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Successful voice training (e.g., singing lessons) and vocal rehabilitation (e.g., therapy for a voice

disorder) involve learning complex, vocal behaviors. However, there are no metrics describing how

humans learn new vocal skills or predicting how long the improved behavior will persist post-

therapy. To develop measures capable of describing and predicting vocal motor learning, a theory-

based paradigm from limb motor control inspired the development of a virtual task where subjects

throw projectiles at a target via modifications in vocal pitch and loudness. Ten subjects with healthy

voices practiced this complex vocal task for five days. The many-to-one mapping between the exe-

cution variables pitch and loudness and resulting target error was evaluated using an analysis that

quantified distributional properties of variability: Tolerance, noise, covariation costs (TNC costs).

Lag-1 autocorrelation (AC1) and detrended-fluctuation-analysis scaling index (SCI) analyzed tem-

poral aspects of variability. Vocal data replicated limb-based findings: TNC costs were positively

correlated with error; AC1 and SCI were modulated in relation to the task’s solution manifold. The

data suggests that vocal and limb motor learning are similar in how the learner navigates the solu-

tion space. Future work calls for investigating the game’s potential to improve voice disorder diag-

nosis and treatment. VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.5000233]

[ZZ] Pages: 1199–1212

I. INTRODUCTION

Successful voice therapy depends upon patients with

voice disorders learning or re-learning vocal motor behav-

iors—e.g., vocal loudness (Ramig et al., 1995; Schalling et al.,
2013; Van Stan et al., 2017), vocal efficiency (Titze, 1992;

Titze, 2006), vocal endurance (Buekers, 1998; Schneider and

Bigenzahn, 2005; Schneider et al., 2006; Stemple et al.,
1994), and voice quality (Kempster et al., 2009; Kreiman

et al., 1993; Verdolini-Marston et al., 1995)—to reduce voice-

related impairments in daily life (Hogikyan and Sethuraman,

1999; Jacobson et al., 1997). Therefore, “learning” new motor

patterns—defined as a relatively permanent change in motor

behavior (Schmidt and Lee, 2011)—is a critical part of the

voice therapy process. In the same way, singing lessons

depend upon vocalists establishing new complex behaviors

such as improved voice quality on high notes or improved

transitions across register changes (e.g., chest voice into head

voice). However, little is known regarding how humans learn

new vocal motor skills as research into properties of the

cortico-bulbar sensorimotor system typically use well-learned

(i.e., habituated) vocal behaviors—e.g., sustained vowels or

glissandos (Burnett et al., 1998; Larson et al., 2000; Zarate

et al., 2010) and syllables or speech (Chen et al., 2007;

Guenther et al., 2006; Tourville et al., 2008; Xu et al., 2004).

Also, clinical voice treatment designs focus on average differ-

ences between isolated time points—e.g., before versus after

surgery/voice therapy (Holmberg et al., 2003; Ramig and

Verdolini, 1998; Roy et al., 2003; Roy et al., 2002)—which

do not take into account how behavior change occurred.

While these clinical investigations improve the field’s diag-

nostic capabilities and provide empirical support for the effec-

tiveness of voice treatments, they rarely offer theoretical

insights into how patients learn improved behaviors or how

long the measured improvements will last after discontinuing
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therapy—i.e., carryover or retention. However, there is a

growing number of studies in the voice field that apply motor

learning principles in the hopes of maximizing carryover or

retention through fine-tuning practice and feedback variables

(Schalling et al., 2013; Steinhauer and Grayhack, 2000; Van

Stan et al., 2015; Wong et al., 2011). These approaches typi-

cally measure a patient’s overall performance (e.g., accuracy

or error), and not how the vocal motor system improved per-

formance (e.g., how did the subject modify various aspects of

phonation to minimize error?). Additionally, motor learning

studies have asked subjects to pay attention solely to the

results of performance (external focus) or the execution of per-

formance (internal focus) (Wulf et al., 1998); these studies

neglect to quantify the relationship between how changes in

execution are related to improvements in skill. If a method

was developed that could examine how humans learn new

vocal motor skills, this could produce clinically important

measures capable of estimating or predicting a patient’s likeli-

hood of improvement, long-term retention, or disorder recur-

rence after discharge from therapy. However, it is important to

note that retention of newly learned motor skills is reliant

upon many variables in addition to motor performance (e.g.,

attention, motivation, cognition, medical history, and baseline

skill level) (Marinelli et al., 2017; Studenka et al., 2017).

Theories from the field of motor control and learning

frequently attempt to quantify how the central nervous sys-

tem (CNS) controls and learns new movements. Therefore,

these theories may guide the development of assessment

approaches that can describe how a patient improved his/her

vocal motor behavior and estimate the new behavior’s degree

of permanence. For example, a model of redundant motor
tasks—tasks with infinitely many ways to achieve success—

has potential to offer insights into how people establish new

movements (Cusumano and Cesari, 2006; Kudo et al., 2000;

Martin et al., 2001; M€uller and Sternad, 2003; M€uller and

Sternad, 2009; Scholz et al., 2000). Redundant motor tasks

can be described by how execution variables relate to result
variables: if there are more execution variables that map into

fewer result variables, the task has redundancy. Such redun-

dancy produces an infinite number of combinations of execu-

tion variables that can achieve a desired result. It is important

to note that redundancy in motor performance can arise from

two sources: (1) that of motor equivalence, where multiple

bodily configurations map onto a singular outcome, i.e., fin-

ger position in space (Kelso et al., 1998) and (2) that of task

equivalence, where multiple task-specific variables map onto

a singular result in task performance, i.e., getting a perfect

score in darts, where the bull’s eye is an area and the dart can

hit it with many different orientations (M€uller and Sternad,

2003). Therefore, the term “execution variable” can refer to

many types of variables, from biomechanical (joint angle

positions, velocities, etc.) to physics-based (release velocity,

release angle, etc.). The most frequently cited example of

redundant motor performance is Nicolai Bernstein’s observa-

tion that even expert blacksmiths exhibited slightly different

arm kinematics (multiple execution variables represented by

joint angles) during each swing of the hammer, yet consis-

tently hit their desired end point on the anvil (singular result)

(Bernstein, 1967). This example of motor equivalence also

has task equivalence, since the anvil is not a single point and

can be hit with many different orientations. In order to sys-

tematically study such motor tasks, virtual environments

have been developed where the physics of the task is mathe-

matically modeled so that multiple execution variables fully

determine the result or error (John and Cusumano, 2007;

M€uller and Sternad, 2004). For example, in a virtual throwing

task, the result (minimum ball distance from a target) can be

fully determined by the user’s angle and velocity when

releasing the ball (M€uller and Sternad, 2009). Therefore, the

relationship between execution variables and the result cre-

ates a mathematical null space or solution manifold—defin-

ing those executions that all lead to the desired result. Using

this approach, investigators can quantify how subjects learn

new motor skills by relating practice-based performance

improvements (reduction in error) to changes in variability of

the execution variables.

All vocal behaviors targeted in voice therapy are redun-

dant by nature. In other words, patients must learn how to co-

vary multiple execution aspects of phonation on one level—

e.g., variables such as pitch, loudness, or vocal fold ab/adduc-

tion—to achieve a desired result defined at another level—e.g.,

improved messa di voce (increasing and subsequently decreas-

ing loudness whilst maintaining the same pitch), vocal effi-

ciency (decreased input for the same or more output) (Titze,

1992), modification of resonance or timbre. However, current

approaches to developing virtual environments for voice-

related actions have been confined to one descriptive level.

For example, the software program VISI-PITCH (KayPENTAX,

Montvale, NJ) allows users to manipulate objects by modifying

either pitch, loudness, or both simultaneously; i.e., changes in

pitch and/or loudness are results totally determined by them-

selves. Another example is the PROSODIC MARIONETTE (Patel

et al., 2012), which displays multiple voiced features in real-

time (e.g., loudness, pitch, word duration) to improve prosody,

but the mathematical relationship between all features and

overall prosody is not quantified. In general, most quantitative

voice therapy tools (i.e., biofeedback tools) have simply dis-

played a number representing the desired target behavior (e.g.,

jitter, shimmer, cepstral peak prominence, electromyography)

and asked a patient to modify this number as directed (e.g.,

increase, decrease, or stay in a desired range) (Ferrand, 1995;

Ma et al., 2013; van Leer et al., 2016; Wong et al., 2011).

Therefore, the resulting data provide minimal insight into how

vocal performance is achieved and what accounts for any

improvements.

An area of extensive research in motor control is dedi-

cated to characterizing the structure of the ever-present vari-

ability in movements—“structure” refers to the distributional

(e.g., Gaussian, anisotropy) or temporal (e.g., Brownian

motion, pink noise) characteristics of variability. The human

sensorimotor system exhibits variability—sometimes referred

to as noise—at multiple time scales, at all levels of function

(e.g., the cellular physiology of neuronal activation or the

accuracy of throwing a ball) and at all levels of skill (e.g.,

even expert performance produces trial-to-trial fluctuations)

(Ajemian et al., 2013; Faisal et al., 2008; Sternad et al.,
2014). Therefore, it is believed that investigations into distri-

butional and temporal variability of motor performance will
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provide unique insights into a subject’s sensorimotor func-

tion, as well as how the sensorimotor system establishes new

skills. More specifically, variability of measured execution

and result variables are hypothesized to shed light on control

strategies of the CNS.

Analyses of temporal variability in execution variables

during well-learned movements—e.g., walking (Dingwell

et al., 2010) or grasping (R�acz and Valero-Cuevas, 2013)—

have revealed selective control by the CNS in error-relevant

or error-irrelevant directions on the task’s solution manifold.

Furthermore, when applying this approach to learning novel

movements—e.g., throwing tasks (Abe and Sternad, 2013),

two-arm pointing (Domkin et al., 2005), or posture/balance

(Asaka et al., 2008)—temporal variability amongst execution

variables in the early stages of practice appears to have mini-

mal directional preference. However, later in practice, the

CNS starts to selectively channel temporal variability/noise

into error-irrelevant directions (parallel to the solution mani-

fold, where variability does not affect error) and variability in

error-relevant directions (orthogonal to the solution manifold

where variability can obviously affect error) is lowered.

Studying the structure of vocal motor variability has the

potential to provide new diagnostic and therapeutic insights

in the field of voice disorders. Vocal biomarkers derived

from variability analyses are hypothesized to detect degrada-

tion in the complexity or quality of an individual’s motor

coordination. Many areas outside the field of voice disorders

have attained useful biomarkers of neurological and psycho-

logical dysfunction from variability-based measures in the

voice signal using cross-correlation and/or detrended fluctua-

tion analyses (Helfer et al., 2014; Horwitz et al., 2013;

Williamson et al., 2014; Williamson et al., 2015). Other

studies have demonstrated potential to discriminate patho-

logical and normal voices when applying stability-based

measures (closely related to variability) to sustained vowels

(Herzel et al., 1994; Little et al., 2007; Zhang and Jiang,

2008; Zhang et al., 2004). However, none of these studies

addressed the question of learning and therefore cannot offer

insights as to how vocal skills improve with practice.

Sternad and colleagues (Cohen and Sternad, 2009) devel-

oped three costs that assess how variability amongst execution

variables directly affects resulting performance. Tolerance

cost (T-cost) evaluates sensitivity of the result space to the dis-

tribution of execution variables, noise cost (N-cost) evaluates

cost to performance per stochastic variability, and covariation

cost (C-cost) evaluates the cost to performance per suboptimal

covariation between execution variables. Across a range of

studies (Abe and Sternad, 2013; Chu et al., 2016; Cohen and

Sternad, 2009; M€uller and Sternad, 2004), the lowest to high-

est cost to performance has been T-cost, C-cost, and N-cost,

respectively. Also, using pairwise correlations between each

cost and mean error, the greatest to least contributor to reduced

error has been T-cost, C-cost, and N-cost, respectively.

Finally, these three costs have been shown to evolve over dif-

ferent time scales; i.e., T-cost reached asymptote at a signifi-

cantly faster rate compared to N-cost and C-cost. In summary,

it appears that subjects first improve performance exponen-

tially through finding an error-tolerant space in the solution

manifold (T-cost). Further improvement proceeds at a slower

time scale by exploiting the covariation between execution

variables in the result space (C-cost) and, to a lesser extent,

reducing stochastic dispersion (N-cost) (Abe and Sternad,

2013; Chu et al., 2016; Cohen and Sternad, 2009; M€uller and

Sternad, 2004).

To the authors’ knowledge, there are no studies to date

that have used a vocal motor task to analyze how execution

changes over time to produce practice-based improvements.

Since the cortico-bulbar (head/neck control) and cortico-spinal

(core and limb control) sensorimotor systems differ with

regard to several anatomical/physiological factors (e.g., bilat-

eral/unilateral cortical input, prevalence of a gamma neural

system, and interconnection with respiration) (Brandon et al.,
2003; Kandel et al., 2000; Simonyan and Horwitz, 2011), gen-

eralization of limb-based findings to vocal motor learning is a

non-trivial endeavor and requires empirical study.

Overall, the specific purpose of the following study is to

investigate how changes in execution variability relate to

improvements in skilled vocal performance. This study has

two aims: In aim 1, we develop a voice-controlled virtual

environment mimicking the motor learning approach used

with redundant limb-based movements. More specifically, a

video game was developed where the user controls a virtual

slingshot with two vocal execution variables (related to fun-

damental frequency and vocal intensity) to hit a target with a

projectile. In aim 2, we assess if variability in this vocal task

evolves by the same changes in distributional and temporal

variability empirically demonstrated in limb-based motor

learning. Aim 2 has multiple hypotheses based on replicating

empirical findings from limb movements. For distributional

variability, it is expected that (a) the TNC-costs will be rank-

ordered with T-cost the lowest, then C-cost, and the highest

values for N-cost; (b) T-cost will be the strongest contributor

to reducing error, with C-cost second, and N-cost last; (c) T-

cost will decrease at a faster time scale than C-cost and N-

cost (i.e., T-cost will reach asymptotic performance in the

shortest time). For temporal variability, it is expected that

during asymptotic performance (i.e., when the vocal skill is

well learned), the subjects will display directional sensitivity

to the solution manifold. More specifically, autocorrelation

and detrended fluctuation analysis will reveal tight control

in the direction orthogonal to the solution manifold (error-

relevant direction) and lack of control in the direction paral-

lel to the solution manifold (error-irrelevant direction).

The long-term goal of this line of research is to investi-

gate if objective measures of variability derived from a virtual

environment will provide theoretical and empirical insights

into vocal motor control/learning—ultimately for improved

assessment/treatment of behaviorally based (e.g., muscle ten-

sion dysphonia, vocal fold nodules, polyps) or neurologically

based voice disorders.

II. METHODS

A. Participants

The goal of this study was to acquire data from ten adult

subjects (five male and five female) to obtain adequate

power for repeated-measure group-based statistics. Fourteen

subjects (nine male and five female, mean age¼ 25 years,
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range ¼ 19–37 years) performed the experimental task after

providing written informed consent in accordance with the

Institutional Review Board of the Massachusetts General

Hospital. Four male subjects did not complete the entire

voice video game protocol due to a technical problem during

practice (signal saturation, two subjects), allergies associated

with vocal deterioration (one subject), and early termination

due to multiple cancellations (one subject). The study

enrolled only professional singers to maximize the likeli-

hood of all subjects attaining asymptotic performance within

5 days of practice. Professional singers were considered any

student enrolled in a vocal performance degree at music con-

servatories in the Boston area, or any person who reported

their primary income was from singing. The singers reported

no history of voice disorders and were judged to have normal

voice quality by a speech-language pathologist with speciali-

zation in voice.

B. Experimental setup

Figure 1(A) shows an illustration of the experimental

set-up. Each subject’s voice was recorded using a miniature

accelerometer (model BU-27135; Knowles Corp., Itasca, IL)

placed on the anterior neck using double-sided tape [model

2181, 3 M, Maplewood, MN, see Fig. 1(A) inset]. An inter-

face circuit supplies power to the accelerometer and delivers

the neck-skin acceleration signal to custom C# software

running on a MacBook Pro (Apple, Cupertino, CA) with

WINDOWS 8.1 (Microsoft, Seattle, WA). Each day, subjects

were seated in front of the computer screen and the acceler-

ometer was affixed to approximately the same spot between

their thyroid cartilage and the superior aspect of the sternum.

Measurements (in millimeters) were taken from anatomical

landmarks (e.g., wrinkles on the neck or superior border of

the sternum) to the top or bottom of the accelerometer to

minimize placement variability.

Since the game was played via recording neck skin

acceleration, it is important to note that the amplitude of

neck-skin acceleration (ACCamp) is not exactly the same as

the acoustic sound pressure level (SPL); e.g., full lip occlu-

sion with the voiced nasal /m/ can elicit the same ACCamp as

the vowel /a/, but the SPL will be significantly different

between the two degrees of mouth opening. Therefore, all

subjects played the game using an /m/ to minimize percep-

tual discrepancies in loudness between auditory input (SPL)

and measured ACCamp. It has been established that SPL and

ACCamp demonstrate a strong, significant linear correlation

within a subject when the supraglottal track is not time vary-

ing (i.e., in a static position) (Cheyne et al., 2003; Fryd

et al., 2016; �Svec et al., 2005). Therefore, due to the experi-

mental constraints (closed lips and no variation in acceler-

ometer placement each day), it is reasonable to assume that

changes in ACCamp closely represent the changes in SPL.

Also, the fundamental frequency (f0), which is obtained from

the acceleration signal and used for the virtual environment,

is an execution variable known to be highly correlated

between neck-skin acceleration and acoustics (Coleman,

1988; Mehta et al., 2016; Sugimoto and Hiki, 1960).

The software processed the acceleration signal (recorded

with a 10 kHz low-pass filter, 22 050 Hz sampling rate, and

16-bit quantization) every 30 ms to produce estimates of f0
and ACCamp. The software computed ACCamp in decibels

(dB) with the reference intensity at full scale of the sound

card. A fast Fourier transform was used to obtain f0 estimates

from the first peak that is �30% of the highest peak in the

spectrum. Frequency detection errors occurred in less than

one percent of all trials. For each trial, a simple voice activity

detection algorithm was implemented to determine when

voicing began and ended, as well as to provide the exact

starting/ending values of f0 and ACCamp.

C. Voice-controlled virtual environment

Figure 1(B) illustrates the vocal task—displayed on the

laptop screen (resolution 2560 � 1440 pixels; pix)—which

consists of throwing a ball using a slingshot to hit a target

FIG. 1. (Color online) (A) The virtual

vocal throwing task. Subjects threw a

ball at a target using neck-skin acceler-

ation amplitude above their lowest pho-

nation level (ACCamp, in dBLPL) and

changes in fundamental frequency [Df0,

in semitones (st)]. Though the sling

is pictured, it was not visible during

practice. (B) Visual display showing

the sling and ball trajectories for three

exemplary trials. a and b represent

angle (in radians) and stretch (in pix-

els). (C) The three plots show frame-

based values of Df0 and ACCamp for

the three trials. Also, arrows pointing

down and up show the start and release

values for the slingshot, respectively.

Notice that in all three throws, there are

moments where one variable is station-

ary and another is changing. (D) The

execution space indicates the amount

of error in pixels (pix) for combinations

of slingshot release values of Df0 and

ACCamp (values shown for three trials).
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circle. In this two-dimensional (2D) virtual environment, the

slingshot’s release angle a (in radians) and stretch b (in pix-

els) fully determine the trajectory of the ball and whether the

ball hits or misses the target. The ball follows a simple, fric-

tionless trajectory as defined by Newton’s laws of motion,

where the initial ball velocities in the horizontal (vix) and

vertical (viy) directions are determined by a and b, respec-

tively, according to the following relations:

vix ¼ b cos a; (1)

viy ¼ b sin a: (2)

The 2D position of the ball (x, y) is determined by the fol-

lowing functions of time (t), initial velocities (vix, viy), and

gravity (g):

x tð Þ ¼ vixt; (3)

y tð Þ ¼ viytþ gt2

2
: (4)

Table I lists all the modifiable parameters related to the

2D virtual environment.

The angle a of the slingshot is controlled via the change

in f0 (Df0), in semitones (ST), between the starting and end-

ing f0 values. The stretch b of the slingshot is controlled via

ACCamp during voicing and measured in dB above the low-

est phonation level, denoted dBLPL.

The slingshot and ball appear on the screen once the

subject begins voicing. At this initial f0, the slingshot is par-

allel to the ground (i.e., at 0�) and the subject must increase

his/her f0 to pull the slingshot downward, which aims the

ball trajectory upward. The slingshot can also be angled

upward to aim the ball trajectory downward with a decrease

in f0 from the initial f0. A 90� range (�45� to 45�) for Df0
was set at 18 ST for all subjects. The range of slingshot

stretch was fixed for all subjects between their lowest phona-

tion level (0 dBLPL) at minimal stretch and 22.5 dBLPL at

maximal stretch.

To begin a trial, the voice signal must have had six con-

secutive frames (180-ms of voicing) above a f0 cut-off of 65-

Hz and a subject-specific minimum ACCamp threshold. The

minimum ACCamp threshold was based on each subject’s

average vocal intensity over ten trials during which s/he was

asked to phonate as softly as possible without voice breaks or

whispering; i.e., their lowest phonation level (dBLPL). The

ACCamp and f0 values contained in the sixth voiced frame

were used as the start values for each trial. The ball is released

once the subject stops voicing; the voiced signal needs to

decrease below the ACCamp and/or the f0 minimum thresh-

olds, at which time the tenth-to-last voiced frame supplies the

release ACCamp and f0 values. Figure 1(C) shows example

Df0 and ACCamp trajectories of the three throws in Fig. 1(B),

with downward pointing triangles indicating slingshot “start”

times and upward pointing triangles indicating slingshot

“release” times. A video illustrating the vocal slingshot task

in action during five trials in the voice-controlled 2D virtual

environment is given in Mm. 1.

Mm. 1. Video showing a subject performing five test trials

of the vocal slingshot task in the virtual environment.

The first four throws miss the target, and the fifth throw

hits the middle of the target. When the ball hits the

target’s center, the ball sticks until the subject begins

another practice trial. Note the volume (ACCamp) and

pitch (Df0) bars on the top of the screen (as well as the

slingshot) are not seen by the study subjects during their

five days of practice in the study. This is a file of type

“mpg” (1.6 MB).

To evaluate trial error, the minimum distance between the

ball’s trajectory and the center of the target is calculated. The

target is a circle with a 60-pixel diameter; i.e., a “hit” occurs

when the projectile passes within 6 30 pixels of the circle’s

center [Fig. 1(B)]. An explicit example of the vocal task’s

many-to-one mapping or redundancy can be seen in Fig. 1(B),

where two exemplary trajectories (trials 2 and 3) show differ-

ent strategies for hitting the target. The trajectory of trial 2 can

be described as a “direct shot,” where the user released the

ball at approximately a 35� angle (Df0¼ 7.02 ST) with a rela-

tively large slingshot stretch of 198 pixels (ACCamp¼ 14.85

dBLPL). The trajectory of trial 3 can be described as a “finesse

shot,” where the user released the ball at a steeper angle of

approximately 52� (Df0¼ 10.35 ST) with a relatively small

slingshot stretch of 125 pixels (ACCamp¼ 9.28 dBLPL). The

trajectory of trial 1 missed the target and the user released the

ball at an angle of approximately 24� (4.72 ST) with a very

large slingshot stretch of 276 pixels [ACCamp¼ 20.57 dBLPL;

stretch for trial 1 is not to scale in Fig. 1(B)].

TABLE I. Parameters of the virtual environment and specific values used

for all subjects.

Parameter Value used Description

Field

Width 1600 px Virtual environment width

(horizontal dimension)

Height 900 px Virtual environment height

(vertical dimension)

Slingshot position

X 150 px X and Y coordinates (from the left

and bottom of the screen,

respectively) of the center of the sling.
Y 75 px

Targeta

X 1150 px X and Y coordinates of the center

of the target circle. Ø represents the

diameter of the target circle.
Y 600 px

Ø 60 px

Obstacleb

X 1000 px X coordinate represents the location

of an obstacle (i.e., a wall) from the left

of the screen. Yt represents the height

(i.e. the “top”) of the obstacle

minus Yb (i.e., the “bottom”).

Yt 20 px

Yb 20 px

Gravity

�0.0175 px/s2 Force of gravity on the ball

aDuring exploratory testing, the target was placed at X¼ 500 px and

Y¼ 700 px.
bThe virtual environment can contain a wall, but this was not used for the

current study.
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Since the virtual environment allows a direct mathemati-

cal mapping between the two execution variables (Df0 and

ACCamp) and the resulting error, this error (minimum distance

between trajectory and center of the target) can be portrayed

with a color code on a 2D execution space [Fig. 1(D)]. Note

that the solution manifold, the set of all zero-error solutions,

is depicted by white. Despite the simplicity of the task, the

solution manifold has a highly nonlinear U-shape. The task is

to arrive at this manifold with minimal error. The three dots

represent the user’s Df0 and ACCamp at ball release for

the three trials shown in Figs. 1(B) and 1(C). Most impor-

tantly, dots 2 and 3 land on the white solution manifold, signi-

fying that both trials hit the target despite being significantly

different in execution space. Dot 1 lands on a non-white part

of the execution space signifying non-zero error for that trial.

D. Experimental protocol

The overall design of the study called for five days of

practice with the voice-controlled virtual environment. The

first day began with a verbal description of how to control the

virtual slingshot with user-controlled pitch and loudness.

Then, the subjects completed 100 trials of exploratory testing

with the virtual environment, in which they could see the

slingshot moving in real time with pitch and loudness changes

(see Mm. 1). Throughout the five days of subsequent practice

the slingshot was made invisible so that subjects only could

see the ball trajectory after release. This was done to mimic

the natural conditions of vocal learning, where vision is not

routinely considered part of the real-time feedback loop; feed-

back constituents are traditionally auditory and proprioceptive/

somatosensory (Tourville and Guenther, 2011). Furthermore,

three blocks of 100 practice trials were completed each day,

for all five days of practice (1500 practice trials total). The tar-

get was in a different location for the exploratory testing phase

from the one used in the five days of experimental practice.

During exploratory testing, the target was higher to the left of

the screen (closer to the slingshot) compared to the target

placement used for practice [shown in Fig. 1(B)]. Subjects

were permitted to have one to three days between practice

sessions.

E. Analysis of distributional variability

Figure 2 illustrates the tolerance, noise, and covariation

cost (TNC costs) calculations for a given data set of 100 tri-

als by one subject in the execution space (Cohen and

Sternad, 2009); day 1 of practice is on the top row and day 5

of practice is on the bottom row. In each panel, the gray data

points represent the veridical distributions and the darker

(color online) data show the transformed data that optimize

each cost.

T-cost is the cost to overall performance for not finding

the most error-tolerant area of the execution space. T-cost is

estimated by generating an optimized data set in which the

mean release angle (i.e., Df0) and the mean release stretch

(i.e., ACCamp) were shifted in execution space to the location

yielding the best overall result. The dispersion in execution

space is preserved during this process. More specifically, the

data set was shifted on a grid of 1500 � 1500 possible center

points and the boundaries of this grid were determined by the

limits of the task. The angles tested as centers were limited to

those between 0� and 90� (which was equivalent to 0–18 ST).

The velocity/stretch values tested as centers were limited to

those between 0 and 300 pixels of stretch (which was equiva-

lent to 0–22.5 dBLPL). This range was determined by the set-

tings established for all subjects individually and there were

no other options outside of these ranges. The optimization

procedure shifted the dataset through every possible center

point and evaluated its mean result at each location. When

data points extended beyond the grid limits, the values were

calculated on the extrapolated execution space. The location

that produced the best (lowest) overall mean error was com-

pared to the actual data set and the algebraic difference

between the two mean error values defined T-cost.

N-cost is the cost to overall performance due to non-

optimal stochastic variability in execution space. N-cost is

estimated by generating an optimized data set in which vari-

ability is reduced in a step-wise manner to achieve the least

FIG. 2. (Color online) Exemplary and

corresponding virtual sets of two prac-

tice blocks from one subject, used to

illustrate the tolerance noise covariation

cost analysis method (T-cost, N-cost,

and C-cost, respectively). The left col-

umn shows data optimized in terms of

T-cost; the middle column shows data

optimized in terms of N-cost, and the

right column shows data optimized in

terms of C-cost. Gray circles represent

actual throws made by the subject’s

phonatory gesture, and red, green, or

blue circles represent surrogate data

with one component idealized (toler-

ance, noise, or covariation, respec-

tively). The panels in the top and

bottom rows show data from the first

block of practice on day 1 and the last

block of practice on day 5, respectively.
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possible mean error, while leaving overall mean Df0 and

ACCamp unchanged. Though one would initially expect all

data sets to be optimally reduced to a single point (the mean

Df0 and ACCamp), note that each data set is evaluated in terms

of its result (minimum distance from the target). Therefore,

the mean of a data set may not always fall directly on the

solution manifold and a small distribution might achieve bet-

ter results on average. In the numerical procedure, the data

set was shrunk in 100 steps to converge onto the mean, where

the radial distance for every data point was divided into 100

steps. Subsequently, all data points were scaled towards the

mean at 1% intervals and the mean error was evaluated at

each interval. The algebraic difference between the means of

the interval that produced the lowest mean error (optimized

data set) and the original data set defined N-cost.

C-cost is the overall cost to performance due to insuffi-

cient alignment with the direction of the solution manifold;

i.e., not exploiting the redundancy in the execution space. C-

cost is estimated by generating an optimized data set where

the Df0 and ACCamp values were not modified, but the individ-

ual Df0–ACCamp trial-by-trial pairings were recombined to

achieve the lowest possible mean error via a greedy hill climb-

ing algorithm using a pairwise matching procedure (Russell

and Norvig, 2002). Specifically, all Df0–ACCamp pairs were

rank-ordered from lowest error (best) to highest error (worst);

i¼ 1, 2, 3,…, 100 since all data sets were of 100 trials.

Subsequently, the worst performing Df0 (i¼ 100) was paired

with ACCamp (i¼ 99) and ACCamp (i¼ 100) was paired with Df0
(i¼ 99); the mean result of the new error(i¼ 100) and the

error(i¼ 99) were compared to the original mean error of the

two trials. If the error improved over the original, the swap

was accepted. As a next step, ACCamp (i¼ 100) was swapped

with ACCamp (i¼ 98) and the resulting mean error of the two tri-

als was evaluated. If the mean result improved, the swap was

accepted. This continued until Df0 (i¼ 100) was compared with

ACCamp (i¼ 1); i.e., ACCamp (i¼ 100) was swapped with ACCamp

(i¼ 1). After this sequence of 99 comparisons, the same

sequence was repeated with ACCamp (i¼ 99); therefore the batch

consisted of 4950 comparisons. The batch of procedures was

repeated on the improved set until no further swaps could be

made. The algebraic difference between the mean error of this

optimized data set and the original data set defined C-cost.

An example of data from a single subject in Fig. 2 shows

representative changes in all three cost measures due to

improved vocal performance. For example, the optimal data

transformation shown for T-cost in the upper left panel of

Fig. 2 expresses that the subject could have improved her per-

formance by 11.9 pix, if tolerance were optimized. Similarly,

for N-cost, the result could be improved by 30.7 pix if the

noise were reduced optimally. Finally, for C-cost, the result

could be improved by 26.5 pix if the covariation between

execution variables was optimal. The subject’s data set

exhibits decreased costs to performance in all three metrics

late in practice (day 5) compared to early in practice (Day 1).

F. Analysis of directionality in execution space

The analysis of directional variability in the execution

space was replicated from (Abe and Sternad, 2013) and is

illustrated in Fig. 3. To investigate the temporal structure in Df0
and ACCamp, the two axes of the execution space had to be nor-

malized since they are in terms of two different units. To this

end, the data for each (nonoverlapping) 100-trial block per sub-

ject were transformed into z-scores according to the mean and

standard deviation of Df0 and ACCamp for that block.

To evaluate whether trial-to-trial variability was chan-

neled into preferential directions on the solution manifold,

the two-dimensional data of each block were projected onto

a single line through the center of the dataset using the fol-

lowing equation:

xh ið Þ ¼ x1 ið Þ cos hþ x2 ið Þ sin h; (5)

where i is the trial index, xh(i) denotes the new time series

after projection onto the line, and x1 and x2 denote the z-

FIG. 3. (Color online) (A) Execution space and rotation axis used to analyze

temporal structure in various directions. The execution space was normal-

ized using the individual subject’s mean and standard deviation. The gray

lines show the directions/rotations parallel (hPAR) or orthogonal (hORT) to

the solution manifold and the red lines show the directions/rotations where

the lag-1 autocorrelation coefficient (AC1) was lowest (hMIN) and highest

(hMAX). Number of trials¼ 100. (B) Example using nine consecutive trials

to illustrate trial-by-trial dynamics in the two-dimensional execution space.

(C) The upper time series shows xh(i) for the rotation angle h with the mini-

mum AC1 value and the lower time series shows xh(i) for the rotation angle

h with the maximum AC1 value.
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score of Df0 and ACCamp, respectively. It has been shown

that variability analysis is highly sensitive to the coordinate

system and without normalization, the execution space has

no metric (Sternad et al., 2010). The angle h of this line was

zero when parallel to the x axis [Df0 direction, black line in

Fig. 3(A)] and 0.5p rad when parallel to the y-axis (ACCamp

direction). The center of the data was defined by the mean of

Df0 and ACCamp for each block of 100 trials for each indi-

vidual. This line was then rotated through 0< h< p rad, in

180 steps. At each rotation angle (h), the data were projected

onto the line and the time series of the projected data was

evaluated using autocorrelation and detrended fluctuation

analysis. The angle of the direction parallel (error-irrelevant)

to the solution manifold was defined as hPAR and the direc-

tion orthogonal (error-relevant) to the solution manifold was

defined as hORT [gray lines in Fig. 3(A)].

G. Analysis of temporal variability

The temporal structure of xh(i) obtained for all rotation

angles h was evaluated by autocorrelation and detrended fluc-

tuation analysis (DFA). These two analysis methods have

been chosen because they provide statistical quantifications of

temporal persistence/anti-persistence on short-term (autocor-

relation) and long-term (DFA) time scales. More specifically,

persistence is statistically defined when future fluctuations are

likely to be in the same direction as current fluctuations; anti-

persistence is defined when currently observed fluctuation are

in the opposite direction of future fluctuations (Brenner et al.,
2013; Collins and De Luca, 1993; Collins and De Luca, 1994;

John et al., 2016). From the autocorrelation analysis, the

lag-1 autocorrelation coefficient (AC1) was reported to evalu-

ate trial-to-trial variability since AC1 provides a correlation

between the signal and the signal shifted by 1 trial. Temporal

structure beyond lag-1 was evaluated using DFA. The DFA

method was chosen since it is a modification of the root-mean

square analysis of a random walk that is relatively insensitive

to non-stationarities and noise in the data (Peng et al., 1995).

Specifically, the time series was cumulatively summed to

obtain an integrated signal and was then detrended with linear

regression within windows of a number of trials n. The root

mean square of the detrended time series F(n) was then calcu-

lated for windows of n trials. Plotting F(n) versus n in log-log

coordinates, the DFA scaling index (SCI) was obtained from

the slope of a linear regression (Peng et al., 1995). This SCI

has traditionally been used to estimate the fractal dimensions

of a time series, which provides an indication of the statistical

properties of the fluctuations contained in the time series

(Duarte and Sternad, 2008; Feder, 1988). Sets of 100 trials

were used in the analysis of directionality in execution space.

Temporal variability is classified as either uncorrelated

white noise (AC1¼ 0 and SCI¼ 0.5); anti-persistence denot-

ing stable dynamic behavior and error correction (AC1< 0

and SCI< 0.5), or persistence denoting unstable dynamic

behavior and lack of error correction (AC1> 0 and SCI> 0.5)

(Collins and De Luca, 1993; Collins and De Luca, 1994;

Dingwell and Cusumano, 2010; Dingwell et al., 2010). It was

hypothesized that the lowest value of AC1 or SCI (labeled

hMIN) would be coincident with the direction orthogonal to the

solution manifold (hORT), as this is the most error-relevant

direction. The rotation angle in execution space with the high-

est values of AC1 or SCI (labeled hMAX) will be coincident

with the direction parallel to the solution manifold (hPAR),

which is the least error-relevant direction. Figure 3(A) repre-

sents the angles hMIN and hMAX in execution space, and Fig.

3(B) shows hypothetical data (nine consecutive trials) to

clearly show trial-by-trial fluctuations that produce negative

AC1 along the hMIN axis (trial-to-trial changes alternate left/

right) and positive AC1 along the hMAX axis (trial-to-trial

changes persist up/down). Figure 3(C) shows time series of

execution variables, xh(i), at two different rotation angles—

specifically, the signals at those angles with minimum AC1

(hMIN) and maximum AC1 (hMAX).

H. Statistical analysis

Performance improvement across practice was evaluated

by fitting exponential functions to the error (minimum

distance between the ball trajectory and target), where

y¼ ae�bxþ c. Fits were performed for each participant and

for the entire group’s mean error, calculated from absolute

values of 50 trials. Similarly, exponential functions were fit-

ted to T-cost, N-cost, and C-cost over time, evaluated for

blocks of 50 trials. The exponential functions assessed the

different time scales of change between the costs and error

via the time constant 1/b. To further demonstrate significant

improvement over practice, the first 50 trials from all practice

days were analyzed with repeated measure analyses of

variance (RM-ANOVA) with respect to mean error, T-cost,

N-cost, and C-cost. Significant main effects were followed up

with one-tailed paired t-tests (post hoc) since the hypothe-

sized direction of change was in one direction (reduction of

all metrics over time). All post hoc comparisons were in ref-

erence to day 1 (i.e., four total comparisons per metric) since

human performance improvement is exponential (most reduc-

tion in error metrics occur very early in practice). Bonferroni

p-value corrections were not done because this is a prelimi-

nary study where the focus was on finding statistically robust

(p< 0.05) medium-to-large effect sizes (as determined via

Cohen’s d). The individual contribution of each cost towards

error reduction was evaluated through Spearman’s rank cor-

relation coefficient q (T-cost, N-cost, or C-cost versus mean

error) and resulting q values were tested for significant differ-

ences using three paired t-tests (T-cost versus N-cost, T-cost

versus C-cost, and C-cost versus N-cost).

The subjects’ sensitivity to directions in the execution

space was assessed using all data from the last day (day 5) of

practice. This data set consisted of 3 blocks (100 practice tri-

als per block) from all ten subjects, where hMIN and hMAX

were calculated for each block using AC1 or SCI (total prac-

tice blocks¼ 30). Two paired t-tests (one with data from

AC1 and the other from SCI) were used to assess the differ-

ence between the 30-paired values of hMIN and hMAX. If sub-

jects developed a sensitivity to how trial-to-trial fluctuations

in the execution space related to performance error, the

direction with minimum AC1 and SCI (hMIN) will be signifi-

cantly lower than the direction with maximum AC1 and SCI
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(hMAX). This will be interpreted as increased CNS control in

the hORT compared to hPAR.

Cohen’s d was used as an effect size metric for all statis-

tically significant pairwise comparisons such that effect sizes

less than 0.20 were interpreted as small, between 0.20 and

0.80 as medium, and greater than 0.80 as large (Cohen,

1988). All statistics were calculated using SPSS software (ver-

sion 22.0, IBM, Armonk, NY). All variables were confirmed

to have normal distributions via one-sample Kolmogorov-

Smirnov tests.

III. RESULTS

A. Performance improvement

Before analyzing variability as it relates to practice, one

must first demonstrate that the group of subjects significantly

improved their performance. Figure 4(A) shows the progres-

sion of error across practice for all ten individuals who com-

pleted 5 days of practice. Only the exponential fits are

shown for visual clarity. The fit across all subjects and the

mean error per 50 trial block is shown in the inset of Fig.

4(A). One subject (in gray) started out with small error and

maintained his relatively high performance throughout all

days of practice. Even though this subject did not demon-

strate a learning trend, he was included in all analyses. All

other subjects had statistically significant exponential fits

with r-values (the nonlinear correlation coefficient between

the exponential fit and data) ranging from 0.45 to 0.77. An

exponential function was also fitted across the group using

overall mean error, which resulted in a significant r-value of

0.83 [see inset of Fig. 4(A)]. The subjects began practice at

a mean error of 58.57 (15.23) pixels during their first block

of trials (n¼ 100) and decreased it to 44.30 (12.46) pixels

during their first block of trials on their last practice day

(recall that a “hit” is defined as an error of 30 pixels or

less). Therefore, even after 5 days of practice (1500 trials),

the group of singers was not hitting the target on average;

i.e., the task was challenging to learn. The time scale 1/b
was 4.878, indicating that the time constant was approxi-

mately 244 individual trials (i.e., slightly less than one day

of practice). Furthermore, the results of a RM-ANOVA indi-

cated a significant change in error across practice days—

Greenhouse-Geisser F(2.07, 18.61)¼ 5.708, ˛2¼ 0.39,

p¼ 0.011—and post hoc t-tests demonstrated a statistically

significant decrease in error for practice days 2–5 compared

to day 1 (p¼ 0.020, p< 0.001, p¼ 0.005, p¼ 0.001, respec-

tively) with large effect sizes (mean d¼ 1.24 across the four

comparisons).

B. Distributional variability—TNC-costs

Figure 2 showed exemplary data early in practice (day 1)

and late in practice (day 5) from one subject. Comparing days

1 and 5, it can be seen that the distribution of execution varia-

bles moves towards a more error-tolerant location on the solu-

tion manifold (T-cost), the dispersion of the data cloud

decreased (N-cost), and the anisotropy of the data changed to

align with the solution manifold (C-cost). Figure 4(B) shows

how the group averages of these TNC-costs decreased with

practice. As hypothesized, N-cost was the highest cost to per-

formance followed by C-cost, and finally T-cost. The results

of the RM-ANOVA using N-cost and C-cost demonstrated a

significantly decreased cost to performance across all practice

days. More specifically, N-cost decreased across all practice

days—Greenhouse-Geisser F(2.64, 23.75)¼ 6.215, ˛2¼ 0.41,

p¼ 0.001—and post hoc paired t-tests demonstrated a signifi-

cant decrease in N-cost for practice days 2–5 compared to

day 1 (p¼ 0.003, p< 0.001, p¼ 0.001, p¼ 0.007, respec-

tively) with large effect sizes (mean d¼ 1.55 across the

four comparisons). C-cost decreased across all practice

days—Greenhouse-Geisser F(2.48, 22.35)¼ 3.83, ˛2¼ 0.30,

p¼ 0.03—and post hoc paired t-test demonstrated a signifi-

cant decrease in C-cost for practice days 2–5 compared to day

1 (p¼ 0.014, p¼ 0.003, p¼ 0.013, p¼ 0.037, respectively)

with large effect sizes (mean d¼ 0.85 across the four compar-

isons). T-cost changes, on the other hand, did not attain a

significant main effect in the RM-ANOVA—Greenhouse-

Geisser F(1.94, 17.47)¼ 2.48, ˛2¼ 0.22, p¼ 0.11—but post
hoc paired t-tests demonstrated a significant decrease in T-

cost for practice days 3–5 compared to day 1 (p¼ 0.008,

0.028, 0.023, respectively). The lack of a significant main

effect is likely due to insufficient statistical power since the

associated mean effect size across all four comparisons indi-

cated a moderate-to-large decrease in T-cost (d¼ 0.66).

Exponential fit functions demonstrated significant r-values

of 0.80 for T-cost, 0.84 for N-cost, and 0.82 for C-cost. N-cost

and C-cost evolved at a faster time scale than T-cost. More

specifically, the b-coefficients were 0.095 for T-cost, corre-

sponding to a time constant of 526 trials, or slightly less than 2

FIG. 4. (Color online) (A) Exponential fits to each individual’s mean error

computed for blocks of 50 trials, where the gray line represents the subject

who did not show improvement across practice. The inset shows the mean

error across all ten subjects with spacing between lines representing new

days (six trial blocks per day for five days). (B) Means and standard devia-

tions of T-cost (red), C-cost (blue), and N-cost (green) per trial block for all

subjects.
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days of practice. The time scale for C-cost was 0.246, corre-

sponding to 203 trials, or slightly less than 1 day of practice.

The time scale for N-cost was 0.428, equivalent to 117 trials,

or approximately a half day of practice. These profiles were

correlated with the error profiles. Table II displays the resulting

rho values from Spearman’s correlations between error and T-,

N-, or C-cost, respectively. Qualitatively, the ranking from

highest to lowest correlation across participants was different

than hypothesized. However, paired t-tests demonstrated no

significant difference between mean rho values when compar-

ing between costs at a group level.

C. Temporal variability—AC1 and SCI at hMIN or hMAX

Figure 3(A) shows that, for the exemplary data set, hMAX

aligns at an angle approximately parallel to the solution man-

ifold (error-irrelevant direction h), and hMIN forms an angle

approximately orthogonal to the solution manifold (error-rel-

evant direction h). Additionally, Fig. 3(C) displays exemplary

time series for the signal at minimum and maximum AC1 to

illustrate how the two time series can be different. The signal

at hMIN shows anti-persistent temporal structure fluctuating

around the mean. In contrast, the signal at hMAX shows per-

sistent temporal structure with a noticeable drift in the first

half of the trials.

Figure 5 summarizes the results of the temporal analyses

with respect to direction h. According to paired t-tests, hMIN

was significantly lower than hMAX in both AC1 and SCI

analyses with very large effect sizes; AC1: t(29)¼ 13.65,

p< 0.001, d¼ 2.92; SCI: t(29)¼ 12.06, p< 0.001, d¼ 2.62.

Therefore, both temporal correlation measures demonstrated

significantly different trial-by-trial dynamics between hMIN

and hMAX; i.e., uncorrelated, stable dynamics at hMIN and

persistent dynamics at hMAX, indicative of selective control

depending on the direction in solution space.

IV. DISCUSSION

A voice-controlled video game has been described and

was used to investigate whether theoretically based findings

from limb motor learning were applicable to vocal motor

learning. The relationship between motor performance and

distributional variability were quantitatively examined, as

well as the time scales over which error and TNC-costs

evolved. Finally, temporal variability in the two-dimensional

execution space was evaluated to determine if subjects’ trial-

to-trial behavior were sensitive to error-relevant directions in

the solution manifold.

Before interpreting the variability results, it will be help-

ful to first examine the final skilled vocal behavior exhibited

by the group of ten professional singers. Figure 6 provides a

visualization of how each subject performed in the execution

space during his/her final block of 100 trials on practice day

5. A gray ellipse represents each subject’s final block of

practice and was centered at the final practice block’s mean

ACCamp and Df0. Overall, it qualitatively appears that they

all performed a relatively similar vocal gesture. On average,

the subjects produced most harmonic intervals between a

diminished and augmented fifth (mean 6 1 standard devia-

tion; 6.98 6 0.49 ST) at over two times louder than their

lowest phonation level (14.57 dBLPL 6 1.74 dB).

In order to interpret how difficult the task was (and how

skilled the final behavior became), published perturbation

studies were consulted for estimates of minimal controllable

limits. These limits were approximately 0.20–0.25 ST for f0

TABLE II. Spearman correlations (q) between error and each of the TNC

costs. Subject ID denotes sex of each individual: Male (M) and female (F).

Subject T-cost N-cost C-cost

F3 0.825a 0.453b 0.348

F4 0.655a 0.079 0.025

F5 0.839a 0.388b 0.299

F6 0.679a 0.632a 0.608a

F7 0.485c 0.828a 0.583a

M2 0.586a 0.593a 0.747a

M3 0.382b 0.315 0.479c

M6 0.528c 0.697a 0.558a

M8 0.531c 0.624a 0.306

M9 0.457b 0.560a 0.453b

Mean (SD) 0.60 (0.15) 0.52 (0.22) 0.44 (0.21)

ap< 0.001.
bp< 0.05.
cp< 0.01.

FIG. 5. (Color online) Analysis of temporal variability and directionality in

execution space. (A) Lag-1 autocorrelation coefficient (AC1) and (B)

detrended fluctuation analysis scaling index (SCI) of xh(i) as a function of

rotation angle h across all subjects’ last day of practice (three blocks of 100

trials each). Solid horizontal black curves show the mean measure across all

30 practice blocks in each group, and shaded areas represent 61 standard

deviation around the mean. h is indicated for which AC1 and SCI are mini-

mum (hMIN) and maximum (hMAX), with their difference statistically signifi-

cant (**p< 0.01).
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(Burnett and Larson, 2002; Hain et al., 2000; Liu and Larson,

2007) and 0.5–0.75 dB for sound pressure level (Bauer et al.,
2006; Larson et al., 2007). Studies on just noticeable differ-

ences provided even lower estimated limits, but they were

not used since the derivations were based on perceptual judg-

ments not connected to motor performance (Braida et al.,
1984; Fletcher and Munson, 1933; Klatt, 1973; Nikjeh et al.,
2008; Tervaniemi et al., 2005). To show how these estimated

minimal controllable limits related to game play, a circle

(axes diameters¼ 0.2 ST and 0.5 dB) was placed on Fig. 6

(below the gray ellipses) where it could fit inside the solution

manifold; i.e., trial-to-trial variability would be present, but

the ball would still hit the target for every throw. First, the

proximity of the standard deviation of Df0 and ACCamp across

all individual subjects (0.37 ST and 0.73 dB, respectively) to

the estimated controllable limits (0.2 ST and 0.5 dB, respec-

tively) speaks to the resulting elite vocal performance of the

group as a whole and the high difficulty of the virtual task.

Second, it is realistic to assume that trial-by-trial variations

reflect volitional vocal control (or lack of control) in relation

to error correction, since the standard deviation of Df0 and

ACCamp exhibited by the study subjects are above these esti-

mated controllable limits. And finally, the subjects found a

location on the solution manifold (gray ellipses in Fig. 6) that

was reasonably tolerant to variability, i.e., the subjects could

realistically reduce their variability and stay on the zero error,

or white, solution manifold.

A. Distributional variability—TNC-costs

In general, the relationship between costs and error

is similar to findings in limb movement studies. However,

two results were different than what was expected based on

previous limb work. T-cost exhibited the slowest time scale

(which it typically demonstrates the fastest time scale of all

cost metrics in limb studies) and C-cost and N-cost exhibited

higher positive correlations with error than observed in limb

research. These two results may be due to the baseline skill

level of the ten subjects; i.e., they were all professional sing-

ers highly competent at manipulating pitch and loudness

before practicing the game. Thus, the expert singers may

have been able to find an error-tolerant space on the solution

manifold very early in practice. Therefore, T-cost appeared

to evolve at longer temporal periods than C-cost and N-cost.

Also, the large group-based correlation coefficients between

N-cost or C-cost and error indicated that subjects were past

the stage of establishing a new vocal skill, and instead, were

in the later stages of skill learning where they fine-tuned

their motor performance. It has been noted in previous limb-

based experiments that correlations between C-cost or N-

cost and error increased during improvement of expert per-

formance. Strong positive N-cost correlations with error

have been noted in subjects who performed well during early

practice (Abe and Sternad, 2013) and in subjects who had

professional sports experience (Cohen and Sternad, 2009).

B. Temporal variability—Directionality in execution
space

As seen in Fig. 5 (and supported via statistical results),

trial-by-trial dynamics demonstrated clear modulations across

different directions in the execution space, suggesting that the

subjects were sensitive to the direction of the solution mani-

fold. Furthermore, hMIN for AC1 was around zero instead of

negative and hMIN for SCI was around 0.5 instead of <0.5;

i.e., both minima should be characterized as white noise

instead of anti-persistence/error correction. One would have

expected to find negative AC1 values or SCI values <0.5 at

hMIN since, theoretically, low values would represent error-

correction—and anti-persistent structure has been found at

hMIN in studies using well-learned behaviors (e.g., walking or

pointing) (Dingwell et al., 2010; van Beers et al., 2013). This

apparent deviation was also reported in a previous study using

a similar task and explained through a computational learning

model. This model suggested that additive noise sources (e.g.,

perceptual and motor noise) could obscure corrective errors

from feedback and result in positive AC1 and SCI at hMIN

(Abe and Sternad, 2013). Furthermore, the mapping from

execution to error is highly nonlinear; therefore, perceiving

the direct relation between error and execution is difficult and

the resulting time series of execution variables may not dem-

onstrate strong anti-persistent/error-correction patterns. Last,

the significantly lower AC1 and SCI at hMIN compared to

hMAX support the hypothesis that subjects became sensitive to

the directionality of the underlying non-linear solution mani-

fold and compensated on a trial-by-trial basis in only those

directions that were closely related to a change the error.

V. CONCLUSION AND FUTURE DIRECTIONS

The results of this investigation suggest that vocal motor

learning shares similar features to limb motor learning—

especially how variability is modified over time to reduce

the overall error. This is particularly significant as replicating

findings from motor control/learning studies based on limb

movements (outside of perturbation and adaptation para-

digms) are not often successful when applied to bulbar move-

ments/skills (e.g., speech, swallowing, voice); for reviews see

FIG. 6. (Color online) Summary of each subject’s error in the execution

space for their final block (100 trials) of practice on day 5, represented by

gray ellipses. The aspect ratio of the execution space was scaled according

to the estimated controllable limits such that a Df0 of 0.2 ST and ACCamp of

0.5 dBLPL represent the same length in the execution space (the red circle

below the ellipses is a scale marker).
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Bislick et al., 2012; Maas et al., 2008. To date, the study of

variability in vocal motor behavior has focused primarily on

decreases or increases in relation to performance improve-

ment or normal versus pathological. In contrast, the present

study demonstrates that the vocal motor system may not be

primarily concerned with simply decreasing variability, but

selectively channeling temporal and distributional variability

according to the task demands. Furthermore, selective control

of variability may even be indicative of late-stage skill learn-

ing or habituation.

This paradigm warrants future work to investigate the

potential for quantification of improvements in voice training

and novel clinical capabilities in the field of voice disorder

rehabilitation—the ultimate goal being to improve assessment

and treatment of patients with voice disorders. For example,

the TNC-costs approach enabled novel characterizations of

upper-limb control and learning in children with dystonia

(Chu et al., 2016) and a virtual throwing task has been used

in a group of patients with Parkinson’s disease (Pendt et al.,
2012). Consequently, it seems feasible that this approach may

be applied to patients with neurologic disorders associated

with vocal deterioration (e.g., Parkinson’s disease, multiple

sclerosis, amyotrophic lateral sclerosis). New voice-specific

diagnostic features (i.e., vocal biomarkers) could be derived

from the game through analysis of the Df0–ACCamp trajec-

tory, TNC-costs, or directional variability in execution space.

These features could also become therapeutically important if

they correlated with behavioral retention or longer-term learn-

ing. For example, the degree of correlation between N- or C-

cost and error, or directional variability analysis could help

quantify if a patient is implicitly aligning his/her performance

with the underlying solution manifold. Also, since the current

investigation included only subjects with high/expert baseline

levels of vocal skill (i.e., professional singers), future investi-

gations should test this paradigm in those with novice levels

of baseline skill.

The voice-controlled slingshot task may help patients

improve their specific pathological vocal features that are sub-

tle and otherwise difficult to volitionally vary. Also, just as

singers practice vocalises and pianists practice scales, the

slingshot task could be a platform for patients to improve

basic vocal skills or for experts to improve vocal technique.

Patients who demonstrate minimal kinesthetic/proprioceptive

awareness may find indirect benefits (i.e., learning to learn)

through using the visual feedback to help establish a complex

two-dimensional pitch-loudness vocal skill. Additionally,

patients with Parkinson’s disease may benefit from playing

the game in its current state, since the vocal execution varia-

bles are related to known targets for therapy (pitch and loud-

ness) (Ramig et al., 2001). This is also true of vocal function

exercises since they hypothetically focus on rebalancing and

strengthening the phonatory system through prolonged soft

voicing at specific pitches (Stemple et al., 1994). It could

additionally be hypothesized that adherence to therapy or

therapeutic outcomes would be improved with the addition of

a “game” to treatment regimens. The features used to control

the virtual slingshot could vary according to patient diagnosis;

e.g., for patients with vocal hyperfunction, vocal intensity

could be replaced with a measure of aerodynamic importance

such as subglottal pressure or glottal airflow (Fryd et al.,
2016; Za~nartu et al., 2014) or a ratio of aerodynamics to

acoustics (i.e., a vocal efficiency type measure). Even more

specifically, future work that has potential for clinical adop-

tion (i.e., voice therapy) should include the addition of voice

quality measures (e.g., cepstral peak prominence, spectral tilt,

noise-to-harmonics ratio) or laryngeal biomechanics (e.g.,

open/closed quotient, maximum flow declination rate, AC

Flow). Finally, the acquisition/retention paradigm in motor

learning may be applied to this video game to study the

effects of varying feedback and practice variables (e.g., con-

current/terminal feedback, frequency of feedback, massed/

distributed practice) (Schmidt and Lee, 2011).
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