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ABSTRACT Diarrhea is responsible for the death of approximately 900,000 children
per year worldwide. In children, typical enteropathogenic Escherichia coli (EPEC) is a
common cause of diarrhea and is associated with a higher hazard of death. Typical
EPEC infection is rare in animals and poorly reproduced in experimental animal
models. In contrast, atypical EPEC (aEPEC) infection is common in both children and
animals, but its role in diarrhea is uncertain. Mortality in kittens is often attributed to
diarrhea, and we previously identified enteroadherent EPEC in the intestines of de-
ceased kittens. The purpose of this study was to determine the prevalence and type
of EPEC in kittens and whether infection was associated with diarrhea, diarrhea-
related mortality, gastrointestinal pathology, or other risk factors. Kittens with and
without diarrhea were obtained from two shelter facilities and determined to shed
atypical EPEC at a culture-based prevalence of 18%. In contrast, quantitative PCR de-
tected the presence of the gene for intimin (eae) in feces from 42% of kittens. aEPEC
was isolated from kittens with and without diarrhea. However, kittens with diarrhea
harbored significantly larger quantities of aEPEC than kittens without diarrhea. Kit-
tens with aEPEC had a significantly greater severity of small intestinal and colonic le-
sions and were significantly more likely to have required subcutaneous fluid admin-
istration. These findings identify aEPEC to be prevalent in kittens and a significant
primary or contributing cause of intestinal inflammation, diarrhea, dehydration, and
associated mortality in kittens.
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Diarrhea is responsible for the death of an estimated 900,000 children per year
worldwide, with the majority of cases of mortality occurring in developing coun-

tries (1–3). Enteropathogenic Escherichia coli (EPEC) is responsible for over 81 million
cases of diarrhea per year, of which 17 million are diagnosed in children (4). A recent
Global Enteric Multicenter Study (GEMS) determined that the diarrheal death of chil-
dren can be largely attributed to a mere few infectious agents (2). In particular, diarrhea
caused by typical EPEC (tEPEC) is associated with a 2.6-fold higher hazard of death, the
largest reported in the study (2). EPEC strains are separated into tEPEC and atypical
EPEC (aEPEC) on the basis of the presence of the EAF plasmid, which contains the gene
encoding the bundle-forming pilus (bfp). Typical EPEC is an established diarrheal
pathogen in humans, whereas the role of aEPEC as a primary cause of diarrhea is not
completely solved (5–7). A major issue is that aEPEC isolates can also be detected in
healthy individuals. aEPEC is more prevalent than tEPEC in developed countries, where
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it is associated with prolonged diarrhea in some studies (8, 9) but is unassociated with
diarrhea in others (10–12).

It is estimated that 180 million kittens are born in the United States each year, and
inestimable numbers of these kittens are abandoned, orphaned, or relinquished to be
fostered by thousands of U.S. animal shelters (13–15). While the exact statistics are
unknown, approximately 15% of kittens fostered by these shelters will die or be
euthanized because of severe illness before they reach 8 weeks of age (Jim Babbitt,
chief veterinarian, San Diego Humane Society and Society for the Prevention of Cruelty
to Animals [SPCA], and Mondy Lamb, marketing director, Wake County, NC, SPCA,
personal communications). Infectious diseases are prevalent in this population, and as
many as 50% of kittens have diarrhea at the time of death or evidence of enteritis
postmortem (13, 16–18). Few studies have attempted to identify EPEC in the gastro-
intestinal tract or feces of cats (19–24). These studies either evaluated very few cats or
were performed on healthy animals only. The studies largely focused on animals as a
reservoir for EPEC and not on an association of EPEC with disease (19, 21, 23, 24). Two
previous studies focusing on adult cats identified a 1% prevalence of EPEC in cats with
diarrhea and a slightly higher (3 to 6%) prevalence in healthy cats (20, 22).

In susceptible species, EPEC bacteria cause diarrhea and severe dehydration by
attaching to the microvillus brush border of intestinal epithelial cells by means of the
adhesin intimin, which is encoded by the E. coli enterocyte attaching and effacing (eae)
gene (25). During the course of investigating gastrointestinal lesions associated with
death in kittens, we discovered a significant association between colonization of the
intestinal epithelium by eae-positive E. coli strains and death or euthanasia due to
severe illness (18). Given the established role of tEPEC infection as a leading cause of
diarrhea and diarrhea-related mortality in children, we hypothesized a similar potential
of EPEC infection in kittens. Consequently, the purpose of the present study was to
determine the prevalence and type of EPEC infection in kittens �12 weeks of age and
to establish any association between EPEC infection and diarrhea, diarrhea-related
mortality, specific intestinal tract pathology, or factors promoting susceptibility to
clinical disease. Our rationale was that identification of EPEC as an important cause of
diarrhea and related mortality in kittens could provide a unique opportunity for the
development of diagnostic, treatment, or prevention strategies having comparable
benefits in both kittens and children with EPEC infection.

RESULTS
Naturally occurring atypical EPEC colonization is prevalent in kittens. Feces

from 61 live kittens from 2 different shelter facilities in North Carolina were evaluated
for the presence of EPEC (see Table S1 in the supplemental material). Escherichia coli
was cultured from the feces of all but one kitten. Among the 60 kittens from which E.
coli was isolated, cultures positive for EPEC (eae-positive and stx1- and stx2-negative
strains) were obtained for 11 kittens, resulting in an overall prevalence of 18%. There
was no significant difference in prevalence of EPEC between kittens with diarrhea (6/27;
22%) and kittens without diarrhea (5/33; 15%). All EPEC isolates were identified to be
atypical on the basis of the absence of the gene coding for the bundle-forming pilus
(bfp) (26).

The gene for intimin (eae) could also be directly amplified from the fecal DNA of 22
kittens by means of quantitative PCR (qPCR), suggesting a prevalence of aEPEC expo-
sure or a colonization rate as high as 36%. There was no significant difference in the
prevalence of eae in feces from kittens with diarrhea (13/28; 46%) and kittens without
diarrhea (9/33; 27%) (P � 0.199, �2 test). On the basis of a standard curve for the
correlation of the eae cycle threshold (CT) number to the number of CFU of aEPEC in
feces (Fig. 1A), kittens with diarrhea were estimated to shed a median of 4.9 � 105 CFU
of aEPEC (interquartile range [IQR] � 2.5 � 104 to 4.7 � 106 CFU) per 100 mg feces,
whereas kittens without diarrhea were estimated to shed a median of 2.8 � 104 CFU of
aEPEC (IQR � 3.8 � 103 to 1.5 � 105 CFU) per 100 mg feces (Fig. 1B). The results of
quantitative PCR for amplification of the 16S rRNA gene from feces were not different
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between the kittens. The stx1, stx2, or bfp gene failed to be amplified from fecal DNA
from each kitten.

Diarrhea-related mortality is associated with a larger quantity of aEPEC. Recent
epidemiological studies in children have identified that EPEC infection and, in partic-
ular, tEPEC infection are associated with a higher hazard of diarrhea-related death (2, 4).
To determine if there is any association between aEPEC infection and diarrhea-related
mortality in kittens, we first identified the pathotypes of E. coli that could be cultured
from the feces of apparently healthy kittens and compared them to the pathotypes that
could be cultured from the feces of kittens that died or were euthanized due to severe
diarrhea. Fifty-four deceased kittens from two different shelter facilities had feces
cultured for the presence of diarrheagenic E. coli, including EPEC (Table S2). All
apparently healthy kittens came from a single shelter and were euthanized after
short-term housing because they were feral or otherwise unadoptable. In contrast,
kittens with diarrhea were predominantly from a different shelter in which foster care
was provided until the time of their death or euthanasia due to severe diarrhea. Kittens
with diarrhea had a significantly lower body weight than apparently healthy kittens.
Forty-four percent (15/34) of kittens with diarrhea died in foster care prior to their
return to the shelter, which resulted in a significantly longer time period lapse between
death and autopsy in the diarrhea group than in the group of apparently healthy
kittens.

A diarrheagenic pathotype of E. coli was cultured from the feces of 9/19 (47%)
apparently healthy kittens and 10/29 (34%) kittens that died or were euthanized due to
diarrhea (Table 1). The most common pathotypes of E. coli identified were aEPEC and
cnf1-positive E. coli. The presence of cnf1-positive E. coli was not significantly associated
with diarrhea, and cnf1-positive E. coli was cultured from a greater number of kittens
without diarrhea (5/19; 26%) than kittens with diarrhea (5/29; 17%) (Table 1). Atypical
EPEC was cultured from the feces of 6/29 (21%) kittens with diarrhea-associated
mortality and 3/19 (16%) apparently healthy kittens. In contrast, eae could be directly
amplified from the fecal DNA of 18/34 (53%) kittens with diarrhea-associated mortality
and 8/20 (40%) apparently healthy kittens (P � 0.524, �2 test). There was no significant
difference in the culture or qPCR-based prevalence of aEPEC infection between appar-
ently healthy kittens and kittens that died or were euthanized due to diarrhea.
However, all of the E. coli isolates from cultures of feces from kittens with aEPEC that

FIG 1 Estimation of aEPEC quantity determined by quantitative PCR (qPCR) amplification of the E. coli enterocyte attaching and
effacing (eae) gene from fecal DNA from 61 live kittens with and without diarrhea. (A) Standard curve obtained by inoculating
serial dilutions of known numbers of CFU of aEPEC into 100-mg aliquots of cat feces, followed by DNA extraction and qPCR
amplification of eae. The graph represents the results of 3 independent experiments each performed in triplicate at each
dilution. The linear equation relates y � cycle threshold (CT) value to x � log10 number of CFU of bacteria. The insert shows
an electrophoresis gel of the eae qPCR product from aEPEC log dilutions 3 to 8 (103 to 108) and a molecular weight ladder
demonstrating the size of the PCR product (425 bp). (B) Estimated number of aEPEC CFU per 100 mg of feces determined from
the standard curve and the cycle threshold (CT) values for qPCR amplification of eae from the fecal DNA of live kittens with
and without diarrhea. The lines represent the medians and interquartile ranges of the data.
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died or were euthanized due to diarrhea were identified to be aEPEC. Moreover, kittens
that died or were euthanized due to diarrhea had a greater estimated quantity of aEPEC
in their feces than apparently healthy kittens as determined by amplification of eae (Fig.
2). On the basis of the quantity of eae determined by qPCR, kittens with diarrhea-
associated mortality and having concurrent eae amplification shed an estimated me-
dian of 1.8 � 106 CFU of aEPEC (IQR � 2.3 � 105 to 5.3 � 107 CFU) per 100 mg feces,
whereas kittens without diarrhea shed an estimated median of 1.4 � 104 CFU of aEPEC
(IQR � 7.7 � 103 to 3.1 � 106 CFU) per 100 mg feces. The results of quantitative PCR
for the amplification of the 16S rRNA gene from feces were not different between the
two groups of kittens. The stx1, stx2, or bfp gene failed to be amplified from fecal DNA
from each kitten.

A closer examination of the data representing the burden of aEPEC colonization in
kittens demonstrated a large increase in the median number of CFU of aEPEC in both
live kittens with diarrhea (Fig. 1B) and deceased kittens with diarrhea (Fig. 2), although
the difference was not significant (P � 0.142 and P � 0.101, respectively, by the
Mann-Whitney rank sum test). The presence of outlier data points for both groups of

TABLE 1 Results of multiplex PCR for detection of a virulence gene(s) in E. coli cultured from feces of apparently healthy kittens and
kittens that died or were euthanized due to diarrhea

Culture findingc

Kittens with no diarrhea (n � 20)
Kittens with diarrhea-associated mortality
(n � 34)

No. of kittens
with indicated
finding/total
no. (%)

No. of isolates
with indicated
finding/total
no. (%)

No. of hemolytic
isolates/total
no. (%)

No. of kittens
with indicated
finding/total
no. (%)

No. of isolates
with indicated
finding/total
no. (%)

No. of hemolytic
isolates/total
no. (%)

Positive fecal bacterial culture 19/20 (95) 29/34 (85)
Isolation of E. coli 17/19 (89) 49 12/49 (24) 19/29 (68) 54 9/54 (17)

Isolation of diarrheagenic E. coli 9/19 (47) 19/49 (39) 12/19 (63) 10/29 (34) 30/54 (56) 9/30 (30)
Enteropathogenic (eae positive, bfp and

stx negative)
3/19 (16) 6 0/6 (0) 6a/29 (21) 18 1/18 (6)

CNF1 containing (e.g., necrotoxigenic)
(cnf1 positive)

5/19 (26) 10 9/10 (90) 5a,b/29 (17) 14 8b/14 (57)

Enterotoxigenic (STa and STb positive) 1/19 (5) 3 3/3 (100) 0/29 (0) 0
Shiga toxin producing (eae negative,

stx positive)
0/19 (0) 0 0/29 (0) 0

Enterohemorrhagic (eae and stx positive) 0/19 (0) 0 0/29 (0) 0
Enteroaggregative (pCVD432 positive) 0/19 (0) 0 1b/29 (3) 1 1b/1 (100)
Enteroinvasive (ipaH positive) 0/19 (0) 0 0/29 (0) 0

Isolation of nondiarrheagenic E. coli 8/19 (42) 30/49 (61) 0/49 (0) 9/29 (31) 24/54 (44) 0/54 (0)
aOne kitten had E. coli with both cnf1 and eae.
bOne kitten had E. coli with both cnf1 and pCVD432.
ccnf1, gene encoding cytotoxic necrotizing factor 1; STa and STb, heat-stable toxins a and b, respectively; eae, E. coli enterocyte attaching and effacing gene, stx, gene
encoding Shiga-like toxin; pCVD432, enteroaggregative plasmid; ipaH, gene encoding invasion plasmid antigen H.

FIG 2 Estimated number of aEPEC CFU per 100 mg feces from apparently healthy kittens euthanized by
animal control and kittens that died or were euthanized because of severe diarrhea while in foster care.
The lines represent the medians and the interquartile ranges of the data.
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healthy kittens and limitations of sample size within each subgroup prompted subse-
quent analysis of these data as a combined data set. When data for all live and
deceased kittens were combined, a significantly greater burden of aEPEC was identified
in kittens with diarrhea (Fig. 3) (P � 0.013, Mann-Whitney rank sum test).

Kitten aEPEC isolates represent diverse serotypes. A total of 24 kitten aEPEC
isolates, including 6 aEPEC isolates from 3 kittens without diarrhea and 18 aEPEC
isolates from 6 kittens with diarrhea-associated mortality, were serotyped. Eight differ-
ent combinations of O serotypes and H types were observed, and more than one
serotype of aEPEC was isolated from 3/9 (33%) kittens. As shown in Table 2, the most
commonly identified O serotype was O153. Isolates with H21 were more closely
associated with diarrhea-related mortality (P � 0.052, Fisher’s exact test).

Kitten aEPEC isolates are genotypically diverse. Pulsed-field gel electrophoresis
(PFGE), performed on each isolate with a unique serotype recovered from each kitten,
revealed a remarkable degree of genetic diversity (Fig. 4). No significant associations
between the pulsotypes of aEPEC isolates from apparently healthy kittens and the
pulsotypes of aEPEC isolates from kittens that died or were euthanized due to diarrhea
were observed. A discordance between pulsotype and serotype was observed for
several isolates.

Gross and microscopic lesions are common in the small intestine and colon of
kittens with severe diarrhea. On the basis of the photographic appearance of the
colonic contents at autopsy, kittens that died or were euthanized due to diarrhea were
confirmed to have significantly higher fecal scores than apparently healthy kittens
(Table S3). Four kittens with diarrhea and one apparently healthy kitten did not have
their feces scored due to a lack of stool. Gross lesions were observed at the time of
autopsy in 32/34 (94%) kittens that died or were euthanized due to diarrhea and in only

FIG 3 Estimated number of aEPEC CFU per 100 mg feces from all kittens with or without diarrhea. Lines
represent the medians and the interquartile ranges of the data. Kittens with diarrhea had a significantly
larger quantity of aEPEC, as determined by the eae qPCR and standard curve. White symbols, live kittens;
black symbols, kittens that died or were euthanized. *, P � 0.013, Mann-Whitney rank sum test.

TABLE 2 Distribution of serotypes among 24 aEPEC isolates from kittens with the
different clinical outcomes examined in the study

Serotype

No. (%) of isolates

Total
(n � 24)

From kittens without
diarrhea (n � 6)

From kittens with diarrhea-
associated mortality (n � 18)

O153:H7 8 (33) 2 (33) 6 (33)
O153:H21 6 (25) 0 (0) 6 (33)
O108:H21 3 (13) 0 (0) 3 (17)
O128:H2 3 (13) 3 (50) 0 (0)
O4:H� 1 (4) 0 (0) 1 (6)
O4:H5 1 (4) 0 (0) 1 (6)
O111:H8 1 (4) 0 (0) 1 (6)
O153:H� 1 (4) 1 (17) 0 (0)

Atypical Enteropathogenic E. coli in Kittens Journal of Clinical Microbiology

September 2017 Volume 55 Issue 9 jcm.asm.org 2723

http://jcm.asm.org


7/20 (35%) apparently healthy kittens (Table S3). Gross and light microscopic lesions
were significantly more common and severe in the small intestine and colon of kittens
with diarrhea than apparently healthy kittens. Diarrhea was significantly associated
with crypt dilation or distortion in the small intestine. Diarrhea was significantly
associated with epithelial injury in the colon. Among all kittens undergoing autopsy,
there was no association between India ink-marked gross lesions and any specific lesion
identified on light microscopic examination of the corresponding tissue section (Table
S4 and Fig. S1). No gross lesions were identified to be specifically associated with the
presence of aEPEC (Table S3).

Kitten aEPEC infection is associated with a greater severity of inflammatory
infiltrates in the small intestine and colon. On the basis of the photographic
appearance of the colon contents at the time of autopsy, kittens with evidence of
aEPEC infection (i.e., kittens whose feces were eae positive and/or from whose feces
aEPEC was cultured) did not have more severe diarrhea scores than kittens in which
evidence of aEPEC infection was not identified (Table S3). However, kittens with diarrhea
and positive culture or eae qPCR results for aEPEC had significantly higher small intestinal
and colonic lesion scores than healthy kittens and kittens with diarrhea but no evidence of
aEPEC, as determined by culture and qPCR (Fig. 5 and Table S3). The increase in small
intestinal lesion scores in kittens with diarrhea and aEPEC was due to increased epithelial
injury and increased amounts of inflammatory infiltrate in the lamina propria. The increase
in colonic lesion scores in kittens with diarrhea and aEPEC was due to increased amounts
of inflammatory infiltrate in the lamina propria (Fig. 6 and Table S3). Autolysis was observed
in intestinal tissue sections from 33 of the 54 kittens (61%) and was significantly more
common in apparently healthy kittens (Table S3).

Enteroadherent E. coli was demonstrated in the intestines of kittens that died
or were euthanized due to diarrhea. Light microscopic examination of Giemsa-
stained sections of gastrointestinal tissue obtained from each kitten identified the
presence of mucosa-associated bacteria and/or debris in 17/34 (50%) kittens that were
euthanized or died due to severe diarrhea and 5/20 (25%) apparently healthy kittens.
Using an E. coli-specific oligonucleotide probe to identify the presence of mucosa-
associated E. coli by means of fluorescence in situ hybridization (FISH), enteroadherent
E. coli was observed in the small intestine and colon, respectively, of two kittens that
were euthanized due to diarrhea (Fig. 7). One kitten was both qPCR positive for eae and
positive for aEPEC by culture, while the other kitten was only qPCR positive for eae.

FIG 4 Pulsed-field gel electrophoresis (PFGE) of 13 aEPEC isolates obtained from 3 apparently healthy kittens euthanized by animal control and 6 kittens that
died or were euthanized because of severe diarrhea while in foster care. The results for a typical EPEC strain (E2348/69) and a nonpathogenic E. coli strain (ATCC
25822) are included for comparison. The isolates were clustered using the unweighted pair group method with arithmetic means (UPGMA), and the scale on
the left represents the percent similarity between each pulsotype. The serotype, isolate identifier, and clinical outcome (H, healthy; D, diarrhea) for each
pulsotype are shown on the right.
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Other mucosa-associated bacteria that did not fluoresce with the E. coli-specific probe
were identified in 6 kittens with diarrhea (spirochetes and rods) and 4 apparently
healthy kittens (segmented filamentous bacteria and rods).

There was no association between aEPEC infection and intestinal parasitism.
Gastrointestinal parasites were identified in 28/51 (55%) autopsied kittens. Three kittens
that died or were euthanized due to diarrhea did not contain enough feces to perform
parasite evaluations. Intestinal parasites were more often identified in the apparently
healthy kittens than in kittens that were euthanized or died due to diarrhea (Table S5
and Fig. S2). This difference was attributed to the less frequent administration of
preventative medications to euthanized healthy kittens, as documented in their med-
ical records. The parasites identified in kittens that were culture or eae qPCR positive for
aEPEC infection included Toxocara cati in 10/27 (37%) kittens and Isospora spp. in 8/27
(30%) kittens. There was not a statistically significant association between aEPEC
infection and the presence of intestinal parasites.

Kittens with aEPEC were significantly more likely to require administration of
parenteral fluids. To determine if any individual, environmental, clinical, or thera-

peutic variables were associated with aEPEC infection, all objective data that could
be obtained from the medical record of each kitten was examined. A summary of
these variables and their association with the combined results of aEPEC culture
and the eae qPCR for each group of kittens is shown in Table S6. Live kittens with
aEPEC were significantly more likely to have a decreased appetite and to have
required administration of parenteral fluids. When all live and deceased kittens
were combined into groups on the basis of their aEPEC culture and eae qPCR
results, factors significantly increasing the odds of aEPEC infection were not iden-
tified. However, kittens with aEPEC were significantly more likely to have required
parenteral fluid administration (odds ratio, 3.36; 95% confidence interval, 1.34 to
8.41; P � 0.015). The specific medications given to kittens within each category are
shown in Table S7. Antemortem testing of feces for the presence of feline panleu-
kopenia virus antigen was performed for 68% (23/34) of the kittens with diarrhea-
related mortality, and 4 kittens tested positive. There was no significant association
between a diagnosis of panleukopenia virus infection and the presence of aEPEC in
kittens that underwent testing for this virus.

FIG 5 Small intestinal and colonic histopathology lesion scores based on results of fecal culture and/or qPCR for eae in apparently healthy kittens
and those dying or euthanized due to severe diarrhea. Kittens with aEPEC that died with diarrhea had significantly higher small intestinal (A) and
colonic (B) histopathology lesion scores than kittens with other causes of diarrhea and apparently healthy kittens with and without aEPEC. P values
were determined by the Mann-Whitney rank sum test. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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DISCUSSION

This study identified that 40% of kittens from two different shelter environments in
the United States sampled postmortem shed isolates of diarrheagenic Escherichia coli
(DEC) in their feces. Most of the DEC isolates recovered from these kittens were
identified to be positive for the virulence marker eae or cnf1. We chose to focus on
further investigation of the eae-positive E. coli isolates based on the findings of our prior
study, in which these bacteria were observed to colonize the intestinal epithelium of
18% of kittens that died and 0% of healthy kittens (18). Because we had no precedent
observations regarding cnf1-positive E. coli and there was not a compelling association
between diarrhea-related death and the presence of cnf1-positive E. coli in this study,
we did not investigate this pathotype further. That said, given the high prevalence of
cnf1-positive E. coli isolates observed in these kittens (21%), as well as in others (27, 28),
and their established role in extraintestinal infections (29), further study of their
contribution to diarrheal disease and especially nondiarrheal causes of death in kittens
is warranted.

On the basis of the positive results of fecal culture, 18% of kittens in this study were
identified to be colonized by aEPEC. This prevalence is higher than that reported by
previous studies of EPEC infection in cats (19, 20, 22) and is likely due to our focus on
kittens. In developing countries, the prevalence of EPEC infection in children with
diarrhea is 8% and the hazard of diarrhea-related death in children with tEPEC is the
greatest for infants under the age of 11 months (2, 30, 31). In developed countries, the

FIG 6 Representative photomicrographs of lesions significantly associated with the presence of aEPEC (determined by culture and/or eae
qPCR) in kittens. (A) Photomicrograph of small intestine from a kitten with aEPEC demonstrating (i) epithelial cell loss and (ii) inflammatory
infiltrate composed of lymphocytes and plasma cells in the lamina propria. (B) Increased lesion severity. Also noted in this panel are crypt
dilation and villus blunting in the small intestine. (C) Inflammatory infiltrate in the lamina propria of the colon along with crypt dilation
in a kitten with aEPEC. (D) Severe inflammation composed predominantly of neutrophils obscuring the crypts and architecture of the
colon. Hematoxylin and eosin stain. Bars � 500 �m (A to C) and 200 �m (D).
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prevalence of aEPEC in children ranges from 5 to 25% and is the highest in infants ages
0 to 12 months (10, 32–36). In this study, aEPEC was cultured from the feces of
apparently healthy kittens, live kittens with diarrhea, and kittens that died or were
euthanized due to severe clinical signs of diarrhea. This finding is similar to that from
some reports describing the detection of aEPEC in children, where the prevalence of
infection is similar in individuals with diarrhea and those without diarrhea (10, 37).

In this study, a nonsignificantly higher percentage of kittens with diarrhea than
kittens without diarrhea was culture positive for aEPEC. Additionally, 100% of E. coli
isolates cultured from the feces of aEPEC-positive kittens with diarrhea-associated
mortality were identified to be aEPEC. Therefore, to investigate whether diarrhea could
be related to the burden of aEPEC infection, we developed a qPCR assay for the
quantification of eae in DNA extracted from the feces of kittens. As a surrogate for the
detection of aEPEC, eae was amplified from the feces of 42% of kittens in the study,
which is a percentage much larger than that identified by culture of feces for aEPEC.
Similar to the fecal culture results, the percentage of kittens that were positive for eae
did not differ significantly between apparently healthy kittens and kittens with diarrhea.
However, on the basis of the qPCR for eae, there was a significantly larger quantity of
aEPEC in the feces of kittens with diarrhea when both live and deceased kittens with
diarrhea were considered as a single data set. These findings indirectly suggest that
larger quantities of aEPEC are associated with diarrhea and diarrhea-related mortality in
kittens. These results are similar to those of studies of children where the EPEC load, as
measured by qPCR, was higher in individuals with diarrhea than in those with asymp-
tomatic EPEC infection (38). It is tempting to propose the utilization of qPCR for eae as
an alternative to the more laborious fecal culture techniques otherwise needed to
diagnose EPEC infection. This approach has been applied to insightful epidemiological
studies of EPEC infection in children (38, 39). Unfortunately, a high prevalence of eae
positivity in kittens and children with and without diarrhea precludes the use of qPCR

FIG 7 Representative fluorescence microscopy images of focally adherent E. coli in the small intestine of one kitten (A to D)
and the colon of another kitten (E to H) that were euthanized due to severe diarrhea. (A and E) Appearance of enteroadherent
bacteria with Giemsa stain. Fluorescence in situ hybridization was performed using oligonucleotide probes specific for
eubacterial 16S (probe Eub338; 3= 6-FAM green) (B and F) and specific for E. coli and Shigella (5= Cy3; red) (C and G). (D and
H) Overlay of fluorescence signals. The nuclei in the specimens were counterstained with DAPI (4=,6-diamidino-2-phenylindole;
blue).
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for the determination of disease causation. This is particularly true in kittens and
children with clinical disease, in which a myriad of potential infectious agents may be
responsible for diarrhea and positive results of qPCR cannot differentiate live versus
dead bacteria. The potential for horizontal transfer of the eae gene between different
bacteria makes the results of the eae qPCR incompletely specific for EPEC (40). None-
theless, on the basis of our positive aEPEC culture results, it is likely that positive qPCR
amplification of eae demonstrated kittens with a recent history of aEPEC infection.

On the basis of their serotypes and pulsotypes, the kitten aEPEC isolates in this study
had a high level of genetic diversity, which is similar to the findings observed for human
and environmental aEPEC isolates (41, 42). Most of the identified serotypes have been
previously associated with aEPEC. There is little information available for the most
common serotype (O153) identified in kittens in this study, other than an association
with EPEC (6, 42–44). However, a study of environmental isolates of EPEC from French
coastal regions identified serotype O153:H2 to be among the serotypes with the
highest number of virulence genes (42). While serotype O128 was observed only in
kittens without diarrhea, it has been associated with aEPEC or enterohemorrhagic E. coli
(EHEC) from humans with diarrheal disease (43, 45). A single kitten with diarrhea in this
study was colonized by a serotype O111 aEPEC isolate. Strains of serotype O111 have
been identified to be aEPEC, tEPEC, enteroaggregative E. coli, and non-O157 EHEC
strains (46–50). This is of interest due to the ability of these aEPEC strains to arise from
the loss of stx genes by EHEC or to acquire stx genes by infection with phages whose
genomes encode stx (51–54). Accordingly, it is possible that kittens harbor serotypes of
aEPEC that have lost and can reacquire virulence factors from EHEC. The significance of
our finding that H type 21 was identified only in kittens with diarrhea is unclear. The H
type of E. coli refers to the flagellin component of the flagella (55). The presence of
flagellin is important for adherence and stimulation of cytokines by aEPEC in in vitro
studies (56–58), and mutations in the fliC gene of O113:H21 Shiga-toxin producing E.
coli lead to a decreased association with the colonic epithelium in experimentally
infected mice (59). However, in that study, it is unclear if the impaired epithelial
association in the mutated H21 was specific to that H type (H21).

Some studies have described the pathological lesions associated with EPEC infection
in children (60–63). The main histopathological findings in children with EPEC are villus
atrophy, crypt hyperplasia, enteroadherent bacteria, and mucosal inflammatory infil-
trate in the small intestine (60–63). In this study, we identified a significant association
between aEPEC and lesions in both the small intestine and colon of kittens that died or
were euthanized due to diarrhea. Lesions were defined by the presence of epithelial
injury in the small intestine and an inflammatory infiltrate in the small intestine and
colon. The median inflammation score in the small intestine was higher than that in the
colon, suggesting that the pathological effects of aEPEC in kittens may be more
pronounced in the small intestine, similar to EPEC infection in children (60–62). Both
epithelial injury and inflammatory cell infiltrate could contribute directly to the patho-
genesis of aEPEC diarrhea by mechanisms related to increased paracellular permeabil-
ity, intestinal malabsorption, and increased epithelial secretion. Cell culture-based
studies of tEPEC pathogenesis support the presence of effector proteins that can alter
the permeability of the tight junction barrier, electrolyte transport, and the apical
plasma membrane microvillus architecture and function and promote the secretion of
proinflammatory cytokines (64–71). The presence of the same effector proteins in
aEPEC supports the likelihood of comparable pathological effects on the intestinal
epithelium. While the observed histopathological lesions were significantly more severe
in kittens with aEPEC infection, they lack specificity because they were also observed in
kittens with diarrhea that did not have aEPEC.

On the basis of the results of FISH utilizing a DNA probe specific for E. coli,
colonization of both the small intestine and colon was evidenced by palisades of E. coli
isolates attached to either the villus or the crypt epithelium. We observed a lower
prevalence of FISH-positive results for EPEC in this study (2/34; 6%) than in our prior
study (9/50; 18%), in which kittens with all causes of mortality were examined (18). The
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reason for this difference is unclear but may be due to differences in the medications
(such as antibiotics) administered to kittens with diarrhea or a higher prevalence of
autolysis of tissues from kittens in the present study. Nonetheless, the number of
FISH-positive kittens is likely a gross underestimate on the basis of the size of the
samples examined (5 �m) compared to the length of the entire gastrointestinal tract
(2.1 m) (72).

A significant gap in knowledge exists regarding what host or bacterial factors are
responsible for why some aEPEC-infected children remain asymptomatic while others
develop severe diarrhea that can result in death. Examination of the demographic,
environmental, clinical, and treatment history of individual kittens from both live and
deceased populations failed to disclose any factors distinguishing aEPEC-infected
kittens with diarrhea from aEPEC-infected kittens without diarrhea. We hypothesized
that weaning would be associated with increased susceptibility to aEPEC diarrhea due
to an association with stress, altered intestinal function, and increased susceptibility to
infection and disease in multiple species (73, 74). In addition, maternal milk has been
shown to protect against EPEC infection in rabbits and infants (75–77). In the present
study, however, nearly all of the kittens were weaned, which likely precluded our ability
to meaningfully assess the impact of weaning on susceptibility to aEPEC diarrhea.

Given the myriad medications administered to kittens in this study for the treatment
of many ostensible causes for diarrhea, it is remarkable that kittens diagnosed with
aEPEC infection were significantly more likely than other kittens to have required
parenteral fluid administration. This finding implies that kittens with aEPEC infection
were likely to have dehydration of a severity greater than that in kittens with other
causes of diarrhea. The greater severity of dehydration parallels the association of
aEPEC with intestinal histopathological lesions of increased severity and suggests
greater fecal water loss in kittens with aEPEC diarrhea.

Several limitations to this study are worth mentioning. First, the study was under-
taken with kittens under naturally occurring conditions from two different shelter
facilities with different population sizes, processing procedures, and foster care policies.
While adding considerable extraneous variability to the study, we did not find any
statistically significant differences in aEPEC infection in kittens on the basis of shelter
identity. Second, in both live and deceased kitten populations, apparently healthy
kittens spent a significantly shorter time in foster care and received fewer medications
and preventatives than kittens with diarrhea. In healthy kittens, fecal samples were
mostly obtained within 24 h of shelter intake, prior to administration of preventatives,
and then kittens were transferred to foster care (live kittens) or euthanized due to their
feral nature, overpopulation, or health concerns arising due to the death of their
littermates (deceased kittens). In contrast, kittens with diarrhea were returned dead or
alive to the shelter by their foster caregiver for clinical examination by the shelter
veterinarian. Despite these limitations, we observed no significant association between
the presence of aEPEC infection and the number of days in foster care or the duration
of time between death and autopsy. Finally, with the exception of the parasitological
and histopathological examinations, we did not conduct an exhaustive diagnostic
investigation for other infectious culprits of diarrhea in kittens with or without aEPEC.
Accordingly, the results of our study do not identify aEPEC to be a definitive cause of
diarrhea or diarrheal death in the kittens reported on here.

Overall, this study demonstrates a strong association between aEPEC infection and
the presence of histopathological lesions of epithelial injury and inflammatory infiltrate
in the intestinal tract and an increased need for parenteral fluid administration in
shelter kittens. An increased burden of aEPEC infection, on the basis of the result of
qPCR for eae, was significantly associated with diarrhea and related mortality. These
findings indicate that aEPEC is likely an important contributor to intestinal disease in
kittens. In many ways, the prevalence, population demographics, circumstances, and
clinical observations for kittens with aEPEC infection mirror those for children with
aEPEC infection. Accordingly, studies of the infection in kittens may offer unique
insights into host and bacterial factors responsible for differences in disease suscepti-
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bility and lead to novel treatment approaches to ameliorate the negative impact of
aEPEC infection in both kittens and children.

MATERIALS AND METHODS
Kitten case selection. Kittens that were �12 weeks of age, �1 kg of body weight, unrelated, and

housed separately were prospectively identified at two independent shelter facilities over a period of 2
years. During phase I of the study, fecal samples were collected from live kittens with and without clinical
signs of diarrhea. During phase II of the study, kittens that died or were euthanized due to severe clinical
signs of diarrhea were selected. A cohort of apparently healthy kittens that were euthanized for
non-health-related reasons was selected as a control group. No kittens were euthanized for the purpose
of the study. For all kittens, medical records were obtained when available. The study was approved by
the North Carolina State University Institutional Animal Care and Use Committee.

Fecal sample collection and culture isolation of E. coli. Fecal samples were collected by shelter
personnel (phase I) or were collected from each kitten at the time of autopsy by study investigators
(phase II). Feces (live kittens) and rectal contents (kittens that died) were additionally swabbed by shelter
personnel for the preservation of E. coli. Samples and swabs in Cary-Blair transport medium (Becton,
Dickinson and Company, Franklin Lakes, NJ) were transported to the laboratory on ice packs within 24
h of collection. Culture swabs were streaked onto MacConkey agar for isolation of bacteria and incubated
at 37°C overnight for detection of enteric, Gram-negative bacteria. For each sample, 12 morphologically
distinct, lactose-positive bacterial colonies were subcultured onto blood agar plates. Subcultures iden-
tified to be indole positive, pyrrolidonyl arylamidase test negative, and oxidase negative by dry slides
(Becton, Dickinson and Company, Franklin Lakes, NJ) were determined to be E. coli. Isolates of E. coli were
frozen in Luria-Bertani broth (LB)– glycerol at �80°C.

Identification of EPEC isolates cultured from live kittens. Isolates of E. coli were heated at 100°C
for 30 min for DNA extraction. Conventional PCR was performed to identify the presence of the intimin
gene (eae). If the isolate was positive for eae, it was additionally tested for the presence of genes
encoding bundle-forming pilus (bfp) and Shiga toxins 1 and 2 (stx1, stx2). All conventional PCR analyses
were performed using published primer sequences and reaction conditions and AmpliTaq Gold DNA
polymerase (Thermo Fisher Scientific, Waltham, MA) (25, 26, 78–80). All EPEC isolates were further
confirmed to be E. coli by use of a matrix-assisted laser desorption ionization–time of flight (MALDI-TOF)
analyzer (Vitek MS; bioMérieux, Marcy l’Etoile, France) as previously described for Gram-negative bacteria
(81).

Multiplex PCR for E. coli virulence gene detection. Individual isolates of E. coli obtained during
phase II of the study were shipped overnight on LB agar for testing by means of multiplex PCR (E. coli
Reference Center, Pennsylvania State University, University Park, PA) for the presence of virulence genes
encoding intimin (eae), Shiga toxins 1 and 2 (stx1, stx2), heat-stable and heat-labile toxins (STa, STb, LT),
invasion plasmid antigen H (ipaH), enteroaggregative plasmid pCVD432 (82), and cytotoxic necrotizing
factors 1 and 2 (cnf1, cnf2) using published protocols (83). Conventional PCR for identification of bfp was
performed as previously described (26).

Fecal DNA extraction. DNA was extracted from 100-mg fecal samples using a commercial kit (Zymo
Research, Irvine, CA) as previously described and stored at �80°C (84).

Quantitative PCR. Quantitative PCR was used to amplify bacterial 16S and E. coli 16S rRNA genes
from extracts of fecal DNA. The primers used for bacterial 16S rRNA were previously published (85). The
primers used for E. coli 16S rRNA were forward primer 5=-CATGCCGCGTGTATGAAGAA-3= and reverse
primer 5=-CGGGTAACGTCAATGAGCAAA-3=. The primers were used at a concentration of 0.5 �M in a
20-�l reaction volume with a commercially available qPCR master mix (PerfeCTa SYBR supermix for iQ;
Quantabio, Beverly, MA). Amplifications were performed with an initial denaturation at 95°C for 2 min,
followed by 30 cycles of denaturation at 95°C for 15 s, annealing at 60.7°C for 45 s, and extension at 68°C
for 1 min.

A quantitative PCR assay for eae was optimized and validated for quantifying EPEC in feces. An isolate
of EPEC from a kitten with diarrhea was inoculated in LB, incubated overnight at 37°C, and serially diluted
10-fold in sterile phosphate-buffered saline (101 to 108). The dilutions were simultaneously plated for
counting of the number of CFU and spiked into 100-mg aliquots of feline feces prior to DNA extraction.
The primers used for amplification of eae were previously published (79, 86). Amplifications were
performed with an initial denaturation at 95°C for 2 min, followed by 30 cycles of denaturation at 95°C
for 15 s, annealing at 50°C for 45 s, and extension at 68°C for 1 min.

Serotyping. Serotyping of the O antigen was performed using antisera directed to all identified O
antigens (O1 to O187) (87). H typing was performed by PCR amplification of the fliC (flagellar) gene,
followed by analysis of HhaI restriction fragment length polymorphism (E. coli Reference Center,
Pennsylvania State University, University Park, PA) as previously described (55).

Pulsed-field gel electrophoresis. Pulsed-field gel electrophoresis was performed as described for
PulseNet analysis of E. coli, Shigella, and Salmonella (88). Overnight cultures of aEPEC were equilibrated
in cell suspension buffer solution to an absorbence of 1.08 to 1.1 at a 610-nm wavelength and mixed with
1% SeaKem gold agarose (Thermo Fisher Scientific, Waltham, MA) for plug formation. The plugs were
sectioned to an equal size with a 2-mm width and then individually digested with the restriction enzyme
XbaI (New England BioLabs, Ipswich, MA). Plugs were embedded into an agarose gel, and restriction
fragments were separated by electrophoresis at 6 V/cm for 19 h. Standardization across gels was
confirmed by including Salmonella enterica serotype Braenderup H9812 digested with XbaI in each gel.
A nonpathogenic E. coli strain (ATTC 25922; American Type Culture Collection, Manassas, VA) and tEPEC
strain E2348/69 were also included for PFGE pattern comparison. Gels were stained with a commercially
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available DNA stain (GelRed; Biotium, Fremont, CA) following the manufacturer’s protocol and imaged
with a UV imager (Bio-Rad, Hercules, CA). The band patterns produced by PFGE were evaluated with
BioNumerics software (Applied Maths Inc., Austin, TX).

Autopsy and sample collection. Deceased kittens were kept at 4°C for less than 24 h and then
transported on ice from each collaborating shelter to the laboratory for autopsy. The gastrointestinal
tract from the distal esophagus to the distal colon was removed and opened longitudinally to expose the
entire lumen. The gastrointestinal tract and colonic contents of each kitten were photographed. Fecal
samples were obtained from the colon for culture isolation of E. coli and DNA extraction. The gastroin-
testinal tract was then immersed in phosphate-buffered saline and shaken to dislodge the contents. Any
grossly abnormal section(s) of the gastrointestinal tract was described and selectively marked for later
inclusion during tissue sampling. The entire gastrointestinal tract was then submerged in 10% neutral
buffered formalin for a minimum of 24 to 48 h. The gastrointestinal contents and remaining feces were
stored at 4°C until they were utilized for parasitological examination.

Fecal scoring. Fecal scores were assigned by 3 individuals blind to the kitten’s health status, utilizing
photographs of the colonic content that were taken at the time of autopsy. The fecal score was
calculated on the basis of a published scale ranging from 1 (very hard and dry) to 7 (watery with no
texture) (89). A median fecal score was calculated from the score of each individual. If the colon was
empty, perineal soiling was considered representative of severe diarrhea and was given a score of 7. No
score was assigned if the colon was empty and no perineal soiling was present.

Histopathology. Full-thickness samples of the stomach (fundus and antrum), proximal duodenum,
midjejunum, ileum, and colon (proximal and distal) were obtained from the formalin-fixed gastrointes-
tinal tract of each kitten. Any grossly abnormal tissue that was identified at autopsy was also included
and marked with India ink. The sampled tissues were paraffin embedded, sectioned at a thickness of 5
�m, and stained with hematoxylin and eosin or Giemsa. Microscopic examination of each tissue was
performed by an American College of Veterinary Pathologists-boarded pathologist (V.E.W.) that was blind
to the identity of each kitten. Hematoxylin- and eosin-stained sections from each gastrointestinal region
were examined and scored on the basis of a simplified histopathological model for determining
gastrointestinal inflammation (90). Each lesion was scored as absent (score, 0), mild (score, 1), moderate
(score, 2), or severe (score, 3). In addition to scoring the inflammation, sections were evaluated for lesions
consistent with or indicative of a specific gastrointestinal disease or etiology. The severity of autolysis was
recorded using the following guidelines: lifting of epithelial cells from the villi (mild), sloughed epithelial
cells (moderate), and hypereosinophilia with a loss of tissue architecture (severe). Giemsa-stained
sections were specifically evaluated for the presence of bacteria in close association with the brush
border of the intestinal epithelium.

FISH. Formalin-fixed and paraffin-embedded 5-�m sections of gastrointestinal tissue from each
kitten were mounted on poly-L-lysine-coated slides, and fluorescence in situ hybridization (FISH) was
performed as previously described (18, 91–93). The probes used for hybridizations included a universal
eubacterial probe, Eub338 (5=-GCTGCCTCCCGTAGGAGT-6-FAM-3=, where 6-FAM is 6-carboxyfluorescein)
(92); a probe specific for E. coli and Shigella (5=-Cy3-GCAAAGGTATTAACTTTACTCCC-3=) (92); and a
negative-control non-Eub probe (5=-Cy3-CGACGGAGGGCQTCCTCA-3=). The probes were reconstituted
with sterile water and diluted with hybridization buffer to final working concentrations of 5 ng/�l.
Formalin-fixed and paraffin-embedded intestinal tissue from a puppy diagnosed with enteroadherent E.
coli was included in each hybridization experiment as a positive control.

Parasitological examination. Gastrointestinal contents were grossly examined for the presence of
helminths using a dissecting microscope. Collected helminths were fixed and processed as previously
described (94). Three parasitological techniques were utilized for analysis of each fecal sample. For direct
fecal microscopic examination, a scant amount of feces (micrograms) was mixed in 0.9% saline on a
microscope slide and covered with a 22- by 22-mm square coverslip. The sample was systematically
examined at �100 magnification with a compound microscope for the detection of helminth ova and
larvae and again at �400 magnification for the detection of protozoan cysts and trophozoites. Centrif-
ugation of fecal material was used for detection of coccidian oocysts and nematode and cestode ova as
previously detailed (95). Fecal material (�1 g) was mixed in sodium nitrate flotation solution at a specific
gravity of 1.20, strained, and centrifuged for 5 min. After centrifugation, additional flotation solution was
added to the tube mixture until a meniscus formed. A 22- by 22-mm square coverslip was added to the
meniscus and allowed to stand for 10 min. The coverslip was transferred to a microscope slide, and the
sample was systematically examined for helminth ova at �100 magnification. Fecal sedimentation was
performed for detection of trematode eggs and nematode larvae. Fecal material (�1 g) was mixed in
0.9% saline, strained, and centrifuged for 5 min. After centrifugation, sediment from the bottom of the
centrifuge tube was transferred with a Pasteur pipette to a microscope slide. The sample was covered
with a 22- by 40-mm coverslip and systematically examined for helminth ova and nematode larvae at
�100 magnification. The transfer and examination of sediment from the bottom of the centrifuge tube
were repeated until all the sediment was examined.

Medical record review. If available, individual medical records were reviewed. Recorded parameters
included age, sex, weaning status, presence and nature of antemortem clinical signs, the medications
and vaccinations administered, results of testing for fecal panleukopenia virus antigen, whether the
kitten was euthanized or died, the length of time in foster care, the source (shelter), and body weight.

Statistical analysis. Discrete data were analyzed for significant differences in observations between
groups (number of kittens) by the �2 test and determination of the odds ratio or Fisher’s exact test.
Continuous data were analyzed for significant differences in mean values between groups using
Student’s t test and median values between groups using the Mann-Whitney rank sum test. Continuous
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data were graphed as vertical point plots. The linear correlation between variables was determined using
the linear regression line of plotted data as well as Pearson product moment correlation tests. Statistical
analyses were performed using commercial software (SigmaPlot, version 12; Systat Software, Inc., San
Jose, CA), and significance was assigned a P value of �0.05.
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