of other tissues, where biopsy is 

feasible. This challenge is particularly notable for disorders caused by extremely rare genetic 

variants. Thus computational and systems biology approaches, as well as precise experimental 

models by way of genome editing, will play key roles in defining mechanisms for disorders, and 

their individual symptoms, across varied genetic etiologies. Here, we highlight recent progress in 

neurogenetics, postmortem genomics, cell-type specific profiling, and precision modeling toward 

defining mechanisms in disease.
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Introduction

The central nervous system(CNS) is the most elaborately specialized of the body’s systems. 

It is composed of hundreds of morphologically and molecularly definable subtypes of 

neurons and glia, all organized into complex yet stereotyped collections of circuits, of which 

the final fundamental role is the production of appropriate behavior. Disorders of the CNS 

are equally complex, each manifesting as a collection of diagnostically definitive disruptions 

in behavior. For example, a neurological disorder associated with the aging brain, 

Parkinson’s disease (PD), results in consistent impairment in initiation of voluntary activity, 

while Autism Spectrum Disorder (ASD) is characterized by a constellation of symptoms 

apparent from early childhood that include restricted interests, repetitive behaviors, and 

deficits in social interactions. For late-onset diseases, decades of postmortem pathological 

studies have mapped specific behavioral deficits to the degeneration of particular circuits or 

cell types in the brain, such as loss of dopaminergic inputs to striatal motivation circuits in 

PD, or atrophy of medial temporal lobe structures for episodic memory deficits in 

Alzheimer’s disease (AD). From these specific cases, along with studies of other lesions in 

patients or experimental disruption in animals, the general model has emerged that specific 

behavioral manifestations of a given disease are mappable to the specific cells or circuits 

impacted in the disorder. However, for most psychiatric disorders, such as Schizophrenia 

(SCZ) or ASD, there is no consensus on where the corresponding circuit disruptions are 

found, though there is a consistent, strong genetic component to their risk. For example, 

ASD has an estimated heritability of >50%[1,2]. Yet it is clear that the genetic contribution 

for many CNS disorders is mediated by hundreds of loci, only some of which have been 

identified. Thus, there is a need to define the mechanisms for CNS disorders at two levels: 

Which genetic alterations lead to each disorder? And, what are the circuit disruptions that 

result in unusual behavior or disease? In addition, there is also a need to connect these two 

levels of inquiry to explain how genetic disruptions alter brain circuits, and thus behavior. 

Therefore, there is now a conspicuous opportunity for emerging systems-level approaches in 

both neuroscience and genetics to address these needs.
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Genetics of CNS Disorders: Important Advances, New Opportunities

Prior to the modern genomic era, discovery of rare and private (family specific), coding 

genetic variants had steadily identified a few genes for CNS disorders based on either 

linkage in large pedigrees, or with genetic association studies for some clearly definable 

neurological syndromes and developmental disorders(DD)(e.g.[3],[4],[5]). Array based 

methods since the mid-2000’s allowed for genotyping of millions of polymorphisms across 

thousands of patients and controls for large scale association studies, but were largely 

limited to analysis of variation in the genome that was found commonly in the population. 

This approach rapidly identified a common variant of large effect associated with a retinal 

neurodegeneration, Macular Degeneration[6], but initially struggled to detect common 

alleles of smaller effect sizes collectively contributing risk for other common disorders. 

Given small effect sizes, large samples were needed in order for loci for SCZ[7], Major 

Depressive Disorder (MDD)[8] and AD[9] (Figure 1), and polygenic risk estimates for 

several other psychiatric diseases to be identified[10,11]. Since 2012, reduced cost of 

sequencing, combined with capture reagents, allowed for genome-wide analysis of rare 

protein-coding variation (exome sequencing), resulting in substantial new gene associations 

for DDs including ASD, intellectual disability (ID), and childhood epilepsy([12–14] and 

references therein). Though each associated mutation was incredibly rare or private, a gestalt 

analysis of mutation rates in these genes in large control databases[15] indicates strong 

selective pressure on these genes in human populations. Approaches taking advantage of 

prior information on constraint, and potentially information on brain gene expression[16], 

are increasing our ability to identify additional causative mutations, even when only 

observed in a small number of, or even single cases[17,18].

These rare variant findings have led to a burgeoning enthusiasm for clinical application of 

exome sequencing. Indeed, the diagnostic yield in DDs can be seen as one of the early 

successes of precision medicine. An observational study of 2000 consecutive patients 

analyzed with clinical whole-exome sequencing reported a diagnosis rate of 25.2% across 

genetic disorders[19]. As the number of ID-, ASD-, and epilepsy-associated mutations 

grows, prospective studies are showing that a ‘sequence first’ approach to diagnosis is 

providing a substantial yield[12,20,21] and thus may become standard. While there is 

currently an argument to be made that these rare loss-of-function forms of ASD and ID 

ought to be considered as new, molecularly defined, rare monogenic syndromes(e.g. [22]), 

perhaps with separate etiology from ‘idiopathic’ ASD, there is also clearly an opportunity to 

leverage this collection of genes to understand why rare mutations in distinct genes still 

result in a shared CNS disorder. Likewise, understanding the small effects of the large 

number of common variant contributions currently discovered for SCZ and MDD will also 

require leveraging additional information from genomics and neuroscience.

Enter systems biology

Systems biology to understand common variant associations and rare variant 
mechanisms—The recent discoveries of both common loci and rare genic variants 

contributing to disease present some distinct and some overlapping challenges. For a 

common, noncoding genetic association, the first challenge is in defining the relevant 

gene(s). Noncoding variants are presumed to be acting via regulation of gene expression. 
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However, because of correlation in polymorphism in adjacent regions of the genome 

(linkage disequilibrium), a variant’s associated region typically includes many noncoding 

variants, any one(s) of which could alter expression of any gene(s) within hundreds of 

kilobase pairs. Four parallel systems biology approaches leveraging either genomic 

annotations, or massively parallel reporter assays(MPRAs, [23]) are currently being applied 

to this problem(Figure 2, see also review in [24]). First, large descriptive datasets of 

‘epigenetic’ marks such as DNA and histone modifications when combined with prediction 

algorithms (reviewed in [25]) can provide insight into which polymorphisms might be in 

regulatory DNA sequences. Second, association studies testing for polymorphisms 

associated with changes in gene expression (expression Quantitative Trait Loci, or eQTLs), 

have begun to link putative regulatory polymorphisms with corresponding genes[26–28]. 

Third, regulatory elements such as enhancers have been shown to physically interact with 

the promoters of their target genes; sequencing based measures of chromatin conformation 

such as Hi-C have begun to define regulator-gene pairs[29–31], which in turn has enabled 

further structural predictions from other epigenetic data[32]. These methods thus begin to 

shape a choreography for the key steps involved in defining the relevant gene for each 

associated polymorphism, as has been demonstrated for some specific loci (e.g. [33]). 

However, in each case, these three analytical approaches do not clearly demonstrate that a 

given variant does have functional consequences. For efficient functional analysis, in a 

fourth approach, several teams have recently demonstrated that using MPRAs, which couple 

the available economies of array based oligonucleotide synthesis with high throughput 

sequencing based readouts, can efficiently query the functional consequences of hundreds or 

thousands of variants in parallel(Figure 2A,B, reviewed in [34]). However, there is a unique 

challenge to applying any of these four approaches for diseases of the nervous system: 

defining the appropriate cell type and time point to assess these genomic features. Gene 

regulation is a cell type specific phenomenon, and the activity of particular regulatory 

elements (as assessed by analytical approaches or MPRA) will depend on the cells in which 

they are measured. Given the diversity of cell types in the nervous system, as well as the 

possibility of transient regulatory phenomena during development, or in very rare cell 

populations, there is high potential for false-negative results leveraging only existing 

datasets. Thus, there is a clear need to expand the genomic annotative approaches to more 

time windows, brain regions, and cell types, and adapt the MPRAs to cell-type specific 

measures (Figure 2C). Also, most of the descriptive studies thus far have been relatively 

cortico-centric[26,35–38]. While the human cortical expansion is fairly remarkable, the 

pathologic and therapeutic importance of deep brain structures to psychiatric (e.g. the target 

regions of monoaminergic drugs) and neurological (e.g. the substantia niagra in PD) 

disorders is well established; thus there is a clear need to deepen the survey outside of the 

neocortex. It is also likely, and eventually essential, that new single cell analysis approaches 

may be adapted to these analyses (more below).

In contrast to common variants, for protein-coding variants, the first step in defining the 

relevant gene is already complete. In addition, this class of variation is eminently modelable 

in model organisms or induced Pluripotent Stem Cell (iPSC)-derived cells, especially with 

the advent of efficient genome modification with targeted nucleases[39,40]. From either 

class of variation, once a gene is defined, there remain two current challenges. The first is to 
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develop experimental approaches that can efficiently scale to systematic functional 

evaluation of many protein coding variants in parallel, much MPRAs have for non-coding 

variants, a thorough discussion of which is beyond the scope of this review. The second 

challenge for both the rare, and eventually the common, variants is to move from a genetic 

understanding of the disorder to a molecular and cellular one.

Need for a cellular level understanding of psychiatric diseases is underscored by the 

development of one of the most dramatically effective treatments for a disorder in 

neuroscience: the reversal of PD symptoms by either supplementation of dopaminergic 

signaling[41] or deep brain stimulation[42], which predated understanding of the underlying 
genetics. Rather, knowledge from pathology of the circuit deficits suggested routes for 

rescuing the behavioral manifestations of the disease. A variety of genetic lesions result in 

the propensity for nigral neurons to degenerate, creating a common phenotype from diverse 

genetic causes[43]. The PD case suggests a hypothesis for other diseases: that the specific 

behavioral disruptions of each are caused by ‘loss-of-function’ circuit mutations. If so, the 

myriad genetic mutations being discovered in DD, or the common variants highlighted in 

SCZ, must have shared consequences at the level of cells or circuits. A simple example 

might be a common loss, or a failure to develop, a key cell type within the circuit. The 

challenge is to define these disruptions. Systems biology approaches are beginning to be 

implemented in attempt to both indirectly and directly infer these changes.

From Genes to Cells to Treatments

Leveraging human genetics to define cellular mechanisms—A variety of 

informatics approaches have been applied to inferring commonalities across the gene sets 

emerging from psychiatric genetics studies (reviewed recently in [44] for ASD). A typical, 

and perhaps unsurprising result, is the discovery of disproportionate number of synaptic 

related genes amongst many of these lists. Gene expression varies widely by tissue and cell 

type. The ‘selective expression’ hypothesis posits that genes expressed in the disease-

afflicted tissue or cell type are more likely to contribute to diseases of that tissue or cell type. 

While certainly not all disease genes follow this trend, a tool leveraging gene lists to define 

cell types or tissues can identify a specific tissue for half of traits, even using very crude 

single nucleotide polymorphism (SNP) to gene mapping[45] (Figure 3A,B). Thus, as 

synaptic genes are disproportionately brain expressed, it is not unexpected that they will be 

frequent contributors to genetic variation in behavioral traits. A more focused analysis of 

gene expression however, could lead to insights as to which cell types or circuits within the 

brain are mediating the genetic effects of the disorder. For example, recent work has 

identified low frequency coding variants in Trem2[46,47] and common variants in 

CD33[9,48,49], as associated with AD. Both of these genes are highly expressed in 

microglia – a key phagocytic cell type in the brain, with recently discovered roles in 

supporting synaptic pruning. Thus, the expression of these risk genes has now spotlighted an 

underappreciated aspect of AD, and suggested a new cell type to target for treatment[50,51]. 

Systems biology approaches are coming online now to systematically address this question 

of which cell type(s) in the brain might be disproportionately expressing risk genes as a way 

of indirectly inferring the circuits disrupted in the disorder[52,53]. However, there are 

limitations to this approach, as inference requires a knowledge of transcriptomic profiles 
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from each cell type. Pioneering studies in cell type specific profiling had identified profiles 

for several cell types, but depended on availability of genetically labeled cell types in 

mice[54–57], clever retrograde labeling strategies[58], or cell surface markers[59,60] 

coverage was fairly sparse, and many cell types remain undefined. Thus, these analyses were 

inherently limited. However, new efforts designed to more comprehensively and unbiasedly 

profile all cells in adult and developing brain, discussed below, could substantially improve 

the resolution of these tools and provide key benchmark data for these indirect inferential 

approaches.

Genomic approaches to the postmortem human brain—Of course, to the extent 

patient brains are available, more direct approaches to observe cellular deficits are feasible. 

For end of life diseases, like PD, AD, and amyotrophic lateral sclerosis (ALS), brains are 

readily available, and decades of pathological studies have created gold standard definitions 

for each disease in terms of regional and circuit atrophy and specific classes of pathological 

signatures, and at least for AD, a corresponding inflammatory signature is apparent in 

postmortem transcriptomic[60,61] and proteomic data. However psychiatric diseases with 

earlier onset, and that are not directly lethal (ASD, SCZ), provide substantially less 

opportunity for post mortem pathology to define cellular deficits. This has been gradually 

changing and thanks to the dedicated efforts of several groups there are beginning to be 

reasonably sized collections of postmortem tissue from these diseases (e.g. [35,36,62–64]). 

From these, the community is currently engaged in a discovery phase of ‘transcriptomic’ 

pathology wherein portions of these brains are being analyzed using genomic approaches to 

define a molecular pathology indicative of the disorder. These studies are challenged by the 

variable integrity of tissues from donors, the likely pleiotropy of causes included in each 

collection, and the difficulty in determining causal changes from those that are a 

consequence of the course of disease pathology, or that are responses to treatment regimens. 

Nonetheless, with inclusion of covariates to try to account for sample variation, for at least 

ASD and SCZ some themes have started to emerge across studies. For ASD studies multiple 

groups have reported a consistent pattern of gene expression changes. A variety of groups 

have taken a systems approach to inferring changes in cellularity from this data in ASD 

(reviewed in [44]) and SCZ (reviewed in [65]). For example, in ASD there does seem to be a 

consistent cellular signature with loss of some neuronal transcripts from at least the 

messenger RNA (mRNA) data (Figure 3B,C).

Additional conclusions from across these studies is that the effects are fairly subtle, and 

direct case-control designs are sometimes less informative than network or module based 

approaches (see [66] for a thorough review). It is also notable that differences are detectable 

in all aspects of the transcriptomic signature from coding mRNAs, to large intervening 

noncoding RNAs (lincRNAs) and microRNAs (miRNAs), to splicing, and epigenetic 

marks[63,64,67,68], and it is unclear if any one class of this transcriptomic variation is more 

important than another. One possible explanation is that all of these changes are correlated 

and reflecting the same underlying biology. One example would be changes in proportion of 

cellularity: if a particular cell type was reduced or absent in disease then all mRNA, miRNA, 

lincRNA, splicing, or epigenetic marks associated with that cell type should change in 

parallel. It is noteworthy though, that neuronal and glial-contained transcripts may have 
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distinct responses to the tissue trauma associated with mortality and dissection, and there 

appear to be previously unnoticed RNA quality covariates that were confounding recent 

analyses[69]. In addition, only limited brain regions have been sampled (primarily cortex) 

and thus if the primary cellular deficits are elsewhere they would not be detected in the 

current studies.

It is worth noting that transcriptomic measures do have limitations compared to other 

measures, such as imaging or physiology. As most genomics methods are inherently 

destructive, they lose information on connectivity and physiology. Thus, if the primary 

deficit is a miswiring phenomenon, then transcriptomics may not detect it. Likewise, deficits 

in the electrophysiological performance of cells are only very indirectly measured by their 

consequences on the transcriptome. In addition, genomics are also only indirectly related to 

post-translational states such as phosphorylation of proteins or activity of signaling 

pathways(though advances in proteomics might allow for their assessment in a high-

throughput way). Nonetheless, because it is generally the much more scalable than imaging 

or physiology, transcriptomics could be a powerful tool to dissect CNS disorders in a 

systematic fashion, provided the alterations can be properly interpreted.

‘Cellomics’ - a new cellular-molecular pathology on the horizon—New advances 

including microfluidics(e.g. [70]), single tube single cell amplification strategies[71], and 

droplet based library preparative approaches[72] are now permitting efficient transcriptome 

analysis at the level of single cells. Both the indirect or direct approaches to trying to define 

the cellular pathology of CNS disorders will be accelerated by these advances. Most 

immediately, there is clear enthusiasm from the NIH BRAIN Initiative[73] and other allied 

sources[74] to definitively generate a complete cellular ontology defining the ‘parts list’ for 

the human and mouse brains. Consistent with the pioneering targeted work thus far, 

sequencing thousands of single cells from a few regions of adult brain seems to indicate that 

transcriptomics can be used to readily cluster mature cells into discrete, separable classes, 

including previously undefined subclasses of neuronal types[72,75–80]. Expansion of this 

beginning index to a complete list of cell types, and the transcriptomic profiles that define 

them, will allow the ‘indirect’ analysis methods developed so far(e.g.[53,81,82]) to be 

rapidly applied to entire brain, overcoming a substantial limitation in the current analyses.

Eventually, however, as these single cell methods become more robust and cost effective, it 

will be feasible to directly assess the molecular pathology of postmortem samples at the 

single cell level. This final ‘cellomic’ pathology will allow for direct quantification of cell 

numbers of different classes of cells, and allow for analyses that can distinguish between a 

loss of a cell type from dysregulation within a particular cell type. Cell type-specific 

transcriptional derangement is typically difficult or impossible to identify from bulk cell 

transcriptomics. While still cost prohibitive on a large scale, key technical hurdles towards 

‘cellomic’ pathology are gradually being overcome. For example, the feasibility of 

sequencing nuclear RNA for clustering (as intact nuclei are more easily obtained than intact 

cells) has been established and applied to specific cell types[83–88]. Profiling of methylation 

status might confer an alternative measure of expression to RNAseq which can provide 

similar information regarding cell class[63], while potentially overcoming some of the 

challenges of oversampling abundant transcripts and undersampling rare transcripts in 
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RNAseq. However, it is not clear whether the method also captures dynamic changes as well 

as traditional RNAseq. Regardless, scalability of droplet based methods are increasing at 

such a rate it is not unimaginable they may eventually permit cellular level coverage of the 

entire brain in pathological samples. Previously, it was estimated that a comprehensive 

cellular survey would cost $20,000 for a brain by 2027[89]. However, with a more rapid 

decrease in library prep costs, comprehensive cell based molecular pathology might reach 

this level within a few years.

Clinical heterogeneity and precision modeling—Work in ASD and DD in particular 

has highlighted the remarkable genetic heterogeneity contributing to these diseases. While 

roughly 10–20% of cases may be attributable to dominant, loss-of-function mutations, each 

individual mutation occurs only in a very small number of cases, further limiting access to 

afflicted tissue. It is also unclear if all mutations will converge on a single downstream 

cellular pathology, or if there are multiple cellular routes to the same disease, analogous to 

the clearly multiple genetic routes. Thus, there will be a sustained need for modeling a large 

variety of precise mutations to define shared and distinct consequences. Advances in 

genome editing allow for the routine modeling of precise mutations in either rodent or 

human cell line models, and both have proven successful in recent studies to define possible 

cellular pathologies and treatments. Current challenges include coping with the genetic 

heterogeneity outside of the lesioned locus, in both systems, to identify robust consequences 

of a given genetic deficit. However, the efficiencies associated with single cell analysis 

highlighted above will also benefit phenotyping in model systems. Overall, defining 

efficacious treatments will rely on understanding the commonalities and distinctions of 

disease mechanisms across precise subtypes of disorders.
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Highlights

• Large subject numbers are yielding substantial numbers of new loci and gene 

associations for CNS disorders.

• Systematic approaches are maturing for using chromatin annotations and 

massively parallel functional assays for defining relevant polymorphisms and 

genes within loci.

• Transcriptomic data in both healthy and diseased brains are being leveraged to 

identify corresponding cellular deficits in CNS disorders.

• Advances in single cell profiling methods are poised to contribute 

substantially to our understanding of disease.
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Figure 1. Burgeoning sample numbers have driven identification for loci contributing to several 
diseases
A) Number of loci or genes implicated as a function of year. Across multiple 

neuropsychiatric diseases, common single nucleotide polymorphism (SNP) studies show 

substantial discovery, particularly for SCZ, but with notable recent gains in AD, PD. Several 

other adult diseases are beginning to detect some loci. Success in ASD has primarily been in 

identification of rare de novo variants causing disease (via copy number variation (CNV) 

analysis and exome sequencing). B) Number of loci discovered is largely a function of 

accumulating samples sizes. Common SNP data curated from https://www.ebi.ac.uk/gwas/ 

on 1/25/17, using each disease name as a search term. ASD rare variants manually curated.
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Figure 2. MPRAs in the CNS, current and future directions
A) Library preparation for MPRA as developed over last few years. [34] A1) Massively 

parallel oligonucleotide synthesis is used to generate genomic element sequences with 

specified genomic variants and unique barcode tags. A2) A minimal promoter and reporter 

gene are inserted between candidate enhancer variants and barcode tags. A3) These are 

combined in a plasmid such that the barcode for each enhancer is now part of the 3’UTR of 

the reporter. Traditionally, these are delivered en masse into cell lines where the ratio of 

RNA barcode counts to DNA barcode counts can provide a measure of activity for each 

element and variant. B) Recent methods are adapting MPRAs to the mouse brain. The 

library constructed in A) could be delivered into mouse brain(B2) through packaging into 1) 

Adeno-associated virus (AAV)[90] or 2) Lentivirus[91] or 3) electroporation directly[92]. C) 

Given the substantial cellular heterogeneity of the mouse brain, enhancer activity (and 

potentially variant activity) is likely cell type specific. Provided RNA is harvested using cell 

type specific methods such as Translating Ribosome Affinity Purification[54,55] or flow 

sorting of tagged nuclei[87,88] (C2), MPRA should be amenable to cell type specific 

assessment. Finally, together with Plasmid DNA tag counts, as for in vitro assays, the ratio 

of mRNA barcode counts to DNA barcode counts can be used to estimate the expression for 

each element(C3).
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Figure 3. Leveraging expression data can provide both insight into genetics causes and 
interpretation of transcriptomic consequences
A) Loci that were implicated in a recent GWA study of body mass index[93] contain genes 

that are disproportionately expressed in the brain, as shown by Tissue Specific Enrichment 

Analysis[45]. This suggests that in our current, calorie abundant environment, obesity is 

mediated in large part by behavior(consumption) rather than by the function of adipose 

tissues. Some suggestive signal is also seen in muscle. B) Key for a single hexagon plot: For 

each tissue, the size of the hexagon in is scaled to the number of cell type specific and 

enriched genes at different cutoffs based on a permuted measure of specificity (pSI). Each 

hexagon is then color coded by significance of overlap with the GWAS gene list, using 

Fisher’s exact test p values as shown. As a highly specific list (pSI<.0001) is always 

included is a less specific list (pSI<.05), all hexagons for the same tissue can be stacked. All 

tissues tested in a dataset can then be displayed in a single plot as in A, organized by overall 

similarity of gene expression across tissues. C) Cell Type Specific Enrichment analysis[53] 

leveraging single cell expression data from somatosensory cortex and hippocampal CA1 
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region[80] suggests that the decrease in neuronal transcripts previously detected in human 

postmortem cortical transcriptomics in an individual with autism[64] might represent a loss 

or dysregulation of a subset of neuronal cell types. Specific interneurons (Int1 & 3) show 

enrichment at the relatively stringent cutoff of pSI<0.001 (third from outermost hexagon), 

perhaps suggesting a complete loss of these cell populations. In certain cell subtypes (Int4–

7, Int9–10, Int12–13, S1PyrL23, S1PyrL5a, S1PyrL6b, S1PyrDL, SubPyr, CA1Pyr1, 

CA1Pyr2, CA2Pyr2), the enrichment is seen only in the least stringently enriched transcript 

lists (outermost hexagon), suggesting a dysregulation of these genes rather than a complete 

loss of these cell types. For a given cell type, presence of only 2 or 3 hexagons (e.g. Int1) 

indicates that no transcripts were identified at the most stringent specificity thresholds.
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