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ABSTRACT Pulmonary infection by Streptococcus pneumoniae is characterized by a
robust alveolar infiltration of neutrophils (polymorphonuclear cells [PMNs]) that can
promote systemic spread of the infection if not resolved. We previously showed that
12-lipoxygenase (12-LOX), which is required to generate the PMN chemoattractant
hepoxilin A3 (HXA3) from arachidonic acid (AA), promotes acute pulmonary inflam-
mation and systemic infection after lung challenge with S. pneumoniae. As phospho-
lipase A2 (PLA2) promotes the release of AA, we investigated the role of PLA2 in lo-
cal and systemic disease during S. pneumoniae infection. The group IVA cytosolic
isoform of PLA2 (cPLA2�) was activated upon S. pneumoniae infection of cultured
lung epithelial cells and was critical for AA release from membrane phospholipids.
Pharmacological inhibition of this enzyme blocked S. pneumoniae-induced PMN
transepithelial migration in vitro. Genetic ablation of the cPLA2 isoform cPLA2� dra-
matically reduced lung inflammation in mice upon high-dose pulmonary challenge
with S. pneumoniae. The cPLA2�-deficient mice also suffered no bacteremia and sur-
vived a pulmonary challenge that was lethal to wild-type mice. Our data suggest
that cPLA2� plays a crucial role in eliciting pulmonary inflammation during pneumo-
coccal infection and is required for lethal systemic infection following S. pneumoniae
lung challenge.
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Streptococcus pneumoniae (the pneumococcus) is a Gram-positive pathogen that is
capable of asymptomatically colonizing the nasopharynx of both children and

adults. This organism can cause acute infections (sinusitis and otitis media) and is the
most common cause of life-threatening community-acquired bacterial pneumonia (1,
2). Pneumococci are protected from clearance in the blood by an antiphagocytic
polysaccharide capsule and other protective virulence factors; therefore, their entry into
the circulation can lead to potentially lethal septicemia (3). Approximately 14.5 million
cases of invasive pneumococcal disease occur annually worldwide, resulting in 0.5 to 1
million deaths of children less than 5 years old (4; http://worldpneumoniaday.org/wp
-content/uploads/2014/10/Pneumococcal_factsheet.pdf).

A hallmark of pneumococcal pneumonia is a robust recruitment of neutrophils
(polymorphonuclear cells [PMNs]) into the alveolar spaces (5, 6). Although PMN recruit-
ment to the site of pathogenic insult is an integral part of innate immune defense,
prolonged and robust PMN recruitment can contribute to disease and mortality (7–10).
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Although the potent antimicrobial activities of PMNs, which include production of
reactive oxygen species, proteases, cationic peptides, and inflammatory mediators, help
contain infection, the poorly regulated release of these factors after PMN accumulation
in the lungs leads to tissue destruction and potentially to lung failure (8, 11, 12).

PMN recruitment to the alveolar mucosal surface is a complex multistep process
involving interactions between PMNs and endothelial, interstitial, and epithelial cells,
cytokines, and various PMN chemokines and chemoattractants (7, 13–23). Eicosanoids
are bioactive lipids that play critical roles in this inflammatory process (14, 17, 22, 23).
Arachidonic acid (AA), the precursor of eicosanoids, is acted upon by cyclooxygenases
(COX) to produce prostaglandins and thromboxanes or by lipoxygenases (LOX) to
produce leukotrienes, lipoxins, and hepoxilins (24–26). We previously showed that the
12-LOX pathway and its products are important for PMN transepithelial migration
during S. pneumoniae infection (27). This observation is consistent with other studies
that have shown the 12-LOX pathway to be critical for PMN transepithelial migration
across pulmonary epithelia during Pseudomonas aeruginosa infection and across in vitro
intestinal epithelia during infection by Salmonella enterica serovar Typhimurium, Shi-
gella flexneri, or enteroaggregative Escherichia coli (28–33).

The bulk of AA in mammalian cells is generated from the fatty acyl chains of
glycerophospholipids present in cell membranes (34–36). AA availability is a rate-
limiting factor in the production of eicosanoids, because AA release from membrane
phospholipids due to enhanced activity of phospholipase A2 (PLA2) results in the
increased production of eicosanoids (14, 37). AA is generated in various cell types by
the action of PLA2, which releases AA attached to the sn-2 position of membrane
phospholipids, or by diacylglycerol (DAG) lipase, which generates AA from diacylglyc-
erols (37–43). Several inflammatory stimuli, such as the extracellular signal-regulated
kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK), c-Jun-NH2-terminal
kinase (JNK) and tumor necrosis factor alpha (TNF-�), enhance PLA2 activity, suggesting
that PLA2 may play an important role at the initiation of inflammation (44, 45).

The PLA2 family includes at least three major subtypes: secretory PLA2 (sPLA2),
calcium-independent PLA2 (iPLA2), and cytosolic PLA2 (cPLA2) (39, 42). The activity of
sPLA2 depends on millimolar concentrations of calcium, while that of iPLA2, which is
also cytosolic in nature, is calcium independent (39, 46). Of these subfamilies, the
cPLA2s are thought to be required for AA generation, as they have a substrate
preference for phospholipids with AA at the sn-2 position (14, 39, 40, 47). This enzyme
is abundantly expressed in multiple tissue and cell types, including human lungs and
alveolar epithelial cells, and has the highest transcript levels in the lungs, brain, kidneys,
heart, and spleen (48, 49). Numerous inflammatory stimuli, such as interleukin 1�

(IL-1�), gamma interferon (IFN-�), and TNF-�, trigger the release of eicosanoids from
human lung epithelial cells in a manner dependent on cPLA2 activation (45, 50, 51).
cPLA2 has been implicated in PMN recruitment in vitro and promotes sepsis-induced
acute lung injury (36, 52, 53), but its role in S. pneumoniae-induced lung inflammation
and subsequent systemic spread of the pathogen has yet to be defined. Here we show
that cPLA2� plays a critical role in S. pneumoniae-induced AA release from cultured
human airway epithelial cells and subsequent PMN transepithelial migration and is
required for pulmonary inflammation, bacteremia, and lethality upon pneumococcal
lung infection of mice.

RESULTS
AA is released from membrane phospholipids during S. pneumoniae infection

of cultured airway epithelial cells. Robust recruitment of PMNs into alveolar spaces
is a hallmark of pneumococcal pneumonia, and we previously showed that blocking
the 12-LOX pathway abrogated PMN migration response across pulmonary epithelia
(27). As arachidonic acid (AA) is the substrate for 12-LOX activity, we sought to
determine whether pneumococcal infection leads to AA release from pulmonary
epithelial cells. We incorporated [3H]AA into the membrane phospholipids of NCI-H292
(H292) cell monolayers, and following infection with the S. pneumoniae clinical isolate
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strains TIGR4, D39, and G54, we assessed AA release by scintillation counting of culture
supernatants. Culture supernatants of monolayers treated with Hanks’ balanced salt
solution (HBSS) alone or the nonpathogenic Gram-positive bacterium Bacillus subtilis
were used as negative controls, and the global signaling pathway activator phorbol
myristate acetate (PMA), previously shown to induce AA release (54), was used as a
positive control. Lactate dehydrogenase (LDH) release assays indicated that S. pneu-
moniae infection was not cytotoxic to H292 cells over the periods tested (see Table S1
in the supplemental material), but infection resulted in a significant increase in AA
release from membrane phospholipids in a time-dependent manner, with no signifi-
cant differences observed among the S. pneumoniae strains tested (Fig. 1A). Infection
with B. subtilis resulted in significantly less release of AA than with the S. pneumoniae
strains (2.5-fold lower than with strain TIGR4 and 2-fold lower than with strains D39
and G54; at 5 h postinfection, P � 0.005, P � 0.05, P � 0.05, respectively) and was
statistically indistinguishable from treatment with HBSS. Strain TIGR4 (55) was previ-
ously used for monolayer and murine infection experiments (27, 56), including in
investigations that revealed 12-LOX-dependent inflammation, and thus was utilized for
the studies described below.

cPLA2 has a high specificity for membrane phospholipids with AA at the sn-2
position, and its activation has been implicated in AA release and inflammation (54, 57).
It is also known that diacylglycerol (DAG) lipase, in combination with monoacylglycerol
lipase or fatty acid amidohydrolase, can result in AA release from DAG (43). To assess

FIG 1 S. pneumoniae infection of airway epithelial cells triggers arachidonic acid (AA) release. (A) H292
cell monolayers were labeled with [3H]AA as detailed in Materials and Methods and infected with the
indicated S. pneumoniae (S.p.) strains (each of a different capsular serotype) or with B. subtilis strain 168
at a multiplicity of infection (MOI) of 10 (1 �107 CFU/monolayer). Supernatants were collected at the
indicated times postinfection, and radioactive counts released into the supernatants were measured by
scintillation counting. Labeled H292 cell monolayers treated with PMA and HBSS�Ca/Mg were used as
positive and negative controls, respectively. Shown are results from a representative of two experiments.
(B) H292 cell monolayers labeled with [3H]AA were treated with the indicated concentrations of pan-PLA2

inhibitors ACA or ONO-RS-082 or the DAG lipase inhibitor RHC-80267 (labeled as RHC) prior to infection
with S. pneumoniae TIGR4, as detailed in Materials and Methods. Labeled H292 cell monolayers treated
with HBSS�Ca/Mg were used as negative controls. Radioactive counts released into supernatants were
determined by scintillation counting. Shown are results from a representative of three experiments. *, P �
0.05; **, P � 0.01; ***, P � 0.001 (compared with the no-drug control, using one-way ANOVA).
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the potential role of PLA2 and DAG lipases in AA release during S. pneumoniae infection,
we treated the [3H]AA-labeled H292 cell monolayers with various concentrations of the
pan-PLA2 inhibitors ONO-RS-082 and N-(p-amylcinnamoyl) anthranilic acid (ACA) (50%
inhibitory concentration [IC50s] � 9.3 and 10.6 �M, respectively) or the DAG lipase-
specific inhibitor RHC-80267 (IC50 � 5 �M) prior to infecting the cells with S. pneu-
moniae TIGR4 (41, 58–60). RHC-80267 inhibited AA release 50% compared with that in
untreated monolayers, but we detected no dose-response relationship and the maxi-
mal degree of inhibition was 50% (Fig. 1B). In contrast, the PLA2 inhibitors significantly
(P � 0.05) reduced the amount of [3H]AA released from TIGR4-infected H292 cells in a
dose-dependent manner, with a maximal reduction of 63 to 75% (Fig. 1B). Note that
none of the inhibitors was cytotoxic to the H292 cells (see Table S3) or interfered with
bacterial growth or binding to monolayers (see Fig. S1A and B, respectively).

cPLA2 is critical for eliciting PMN transepithelial migration during pneumococ-
cal infection. Since AA is the precursor of a number of proinflammatory eicosanoids,
including the PMN chemoattractant HXA3 (17, 30), we inferred that increased levels of
AA release may play a role in PMN transepithelial migration. To determine whether AA
release by PLA2 or DAG lipases was required for TIGR4-induced PMN migration in vitro,
we treated H292 cell monolayers with the pan-PLA2 or DAG lipase inhibitors prior to S.
pneumoniae infection and measured subsequent PMN transepithelial migration. Pre-
treatment with the DAG lipase inhibitor did not significantly reduce PMN migration
(Fig. 2). In contrast, the pan-PLA2 inhibitors resulted in a dose-dependent reduction in
PMN transepithelial migration compared with that in untreated H292 cell monolayers,
with a maximal inhibition of more than 80%. The specificity of this response was
demonstrated by the observation that the pan-PLA2 inhibitors each failed to inhibit
fMLP-induced PMN transepithelial migration (see Fig. S1C). Additionally, these inhibi-
tors had no effect on H292 cell barrier properties at the doses used (see Table S4). This
result suggests that the AA released during S. pneumoniae infection is derived from
membrane phospholipids, a substrate of PLA2, rather than from diacylglycerols.

cPLA2 has a high specificity for membrane phospholipids with AA at the sn-2
position (39), and its activation has been implicated in the release of AA and inflam-
mation (54, 57). This enzyme is activated upon serine phosphorylation by MAP kinases,
leading to its translocation to the plasma membrane and catalysis of phospholipids
(42, 50). To determine whether S. pneumoniae infection of lung epithelial cells leads
to the phosphorylation and membrane localization of cPLA2, we infected H292 cell

FIG 2 PLA2 is critical for S. pneumoniae-elicited PMN transepithelial migration. H292 cell monolayers were
treated with different concentrations of pan-PLA2 inhibitors ACA and ONO-RS-082 or the DAG lipase
inhibitor RHC-80267 prior to infection with S. pneumoniae TIGR4, as detailed in Materials and Methods.
PMNs were added basolaterally, and the number of PMNs that migrated to the apical side was calculated
using the myeloperoxidase (MPO) assay. Monolayers treated with fMLP and HBSS�Ca/Mg were used as
positive and negative controls, respectively. Shown are results from a representative of three experi-
ments. ****, P � 0.0001 compared to the no-drug control, using one-way ANOVA.

Bhowmick et al. Infection and Immunity

November 2017 Volume 85 Issue 11 e00280-17 iai.asm.org 4

http://iai.asm.org


monolayers with S. pneumoniae and performed immunoblotting to determine both
total amount of cPLA2 in cell lysates and the amount of phosphorylated cPLA2 in cell
membrane preparations. PMA, a known activator of cPLA2 (61), was included as a
positive control. We found that S. pneumoniae infection resulted in no change in total
cPLA2 but also a dose-dependent activation of cPLA2, evidenced by increasing amounts
of phosphorylated cPLA2 in membrane fractions (Fig. 3A).

Of the six isoforms of cPLA2 (39), cPLA2� is crucial for eicosanoid production in the
airway epithelium (42, 45, 50, 62), and we took advantage of a potent (IC50 � 0.05 �M)
and highly specific cPLA2� inhibitor (63) to further investigate the role of cPLA2� in
generating AA during pneumococcal infection. This inhibitor was not cytotoxic to H292
cells (see Table S3) and did not affect bacterial growth and binding to monolayers (Fig.
S1A and B, respectively). Nevertheless, treatment of [3H]AA-labeled H292 cell mono-
layers with as little as a 0.06 �M concentration of this inhibitor prior to S. pneumoniae
infection reduced AA release 3.5-fold (P � 0.001 [Fig. 3B]) and almost completely
inhibited PMN transepithelial migration compared with that in untreated H292 mono-
layers (P � 0.005 [Fig. 3C]), strongly suggesting that cPLA2� plays a critical role in
inflammatory signaling during S. pneumoniae infection.

cPLA2� deficiency diminishes pulmonary inflammation in mice challenged
with S. pneumoniae. We cannot rule out off-target effects of the cPLA2 inhibitors
utilized as described above or that the immortalized H292 cells fully reflect the response of
bona fide pulmonary epithelium. Hence, to test the role of cPLA2� in pneumococcal
disease, we utilized wild-type (WT) or cPLA2��/� BALB/c mice (64). Basal levels of pulmo-
nary dendritic cells, macrophages, and T cells, measured by flow cytometry of single-cell

FIG 3 cPLA2 is activated upon pneumococcal infection of pulmonary epithelial monolayers and is critical
for eliciting AA release and PMN transepithelial migration. (A) H292 cell monolayers were infected with
S. pneumoniae TIGR4 at an MOI of 10 or 100. Monolayers treated with PMA and HBSS�Ca/Mg were used
as positive and negative controls, respectively. Cell membranes were prepared as described in Materials
and Methods and were probed with anti-phospho-cPLA2, anti-cPLA2, or antitubulin antibody. Shown are
results from a representative of two independent experiments. (B) H292 cell monolayers labeled with
[3H]AA were treated with the indicated concentrations of cPLA2� inhibitor prior to infection with S.
pneumoniae TIGR4, as detailed in Materials and Methods. Radioactive counts in supernatants were
measured by scintillation counting. Shown are results from a representative of three experiments. ****,
P � 0.0001 compared to the untreated control, using one-way ANOVA. (C) H292 cell monolayers were
treated with the indicated concentrations of the cPLA2� inhibitor prior to infection with S. pneumoniae
TIGR4, as detailed in Materials and Methods. PMNs were added basolaterally, and the number of PMNs
that migrated to the apical side was calculated using the MPO assay. Monolayers treated with fMLP and
HBSS�Ca/Mg were used as positive and negative controls, respectively. Shown are results from a
representative of three experiments. ****, P � 0.0001 compared to the respective no-drug controls, using
one-way ANOVA.
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lung suspensions, were significantly lower in cPLA2�-deficient mice than in WT mice
(Fig. 4A, “DC,” “M-phage,” and “T cell”), consistent with the lower baseline levels of
eicosanoids, such as the proinflammatory leukotriene B4 (LTB4), associated with cPLA2�

deficiency (52).
Notably, striking differences between WT and cPLA2��/� mice were observed

upon intratracheal challenge with 2� 105 CFU of S. pneumoniae TIGR4. Similar to our
previous observation in C57BL/6 mice (27), wild-type BALB/c mice exhibited a robust
acute inflammatory response at 48 h postinfection, with vascular congestion and
massive cellular infiltrates (Fig. 4B, “WT, mock-infect” versus “WT, �TIGR4”). Flow
cytometry of lung homogenates and/or bronchoalveolar lavage fluid (BALF) revealed
greater numbers of PMNs, dendritic cells, macrophages, and T cells in infected mice
than in uninfected controls (Fig. 4A and C). In contrast, infection of cPLA2��/� litter-
mates resulted in dramatically lower levels of pulmonary inflammation upon S. pneu-
moniae challenge (Fig. 4B, “WT, �TIGR4” versus “cPLA2

�/�, �TIGR4”). Flow cytometric
analyses of pulmonary homogenates showed that PMN recruitment to the lung was
2.5-fold lower than in WT mice, i.e., diminished to background (uninfected) levels (Fig.
4A). PMN recruitment to the airways was also dramatically affected, as virtually no PMNs
were detected in BALF (Fig. 4C). Quantitation of PMNs in lung homogenates or BALF by
myeloperoxidase (MPO), a lysosomal peroxidase present in the azurophilic granules of
PMNs, also indicated an essential role for cPLA2� in promoting acute inflammation
following pulmonary challenge with S. pneumoniae TIGR4 (see Fig. S2A). Finally, the
recruitment of dendritic cells, macrophages, and T cells to airway spaces, as assessed by
flow cytometric analysis of BALF, was also significantly diminished by ablation of cPLA2�

(Fig. 4C), consistent with the lower levels of a variety of eicosanoids in cPLA2�-deficient

FIG 4 cPLA2� promotes pulmonary inflammation in S. pneumoniae-infected mice. Mice (cPLA2��/� or
their WT littermates) were mock infected with PBS (n � 4 for each strain, per experiment) or infected
intratracheally with S. pneumoniae TIGR4 (n � 5 for each strain, per experiment), as detailed in Materials
and Methods. Lungs and bronchoalveolar lavage fluid (BALF) were collected from the mock-infected or
TIGR4-infected mice. Cells present in the digested lungs and BALF were stained with relevant MAbs, and
the fluorescence intensities of the stained cells were determined by flow cytometry. Collected data were
analyzed to determine the numbers of PMNs, dendritic cells (DC), macrophages (M-phage), or T cells in
the lungs (A) and in the BALF (C). Statistical significance was analyzed by one-way ANOVA followed by
individual Student’s t test analyses. *, P � 0.05; **, P � 0.005; ***, P � 0.0005. For histological analyses
(B), H&E-stained lung sections were prepared and examined by light microscopy (original magnification,
�20). Shown are results from a representative of two independent experiments.
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mice in other lung injury models (52). Interestingly, the numbers of bacteria in either
lung homogenates or BALF at 48 h postinfection were not significantly different
between WT and cPLA2��/� mice (see Fig. S2B), consistent with previous findings that
genetic ablation or chemical inhibition of 12-LOX, which is required for the production
of HXA3, did not result in an increase in bacterial load in the lung (27). These data
indicate that cPLA2� plays a critical role in the recruitment of PMNs and other
inflammatory cells following S. pneumoniae lung infection.

Ablation of cPLA2� leads to decreased bacteremia and increased survival in an
otherwise lethal S. pneumoniae lung challenge. Acute pulmonary inflammation
during S. pneumoniae lung infection may disrupt epithelial barrier function and en-
hance tissue damage (10, 27, 65, 66), and we previously found that genetic ablation or
chemical inhibition of 12-LOX mitigated bacteremia and lethality following intratra-
cheal challenge with S. pneumoniae (27). To determine whether cPLA2� is important for
invasive pneumococcal disease, we infected cPLA2��/� mice and littermate BALB/c
controls intratracheally with S. pneumoniae and monitored bacteremia, illness, and
survival. At 48 h postinfection, �105 CFU/ml were present in the tail vein blood of WT
mice, and at 72 h postinfection, at which time bacteremia reached �106 CFU/ml, all the
WT mice succumbed to infection or were moribund and euthanized (Fig. 5). In contrast,
infected cPLA2��/� mice suffered no detectable bacteremia and uniformly survived
(Fig. 5).

DISCUSSION

Robust pulmonary infiltration of PMNs is a characteristic of pneumococcal lung
infection (5, 6). Eicosanoids, which are formed from AA by the action of lipoxygenases,

FIG 5 Ablation of cPLA2� leads to decreased bacteremia and increased survival in an otherwise lethal S.
pneumoniae lung challenge. cPLA2��/� mice or their littermate WT controls were intratracheally inocu-
lated with TIGR4 (see Materials and Methods). A control group of WT mice received PBS. (A) Bacteremia
was determined by plating tail vein blood at the specified time points. Shown are results from a
combination of two experiments. Death of all infected WT mice is indicated by a dagger. (B) Survival of
animals was monitored over a 7-day postinfection period. The log rank (Mantel-Cox) test was performed
for survival curve analysis. The experiment was performed twice, with similar results. Shown are results
from a combination of two experiments. A total of 8 mice were used per group; panels A and B represent
the same cohorts of mice.
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cyclooxygenases, and/or cytochrome P450, are widely implicated in lung inflam-
mation by S. pneumoniae and other bacteria (27, 31, 67). We previously showed that
pneumococcus-mediated induction of 12-LOX, an enzyme essential for the conversion of
AA to the neutrophil chemoattractant HXA3, promotes basolateral-to-apical transepithelial
recruitment of PMNs in vitro, as well as the corresponding apical-to-basolateral migration
of bacteria (27). 12-LOX expression is increased during pneumococcal infection, and
chemical inhibition or genetic ablation of 12-LOX protected mice from pulmonary
inflammation and lethal systemic infection following intratracheal challenge with S.
pneumoniae (27).

Pneumococcal infection triggers the release of AA and its metabolites in the middle
ear during otitis media (68).We showed in this study that pneumococcal infection of
respiratory epithelial monolayers also results in the release of AA. Both phospholipases
and DAG lipases have been implicated in the generation of AA (41), and we found that
a DAG inhibitor, at the highest concentration tested, decreased AA production 2-fold.
However, PLA2 has been shown to play a more important role in releasing AA in a
variety of other physiologic and pathophysiologic processes (64), and two pan-PLA2

inhibitors resulted in greater (3- to 4-fold) decreases in AA release. In addition, both
PLA2 inhibitors diminished PMN transepithelial migration by �80% during pneumo-
coccal infection of respiratory epithelial monolayers, whereas the DAG lipase inhibitor
had no effect. Although we cannot rule out a role for DAG in the production of
eicosanoid PMN chemoattractants, PLA2 has been previously shown to be activated by
pneumococcal virulence factors, such as the pore-forming toxin pneumolysin, in pul-
monary artery endothelial cells and human neutrophils (69, 70).

The PLA2 superfamily, which cleaves the ester bond of phospholipids at the sn-2
position to generate free fatty acids, includes at least three major subfamilies: sPLA2s,
iPLA2s and cPLA2s (39, 42). Of these, cPLA2 is highly specific for phospholipids with AA
at the sn-2 position and thus plays an important role in the generation of free AA (39,
50, 62). cPLA2 has been implicated in airway inflammation both in humans and mice
(37, 71, 72). For example, lung epithelial cells of cystic fibrosis (CF) patients have
elevated cPLA2 activity and produce more eicosanoids than do normal epithelial
cells (73). Activation of cPLA2 via phosphorylation is imperative for the production of
eicosanoids and is dependent on MAP kinases and protein kinase C (PKC) (42, 50, 74),
and we found that phosphorylated cPLA2 accumulated in the membrane fraction of
lung epithelial cells after pneumococcal infection.

The cPLA2 family consists of six members (cPLA2�, -�, -�, -�, -�, and -�) (62). cPLA2�

is induced in eosinophils and pulmonary epithelial cells upon sensitization of mice with
Aspergillus fumigatus extracts (75), but overall the role of the non-cPLA2� members of
the cPLA2 family remains poorly characterized. In contrast, cPLA2� has been shown to
be crucial for eicosanoid production in a variety of tissues (45, 50, 62), including the
human intestine (76, 77), and has been implicated in pulmonary disorders such as acute
respiratory distress syndrome (ARDS), CF, and allergy (71, 78). For example, during
ARDS, cPLA2��/� mice display lower baseline levels of eicosanoids in BALF than do
littermate control WT mice, as well as lower levels of neutrophil infiltration (52). We
found that an inhibitor of cPLA2� dramatically diminished AA release and virtually elimi-
nated PMN migration across epithelial monolayers in vitro. Given the inherent limitations of
in vitro chemical inhibitor studies, we utilized a murine model to assess the role of cPLA2�

and found that cPLA2� deficiency (64) entirely blocked pneumococcus-induced PMN
recruitment to the lung. cPLA2� was also required for maximal recruitment of macro-
phages, dendritic cells, and T cells in the lung and airways upon infection, suggesting a
more general role for cPLA2� in pulmonary inflammation. The cPLA2�-dependent extrav-
asation of these other inflammatory cell types may in part be a consequence of generalized
compromise of integrity of the airway epithelial barrier resulting from transepithelial PMN
migration (27). In addition, other AA metabolites function as inflammatory mediators for a
variety of cells (79–81) such that the release of AA by cPLA2� may promote the migration
of several inflammatory cell types into airway spaces.

Previous reports have shown that in several models, PMNs are required for pneu-
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mococcal control early after pulmonary challenge (82, 83) but may not promote
bacterial clearance at later phases of infection (10, 27). We also did not observe an
effect of cPLA2�-mediated inflammatory signaling on bacterial numbers in the lungs or
BALF of mice at 48 h postinfection with pneumococcal doses included in this study,
consistent with our previous observations that 12-LOX-deficient mice also suffered no
greater pneumococcal loads in the lung and airways than did WT C57BL/6 mice (27;
unpublished data).

Finally, pulmonary inflammation during pneumococcal infection contributes to
epithelial barrier compromise and promotes systemic disease (65, 84, 85). We found
that not only did cPLA2� fail to promote bacterial clearance in the lung, but also this
enzyme actively promoted lethal systemic disease: cPLA2�-deficient mice, like 12-LOX-
deficient mice (27), were protected from S. pneumoniae bacteremia after pulmonary
challenge and uniformly survived an otherwise lethal challenge. Our study supports the
possibility that inhibition of cPLA2-mediated PMN migration may provide a strategy to
combat invasive pneumococcal infection. Given that cPLA2-mediated inflammation
appears central to other pulmonary disorders, such as ARDS, CF, and allergy (71, 78),
these inhibitors may have broad therapeutic value for noninfectious disorders as well.

MATERIALS AND METHODS
Bacterial strains. S. pneumoniae strains TIGR4 (serotype 4 [55]), D39 (serotype 2 [86]), and G54

(serotype 19F [87]) were grown in Todd-Hewitt broth (BD Biosciences, San Jose, CA) supplemented with
yeast extract at 37°C and 5% CO2 and used in mid-log phase to late log phase. Bacillus subtilis strain 168
was grown overnight at 37°C in Luria broth. S. pneumoniae strain TIGR4 is highly virulent in mice and has
been used in our previous murine infection studies, including those on 12-LOX-dependent pulmonary
inflammation (27, 56). For the murine infection experiments, bacteria (5 �108/ml) were stored in medium
supplemented with 25% (vol/vol) glycerol at �80°C. Prior to use, the frozen cultures were thawed and diluted
in phosphate-buffered saline (PBS). Bacterial stock titers were confirmed by plating serial dilutions on blood
agar at 37°C and 5% CO2. When required, S. pneumoniae strains were heat killed at 65°C for 1 h (27).

Growth, maintenance, and infection of epithelial cells. Human mucoepidermoid pulmonary
carcinoma cell line NCI-H292 (H292) has been used in a number of studies of pulmonary inflammation
and/or eicosanoid production (88–92), as well as in studies of pulmonary infection by bacteria (93–95).
These cells were cultured in RPMI 1640 medium (American Type Culture Collection, Manassas, VA)
supplemented with 10% fetal bovine serum, 2 mM L-glutamine, and penicillin-streptomycin. Polarized
H292 cell monolayers were grown on the underside of collagen (rat tail, type IV)-coated 0.33-cm2

membrane filters (Corning Life Sciences, Tewksbury, MA). Cells were infected with bacteria resuspended
in Hanks’ balanced salt solution (HBSS) supplemented with Ca2� and Mg2� (HBSS�Ca/Mg), at 1 � 107

bacteria/monolayer, a multiplicity of infection of 10. The cytotoxicity of H292 cell monolayers in response
to S. pneumoniae TIGR4 infection as measured by lactate dehydrogenase (LDH) release (30) is shown in
Table S1 in the supplemental material. As the transepithelial resistance of lung epithelial monolayers is
typically very low (96), permeability to horseradish peroxidase (HRP) was used to assess monolayer
barrier integrity (30) and is shown in Table S2.

Animals. cPLA2� knockout (cPLA2��/�) mice were generated in a BALB/c background using gene
targeting in mouse embryonic stem cells to disrupt the exon containing Ser228, thus generating a null
allele (64). The cPLA2��/�mice were backcrossed for 10 generations and genotyped using tail DNA. All
animal experiments were performed with cPLA2��/� mice and their wild-type BALB/c littermate controls
in accordance with Tufts University Animal Care and Use Committee-approved protocols.

PMN isolation and transmigration assay. PMNs were isolated from blood drawn from healthy
human volunteers according to previously described protocols (30, 97). The PMN isolation protocol was
approved by the Tufts University Institutional Review Board, and informed written consent was obtained
from all volunteers. Basolateral-to-apical PMN transmigration assays were performed as described
previously (27). Formyl-methionyl-leucyl-phenylalanine (fMLP) at 10�11 M or buffer alone (HBSS�Ca/Mg)
was used as the positive or negative control, respectively, for induction of PMN transmigration.

AA release assay. Arachidonic acid (AA) release in epithelial cell culture was assayed using
previously described protocols (37, 98). Briefly, H292 cells grown on 24-well tissue culture inserts were
incubated in medium containing 0.2 �Ci/ml of [3H]AA (PerkinElmer, Waltham, MA) for 18 to 24 h prior
to infection, to allow for the incorporation of [3H]AA into membrane phospholipids. Cells were then
washed in PBS and infected with 1 � 107 S. pneumoniae organisms resuspended in 0.5 ml of HBSS�Ca/
Mg. Supernatants were collected at different time points and measured for radioactivity using a
scintillation counter (Becton Dickinson). At the end of the experiment, H292 cells were lysed in 1% SDS
and 1% Triton X-100 to determine total radioactivity.

Drug treatment. H292 cell monolayers were incubated with different doses of the pan-PLA2 inhibitor
ONO-RS-082 or N-(p-amylcinnamoyl) anthranilic acid (ACA) or the DAG lipase inhibitor RHC-80267 (Enzo Life
Sciences, Farmington, NY) (38, 58). cPLA2� was specifically inhibited in H292 cell monolayers by incubation
with the cPLA2� inhibitor (N-{(2S,4R)-4-(biphenyl-2-ylmethyl-isobutyl-amino)-1-[2-(2,4-difluorobenzoyl)-
benzoyl]-pyrrolidin-2-ylmethyl}-3-[4-(2,4-dioxothiazolidin-5-ylidenemethyl)-phenyl]acrylamide), HCl (EMD
Millipore, Billerica, MA), diluted to 0.06, 0.6, and 6 �M from a stock concentration of 6 mM in dimethyl
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sulfoxide (DMSO). Working dilutions were made in HBSS�Ca/Mg from the stock solutions. Monolayers
were incubated with inhibitors for 2 h at 37°C and then washed to remove the residual drug prior to
infection. Vehicle controls were used to rule out nonspecific effects. The inhibitors did not affect cell
viability or H292 cell barrier integrity, as assessed by LDH and HRP migration assays, and had no effect
on bacterial growth or adherence to H292 cell monolayers.

Cell viability and bacterial binding assays. Cell viability in response to bacterial or drug treatment
was measured by LDH assays as previously described (30). Bacterial binding was measured after
incubating the bacteria for 40 min with H292 cell monolayers, using a previously described protocol (27).

Detection of cPLA2 activation. H292 cell monolayers were infected with S. pneumoniae TIGR4 for
2.5 h. Control monolayers received buffer (HBSS�Ca/Mg) alone as a negative control or 1 �M phorbol
myristate acetate (PMA) as a positive control. Membrane fractions were prepared as previously described
(99). Equal amounts of protein were run on a 4 to 20% gradient polyacrylamide gel (Bio-Rad, Hercules,
CA) and then transferred onto nitrocellulose membranes. Western blots were probed with anti-cPLA2 or
anti-phospho-cPLA2 antibodies (Cell Signaling Technologies, Danvers, MA) and detected with ECL
reagent. To verify equal sample loading, blots were probed with antitubulin antibody.

Murine infection studies. cPLA2��/� mice (64) and their littermate wild-type (WT) BALB/c controls
were challenged with 2 � 105 S. pneumoniae TIGR4 organisms in 50 �l of PBS via intratracheal
inoculation, whereas control mice received only PBS. For histological study of pulmonary inflammation,
mice were euthanized at 48 h postinfection, and whole lungs were excised. Lungs were fixed in 10%
buffered formalin (Sigma-Aldrich, St. Louis, MO) and embedded in paraffin. Lung blocks were sectioned
at 5 �M and adhered to silanized slides. Three mice per group were analyzed following hematoxylin and
eosin (H&E) staining, and lungs were visualized using a Nikon TMS microscope. PMN migration into the
lung and airways was measured by myeloperoxidase (MPO) assay using a previously described protocol
(100). To determine the bacterial load in the lungs at 48 h, lungs were isolated and homogenized in PBS,
and serial dilutions were plated on blood agar. Serial dilutions of bronchoalveolar lavage fluid (BALF)
were plated on blood agar to enumerate bacteria in the airways. For bacteremia, tail blood was collected
and dilutions were plated on blood agar plates every 24 h postinfection. Mice were monitored for
bacteremia, sickness, and survival over 7 days following infection, and moribund animals were eutha-
nized as per the protocol approved by the Tufts University Animal Care and Use Committee.

Flow cytometry. Anti-Ly-6G-phycoerythrin (PE) (clone 1A8), anti-CD11c-fluorescein isothiocyanate
(FITC) (clone N418), anti-F4-80-PE-Cy7 (clone BM8), and anti-T cell receptor � (TCR�)-allophycocyanin
(clone H57-597) were obtained from BD Biosciences, San Jose, CA. Murine lungs were collected at 48 h
postinfection, and excised lung tissue was digested with type II collagenase and DNase (1 mg/ml and 50
U/ml, respectively; Worthington, Lakewood, NJ) to obtain a single-cell suspension, as described previously
(101). For collection of BALF, mice were sacrificed at 48 h postinfection and lungs were washed twice with 1
ml of PBS via a cannula. Cells in the pulmonary single-cell suspension or in the BALF were stained with
relevant monoclonal antibodies (MAbs) on ice, washed, and run through a FACSCalibur flow cytometer (BD
Biosciences). Fluorescence intensities of the stained cells were determined. Data were analyzed using FlowJo
software (Tree Star) to determine the numbers of PMNs (Ly6G�), dendritic cells (F4/80� CD11c�), macro-
phages (F4/80�), and T cells (TCR��) in both the lung single-cell suspensions and BALF.

Statistical analyses. Statistical analysis was performed using the GraphPad Prism program (Graph-
Pad Software). The log rank (Mantel-Cox) test was performed for survival curve analysis. All quantitative
results were analyzed by one-way analysis of variance (ANOVA). In cases where data sets contained more
than two groups, one-way ANOVA was followed by individual Student’s t test analyses. P values of �0.05
were considered significant in all cases.
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