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ABSTRACT Regulating gene expression during infection is critical to the ability of
pathogens to circumvent the immune response and cause disease. This is true for
the group A Streptococcus (GAS), a pathogen that causes both invasive (e.g., necro-
tizing fasciitis) and noninvasive (e.g., pharyngitis) diseases. The control of virulence
(CovRS) two-component system has a major role in regulating GAS virulence factor
expression. The regulator of cov (RocA) protein, which is a predicted kinase, func-
tions in an undetermined manner through CovRS to alter gene expression and re-
duce invasive disease virulence. Here, we show that the ectopic expression of a
truncated RocA derivative, harboring the membrane-spanning domains but not the
dimerization or HATPase domain, is sufficient to complement a rocA mutant strain.
Coupled with a previous bioinformatic study, the data are consistent with RocA be-
ing a pseudokinase. RocA reduces the ability of serotype M1 GAS isolates to express
capsule and to evade killing in human blood, phenotypes that are not observed for
M3 or M18 GAS due to isolates of these serotypes naturally harboring mutant rocA
alleles. In addition, we found that varying the RocA concentration attenuates the
regulatory activity of Mg2� and the antimicrobial peptide LL-37, which positively
and negatively regulate CovS function, respectively. Thus, we propose that RocA is
an accessory protein to the CovRS system that influences the ability of GAS to mod-
ulate gene expression in response to host factors. A model of how RocA interacts
with CovRS, and of the regulatory consequences of such activity, is presented.
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Bacterial pathogens often show intraspecies phenotypic variation, with differences
in antibiotic resistance and disease potential being just two of several reported

phenotypes (1, 2). In many cases, intraspecies phenotypic variation can in part be
attributed to the variable presence of mobile genetic elements, such as the
presence of a Shiga-like toxin-encoding bacteriophage in the enterohemorrhagic
Escherichia coli pathotype (3) or the presence of blaOXA-23-bearing plasmids or trans-
posons in carbapenem-resistant Acinetobacter baumannii isolates (4, 5). An additional
process that drives intraspecies phenotypic variation is the differential regulation of
gene expression (6). For example, the hypervirulence of the USA300 lineage of Staph-
ylococcus aureus isolates relative to those from the USA200 lineage is in part due to
differences in the Agr regulatory system (7, 8), which is a major regulator of S. aureus
virulence factor expression (9). The importance of identifying the mechanisms that
control intraspecies variation is perhaps best highlighted by the negative impact that
such variation can have on the diagnosis, treatment, and/or prevention of infections
(10–12).

The group A Streptococcus (GAS) (Streptococcus pyogenes) is a strict human patho-
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gen that colonizes the throat and skin and causes a variety of diseases ranging from
mild (e.g., pharyngitis and impetigo) to severe (e.g., streptococcal toxic shock syndrome
and necrotizing fasciitis) (13). Additionally, GAS exposure may trigger serious postin-
fection sequelae, including acute rheumatic fever or acute poststreptococcal glomer-
ulonephritis (14). The remarkable diversity of GAS diseases can be traced to the ability
of the pathogen to express a large repertoire of virulence factors, including adhesins,
proteases, immunoprotective proteins, and superantigens (15, 16). The regulation of
virulence factor expression in GAS occurs through the coordinated functions of 13
two-component regulatory systems (17), dozens of standalone transcription factors
(18), and at least one small regulatory RNA (19).

GAS isolates are divided into more than 200 different serotypes based upon the
sequence of the 5= end of the M protein-encoding gene, emm. Importantly, epidemi-
ological studies have uncovered nonrandom associations between certain GAS sero-
types and disease phenotypes. For example, serotype M3 isolates are associated with
particularly severe and lethal invasive infections (20), while serotype M18 isolates are
associated with outbreaks of acute rheumatic fever (21). Recently, it was shown that M3
and M18 GAS isolates harbor serotype-specific mutations within the regulator of cov
(rocA) gene (22–25). Working in the M3 GAS background, we found that this mutation
enhances virulence in a mouse model of bacteremia, possibly providing a link to the
association of M3 isolates with severe invasive infections (24). RocA shows sequence
similarity to sensor kinases and hence is predicted to function by phosphorylating
target proteins (26). Through transcriptome analysis, we determined that complement-
ing rocA in an M3 isolate negatively regulated the expression of more than 50 genes,
including more than a dozen that encode immunomodulatory virulence factors. These
serotype-specific regulatory changes likely impact niche adaptation by M3 and M18
isolates, with a consequence of this being their observed skew in disease outcomes. We
also discovered that the regulatory activity of RocA occurs via enhancement of the
activity of the control of virulence (CovRS) two-component regulatory system, a system
that negatively regulates the transcription of �10% of GAS genes (27–34). Through
unknown means, RocA enhances the abundance of the phosphorylated (active) form of
the CovR response regulator, increasing repression of CovRS-regulated genes (24).

Here, we sought to characterize the RocA protein and to assess how it enhances the
CovRS-mediated regulation of virulence factor expression. We found that RocA is a
major regulator of virulence gene expression in serotype M1 GAS isolates, as assessed
by transcriptomic analyses comparing parental, rocA deletion mutant, and comple-
mented mutant derivatives. The regulation afforded by RocA attenuates the ability of
M1 GAS to survive and proliferate in nonimmune whole human blood. We also found
that a plasmid-expressed RocA variant consisting of only the membrane-spanning
domains is sufficient to complement a rocA mutant strain, consistent with RocA
indirectly enhancing CovR phosphorylation. Finally, we also discovered that the inhi-
bition of CovS activity by the antimicrobial peptide LL-37 (35) does not occur in strains
that lack or overexpress RocA, adding evidence that RocA functions by modulating
CovS activity. The virulence consequences of functional or mutant rocA alleles are
discussed, with particular reference to how the natural rocA mutation in M3 GAS
isolates may influence the association of this serotype with severe invasive infections.

RESULTS
RocA negatively regulates the ability of serotype M1 GAS to express capsule

and to survive in a blood bactericidal assay. Complementing the natural rocA
mutations in clinical isolates of serotype M3 and M18 GAS reduces expression of the
antiphagocytic hyaluronic acid (HA) capsule (22, 24). Thus, we initially set out to assess
whether RocA controls capsule expression in a clinical isolate that is naturally rocA�. For
this purpose, we chose to work in the serotype M1 GAS background, a serotype that is
highly prevalent in North America and Western Europe (36). To assess the contribution
of RocA to M1 GAS capsule production, we compared the abundance of capsule
produced by our representative parental M1 isolate, MGAS2221; a constructed rocA dele-
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tion mutant derivative, 2221ΔrocA; and a chromosomally complemented 2221ΔrocA de-
rivative, 2221ΔrocA::rocAM1 (Table 1). Deletion of rocA increased the production of
capsule �13-fold (Fig. 1A), a phenotype that was complemented by reintroduction of
the rocA gene. Note that the alteration in capsule abundance between the tested

TABLE 1 Overview of the GAS strains used in this study

GAS strain Description Reference

MGAS2221 Representative M1 clinical isolate (covRS� rocA�) 30
2221ΔrocA MGAS2221 derivative in which rocA has been replaced with a spectinomycin resistance cassette 24
2221ΔrocA::rocAM1 Complemented derivative of 2221ΔrocA in which the spectinomycin resistance cassette has

been replaced with a functional rocA allele from serotype M1 GAS
24

MGAS2221(pDCBB) MGAS2221 derivative containing the empty chloramphenicol-resistant vector pDCBB, a phoZ-
less derivative of pDC123

32

MGAS2221(pRocA-M1) MGAS2221 derivative containing the plasmid pRocA-M1, which is a pDCBB-based plasmid
containing a functional rocA allele from M1 GAS

This study

2221ΔrocA(pDCBB) 2221ΔrocA derivative containing the empty chloramphenicol-resistant vector pDCBB This study
2221ΔrocA(pRocA-M1) 2221ΔrocA derivative containing the plasmid pRocA-M1, which is a pDCBB-based plasmid

containing a functional rocA allele from M1 GAS
This study

2221ΔcovS MGAS2221 derivative that contains a mutant covS allele due to the deletion of a single
nucleotide

30

MGAS10870 Representative M3 clinical isolate (covRS� rocA mutant) 46
10870(pDCBB) MGAS10870 derivative containing the empty chloramphenicol-resistant vector pDCBB 57
10870(pRocA-M1) MGAS10870 derivative containing the plasmid pRocA-M1, which is a pDCBB-based plasmid

containing a functional rocA allele from M1 GAS
This study

10870(pRocA-M3) MGAS10870 derivative containing the plasmid pRocA-M3, which is a pDCBB-based plasmid
containing a nonfunctional rocA allele from M3 GAS

This study

10870(pRocA-M18) MGAS10870 derivative containing the plasmid pRocA-M18, which is a pDCBB-based plasmid
containing a nonfunctional rocA allele from M18 GAS

This study

10870(pRocA-M11–409) MGAS10870 derivative containing the plasmid pRocA-M11–409, which is a pDCBB-based plasmid
containing a truncated rocA allele from M1 GAS

This study

10870(pRocA-M11–328) MGAS10870 derivative containing the plasmid pRocA-M11–328, which is a pDCBB-based plasmid
containing a truncated rocA allele from M1 GAS

This study

10870(pRocA-M11–276) MGAS10870 derivative containing the plasmid pRocA-M11–276, which is a pDCBB-based plasmid
containing a truncated rocA allele from M1 GAS

This study

10870(pRocA-M11–221) MGAS10870 derivative containing the plasmid pRocA-M11–221, which is a pDCBB-based plasmid
containing a truncated rocA allele from M1 GAS

This study

10870(pRocA-M11–89) MGAS10870 derivative containing the plasmid pRocA-M11–89, which is a pDCBB-based plasmid
containing a truncated rocA allele from M1 GAS

This study
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FIG 1 RocA negatively regulates capsule production and GAS survival in human blood in serotype M1
GAS. (A) The indicated GAS strains were analyzed for levels of the hyaluronic acid capsule. The
experiment was performed twice, using duplicate cultures in each experiment, with mean (�standard
deviation) values shown. The asterisk highlights statistical significance relative to the parental isolate (t
test; P � 0.01). (B) Lancefield bactericidal assays. The indicated GAS strains were incubated with
heparinized whole human blood, and percent survival was determined relative to the inoculum [(sur-
viving CFU/initial CFU) � 100]. The experiment was performed in triplicate, with mean (�standard
deviation) values shown. The P values shown were generated by t test (n.s., not significant).
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strains was not a consequence of differences in hyaluronidase activity (see Fig. S1 in the
supplemental material).

Given that the capsule protects against neutrophil-mediated killing, we next assayed
whether the regulatory activity afforded by RocA influenced the ability of M1 GAS to
survive exposure to human blood. Bactericidal assays using heparinized nonimmune
whole human blood determined that RocA reduced the survival of MGAS2221, and
complemented mutant strain 2221ΔrocA::rocAM1, relative to the rocA deletion mutant
2221ΔrocA (Fig. 1B). Thus, in serotype M1 GAS isolates, RocA negatively regulates
survival in human blood and production of the antiphagocytic capsule.

RocA is a major negative regulator of GAS virulence factor expression. As
serotype M3 isolates since at least the 1920s appear to be rocA mutants, it is possible
that our previous RocA regulon data (24), generated in the M3 GAS background, may
not accurately reflect the genes regulated by RocA in contemporary rocA� GAS isolates.
Thus, to generate the first comprehensive data set of the RocA regulon for a naturally
rocA� GAS isolate, we performed an RNA sequencing (RNA-seq)-based transcriptome
analysis using M1 GAS. Comparing the transcriptomes between parental strain
MGAS2221 and its rocA deletion mutant derivative, 2221ΔrocA, identified 47 transcripts
that were statistically significantly different (Kal’s Z test with false-discovery rate
correction [37]; P � 0.05) at a 3-fold or greater level (Fig. 2A; see Table S1 in the
supplemental material). Using the same parameters, only one transcript differed in the
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FIG 2 RocA reduces the abundance of multiple GAS transcripts. (A to C) Summary of RNA-seq data. Shown are pairwise comparisons of the
transcriptomes between the parental M1 strain MGAS2221 and the rocA deletion mutant derivative 2221ΔrocA (A), between MGAS2221 and the
complemented mutant derivative 2221ΔrocA::rocAM1 (B), and between 2221ΔrocA and 2221ΔrocA::rocAM1 (C). The relative expression levels of
all the genes are graphed, with each represented by a circle. Select mRNAs of interest are colored and labeled. (D) TaqMan-based quantitative
RT-PCR data confirming that RocA regulates the abundances of virulence factor-encoding mRNAs. The abundances of select transcripts were
determined from duplicate exponential-phase GAS cultures run in triplicate, with the mean (�standard deviation) shown. The hash tag highlights
the lack of rocA transcript in the rocA deletion mutant strain. The asterisks highlight statistical significance relative to the parental M1 isolate (t
test; P � 0.05).
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MGAS2221 and 2221ΔrocA::rocAM1 comparison (Fig. 2B; see Table S2 in the supple-
mental material), while 42 transcripts differed in the 2221ΔrocA and 2221ΔrocA::rocAM1

comparison (Fig. 2C; see Table S3 in the supplemental material). While the majority of
RocA-regulated genes overlapped data from our original M3 GAS transcriptome study
(e.g., the capsule biosynthesis genes hasABC), others were identified as being RocA
regulated for the first time (e.g., the sag operon encoding the hemolysin streptolysin S).
The regulatory activity of RocA was confirmed for a subset of transcripts by TaqMan-
based quantitative reverse transcription (RT)-PCR analysis (Fig. 2D). The data support
RocA being a major regulator of gene expression in serotype M1 GAS.

Overexpressing RocA modifies the abundance of multiple virulence factor-
encoding transcripts. To gain further insight into RocA function, we investigated
whether the regulatory output of the protein could be modified upon overexpression.
We tested this via RNA-seq, comparing derivatives of MGAS2221 and 2221ΔrocA containing
the pDC123-derived vector pDCBB and a 2221ΔrocA derivative that overexpresses RocA
from pDCBB [2221ΔrocA(pRocA-M1)] (Table 1). The RocA-overexpressing strain not only
had a transcriptome distinct from that of the rocA deletion mutant strain (105 statisti-
cally significant transcripts differed by 3-fold or more) (see Fig. S2A and Table S6 in the
supplemental material), but also from that of the parental strain (60 transcripts) (see Fig.
S2B and Table S5). Of note, some transcripts were differentially regulated only upon
RocA overexpression (that is, they were not differentially regulated between the
parental and rocA deletion mutant strains), e.g., slo, encoding the hemolysin strepto-
lysin O, and sdaD2, encoding a secreted DNase (see Fig. S2C and Table S4), while others
were regulated to a greater extent upon RocA overexpression (e.g., grab, encoding the
protease inhibitor-binding protein G-related �2-macroglobulin, and sse, encoding a
secreted esterase) (compare Fig. S2A and C). The differential regulation of select
transcripts was verified by TaqMan-based quantitative RT-PCR analysis (see Fig. S2D).
The data are consistent with RocA influencing GAS gene expression in a dose-
dependent manner.

The truncated M3 GAS rocA allele complements a rocA mutant strain when
expressed from a low-copy-number plasmid. Serotype M3 and M18 GAS isolates
harbor serotype-specific null mutations within rocA (22, 24). The M3 rocA allele harbors
a 1-bp deletion within a polynucleotide tract (going from 7 contiguous adenine
nucleotides to 6), knocking the gene out of frame and resulting in a protein that is
truncated within the C-terminal HATPase domain (Fig. 3A, blue asterisk) (23–25). The
M18 rocA allele has a single nucleotide polymorphism (SNP) that introduces a prema-
ture stop codon early in the gene, resulting in a protein that is truncated after the third
N-terminal transmembrane domain (Fig. 3A, green asterisk) (22). Previously, it was
noted that the HATPase domain of RocA lacks several amino acids that are normally
critical for kinase function, raising the possibility that RocA lacks kinase activity and
hence is a pseudokinase (26). If RocA is a pseudokinase, we hypothesized that the RocA
protein expressed by serotype M3 GAS, which is truncated within the HATPase domain,
may retain residual activity and that this may be detected by overexpressing the
protein in a rocA mutant strain background. To facilitate testing our hypothesis, we
cloned the truncated M3 and M18 rocA alleles into vector pDCBB, creating plasmids
pRocA-M3 and pRocA-M18. These plasmids and pRocA-M1, harboring the full-length
serotype M1 rocA allele, were transformed into the naturally rocA mutant strain
MGAS10870 (a serotype M3 GAS isolate) and compared with an empty-vector-
containing derivative. The M1 and M3 rocA alleles were indistinguishable in their ability
to complement MGAS10870, while the M18 rocA allele failed to complement (Fig. 3B).
Thus, despite previous data showing that MGAS10870 and a rocA deletion mutant
derivative have essentially identical transcriptomes (24), the M3 RocA protein retains
residual activity, so it is capable of complementing a rocA mutant strain upon overex-
pression. The data also provide the first experimental support for RocA being a
pseudokinase.

The DHp and HATPase domains of RocA are dispensable for regulatory activity.
To identify which domains of RocA are essential or dispensable for regulatory activity, we
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constructed a series of pRocA-M1 derivatives that express RocA with C-terminal truncations
of increasing size (Fig. 4A). Note that the truncation in plasmid pRocA-M11–409 is identical
to that present in the M3 rocA allele, while the truncation in pRocA-M11– 89 is identical
to that present in the M18 rocA allele. The plasmids were introduced into MGAS10870,
and the ability of the shortened rocA alleles to complement was assayed by quantita-
tive RT-PCR. With the exception of the plasmid harboring the largest rocA truncation,
pRocA-M11– 89, all the plasmids were able to complement the rocA mutation in
MGAS10870 (Fig. 4B). Given that pRocA-M11–221 lacks the DHp and HATPase domains
and yet is still able to complement, the data are consistent with the regulatory activity
afforded by RocA residing within its membrane-spanning domains.

RocA is required for the regulation of CovRS activity by LL-37, but not by
Mg2�. Mg2� and the amphipathic antimicrobial peptide LL-37 function as ligands for
CovS (38, 39). At subinhibitory concentrations (e.g., concentrations at which no anti-
bacterial action is observed), LL-37 binds to CovS and inhibits CovRS-mediated regu-
lation, while Mg2� has opposing activity and enhances CovRS-mediated regulation (35).
Given our previous data showing that RocA directly or indirectly functions through
CovRS (24), we reasoned that RocA may modify the ability of Mg2� and/or LL-37 to
regulate CovRS activity. To test our hypothesis, we grew MGAS2221 and derivatives
2221ΔcovS and 2221ΔrocA in standard Todd-Hewitt broth containing 0.2% yeast
extract (THY broth), THY broth supplemented with 15 mM MgCl2 (as a source of Mg2�),
and THY broth supplemented with 100 nM LL-37. Samples from the exponential phase
of growth were analyzed by quantitative RT-PCR analysis of select CovRS-regulated
genes. As expected, LL-37 reduced the CovRS-mediated repression of slo, scpC (encod-
ing the chemokine protease SpyCEP), and hasA and enhanced repression of grab in
MGAS2221 (Fig. 5A, red bars). In contrast, LL-37 had no regulatory activity in strain
2221ΔcovS (no difference between the dark-blue and blue bars in Fig. 5A), which was
expected, given that LL-37 functions through CovS. Interestingly, LL-37 also had no
regulatory activity in strain 2221ΔrocA (no difference between the dark-green and
green bars in Fig. 5A). Thus, RocA is required for GAS to modulate the CovRS-mediated
regulation of gene expression in response to the human antimicrobial peptide LL-37.

As Mg2� enhances CovRS-mediated regulation while LL-37 inhibits it, the addition
of MgCl2 to the growth medium resulted in differential gene expression for strain
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MGAS2221 relative to the cultures grown in THY broth only or THY broth plus LL-37.
More specifically, repression of grab was reduced and repression of slo was increased,
while the repression of scpC and hasA was unchanged (Fig. 5A, pink bars) (see Discussion
for our hypothesis as to why scpC and hasA were unchanged). With regard to strain
2221ΔcovS, the fact that MgCl2 had no effect was expected, since Mg2� is hypothesized
to regulate CovRS activity by enhancing the kinase activity of CovS (no difference
between the light- and dark-blue bars in Fig. 5A) (39). However, while 2221ΔcovS and
2221ΔrocA were essentially identical with regard to their inability to be regulated by
LL-37, 2221ΔrocA appears to retain a partial ability to be regulated by Mg2�. While the
level of repression (scpC and hasA) or derepression (grab) by Mg2� is not as dramatic
as that observed in the parental strain, 2221ΔrocA nevertheless showed regulation
(Fig. 5A, compare the light- and dark-green bars), highlighting the fact that Mg2�

maintains some regulatory activity in the absence of RocA. In summary, the data are
consistent with the ability of the CovRS system to respond to host stimuli (LL-37 and
Mg2�) being at least partially dependent upon the presence of RocA.

Neither LL-37 nor Mg2� influences GAS gene expression in a RocA overexpres-
sion strain. To further shed light on the involvement of RocA in the ability of LL-37 and
Mg2� to modulate GAS gene expression, we investigated the regulatory abilities of
these factors in a RocA overexpression strain (MGAS2221, containing pRocA-M1). No
significant difference in the abundance of select CovRS-regulated mRNAs was observed
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in the presence or absence of LL-37 or MgCl2 (Fig. 5B). Thus, neither LL-37 nor Mg2� is
able to modulate CovRS system activity upon RocA overexpression.

DISCUSSION
Conclusions. Recently, it has become apparent that two-component systems from

a diverse range of bacterial species require so-called accessory proteins for full regu-
latory activity (40, 41). In some instances (42, 43), the accessory proteins increase the
number of stimuli capable of influencing the regulatory output of their associated
two-component system, enabling a larger range of environments to be distinguished
and a greater ability to tailor gene expression to each environment. Here, we discov-
ered that RocA is a major regulator of virulence factor expression in serotype M1 GAS
and that this regulatory activity reduces the ability of M1 GAS to survive and proliferate
in human blood. We also generated data consistent with RocA being a pseudokinase
rather than a kinase, as originally thought, and show that RocA enhances the ability of
CovS to modulate its regulatory activity in the presence of LL-37 and Mg2�. Thus, RocA
is an accessory protein that, by working through CovRS, plays a key role in modulating
GAS gene expression during infection.

Our model of how RocA interacts with the CovRS system, and the regulatory
consequences of this interaction, is shown in Fig. 6. We propose that in the absence of
RocA, CovS has only minimal kinase activity toward CovR, which is in accord with our
previous data showing that the major form of CovR in a rocA mutant is the nonphos-
phorylated form (24). As nonphosphorylated CovR is for the most part considered
inactive and unable to repress gene transcription from target promoters, this results in
the enhanced expression of multiple genes, including several that encode immuno-
modulatory virulence factors (Fig. 2). The altered virulence factor expression profile due
to rocA mutation results in an enhanced ability to cause invasive infections, as is evident
from previous animal infection data (22, 24, 44) and also our blood bactericidal assays
(Fig. 1B). We propose that CovS and RocA interact via their membrane-spanning
domains, an interaction that enhances CovS kinase activity and, subsequently, the
abundance of phosphorylated CovR (Fig. 6). High levels of phosphorylated CovR result
in the repression of target gene transcription, producing a virulence factor expression
profile suited to successfully causing noninvasive infections. One of several unanswered
questions associated with our model is what is the benefit to GAS of having RocA
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provide regulatory input into the CovRS system? We hypothesize that RocA recognizes
as-yet-uncharacterized factors that control its ability to associate with CovS.

We found that LL-37 is unable to repress regulation by the CovRS system in the
absence of RocA (Fig. 5A). Consistent with this finding are published data comparing
the regulatory activities of LL-37 in five different GAS serotypes, with LL-37 having
stronger activity in association with M1, M4, M5, and M29 GAS isolates than with an M3
isolate (38). As M1, M4, M5, and M29 GAS isolates are either known or thought to
produce functional RocA while M3 GAS does not, this is most likely the molecular
explanation behind the serotype-specific regulatory activity of LL-37. Why LL-37 has no
regulatory activity in the absence of RocA (Fig. 5A) is unclear. One possibility is that
RocA promotes the ability of CovS to bind LL-37 (35), while a second possibility is
simply that CovS activity is already so highly attenuated in the absence of RocA that
LL-37 has at best a negligible regulatory role. A third possibility, and the one that we
favor, is that LL-37 regulates CovRS activity by inhibiting the abilities of RocA and CovS
to interact (Fig. 6). Interestingly, LL-37 was also unable to inhibit CovS activity upon
RocA overexpression (Fig. 5B). This could be explained by LL-37 and RocA competing
for CovS binding, but experimentation to test this or other hypotheses is outside the
limits of the present study.

An observation from our transcriptomic studies is that there appear to be gene-
specific consequences to differing levels of RocA expression. For example, hasA is
highly sensitive to regulation by RocA so that it is essentially maximally repressed in
MGAS2221 relative to the derivative 2221ΔrocA, and hence, higher levels of RocA, such
as are present in strain 2221ΔrocA(pRocA-M1), have little additional regulatory activity
(Table 2). In contrast, slo and sic (encoding the streptococcal inhibitor of complement)
mRNA levels are repressed only �2-fold in MGAS2221 relative to 2221ΔrocA but
�50-fold in 2221ΔrocA(pRocA-M1) relative to 2221ΔrocA (Table 2). These data are
consistent with a model in which phosphorylated CovR (CovR�P) binds to target
promoters with differing affinities (45) and with hasA, but not slo or sic, having one of
the highest-affinity promoters for CovR�P (Fig. 6). Thus, while the level of CovR�P is
lower in the parental isolate than in the RocA-overexpressing strain, there is sufficient
in the parental isolate to fully repress hasA. However, in part due to being sequestered
by the hasA promoter, the level of CovR�P in the parental isolate is not sufficient to
dramatically repress slo or sic transcription, while the increased level of CovR�P in the
RocA-overexpressing strain is sufficient. This model is also supported by two observa-
tions from our study on the effects of Mg2� on regulation by RocA, CovR, and CovS (Fig.
5A). First is the finding that enhancing CovS activity through the addition of Mg2� does
not influence the already maximally repressed hasA and scpC genes in MGAS2221 (Fig.
5A) but does result in an �15-fold decrease in slo mRNA abundance. Second is the

FIG 6 Legend (Continued)
mutant strain results in its binding only to promoters containing high-affinity CovR-binding sites, but not all high-affinity
sites within a promoter will be filled, and hence, these genes will be only partially repressed. The virulence factor profile
of rocA� strains is preferentially suited to promoting noninvasive infection (e.g., pharyngitis), while the virulence factor
profile of rocA mutant strains is preferentially suited to promoting invasive infection (e.g., necrotizing fasciitis).

TABLE 2 Comparison of expression levels for select genes as determined by RNA-seq
analysisa

Gene

Expression in:

2221�rocA � vector
(no rocA mRNA)

MGAS2221 � vector
(medium rocA
mRNA levels)

2221�rocA(pRocA-M1)
(high rocA mRNA
levels)

hasA 1 0.025 0.020
slo 1 0.495 0.018
sic 1 0.428 0.022
aThe data were extracted from the RNA-seq experiment shown in Fig. S2 in the supplemental material.
Expression levels are displayed relative to those present in strain 2221ΔrocA � vector.

Jain et al. Infection and Immunity

November 2017 Volume 85 Issue 11 e00274-17 iai.asm.org 10

http://iai.asm.org


finding that the hasA and scpC genes, but not slo, are at least somewhat repressed by
the addition of Mg2� to strain 2221ΔrocA, consistent with the reduced amount of
CovR�P that is generated in a rocA mutant in the presence of Mg2� being rapidly
sequestered by high-affinity binding sites located upstream of hasA and scpC. Thus, by
having promoters that exhibit a range of affinities for CovR�P, GAS isolates are able to
modulate gene expression in a nonuniform manner in response to CovRS-modulating
stimuli.

As both M3 and M18 GAS isolates are rocA mutants and yet only M3 isolates are
associated with causing particularly severe invasive infections, this implies that the rocA
mutation is not sufficient for the association of M3 GAS with invasive disease. Consis-
tent with this, we have shown that at least two other regulator-encoding genes, rivR
and fasC, are also disrupted in M3 isolates (46), and we propose that it is the combined
alteration in gene expression due to these mutations that pushes M3 GAS toward
invasive disease hypervirulence. While serotype M3 and M18 GAS are the only known
serotypes that are exclusively rocA mutant, individual isolates of other serotypes have
also been identified as rocA mutant (22–25, 44, 47, 48). Data from several studies are
consistent with rocA mutant strains being selected for from rocA� parental isolates, and
that selection primarily occurs during invasive GAS infection (44, 47–49). This mirrors
the more than 15 years worth of data concerning the selection of covR or covS mutant
strains during invasive GAS infections (27–34, 50). The mutation of any one of the rocA,
covR, and covS genes results in a virulence factor expression profile that promotes
invasive disease, but undoubtedly there are important regulatory and virulence differ-
ences. The abundance of CovR�P appears to be a key correlate of invasive infection
virulence, as there is an inverse correlation between levels of CovR�P (parental [wild type
{WT}] � rocA mutant � covS mutant � covR mutant) and virulence (parental [WT] �

rocA mutant � covS mutant � covR mutant) (30, 44). While not as extensively studied
(32, 51, 52), we hypothesize that there is a positive correlation between the abundance
of CovR�P and GAS virulence during noninvasive infections (parental [WT] � rocA
mutant � covS mutant � covR mutant). As noninvasive infections represent the vast
majority of GAS infections, it is tempting to speculate that this may explain why no GAS
serotypes are exclusively covR or covS mutant, while some (M3 and M18) are exclusively
rocA mutant. M3 and M18 isolates may be able to tolerate the reduced ability to cause
noninvasive infections that comes with rocA mutation but not the greater levels of
attenuation that would come with being covS or covR mutant.

In summary, we have expanded upon previous work by determining that RocA is an
accessory protein to the CovRS two-component system. Our data are consistent with
RocA enhancing the CovS-mediated phosphorylation of CovR, possibly through RocA-
CovS interactions via their membrane-spanning domains. In a dose-dependent manner,
RocA controls the abilities of LL-37 and Mg2� to modulate CovS activity and hence
modifies the ability of GAS to tailor gene expression during infection.

MATERIALS AND METHODS
Bacterial strains and growth conditions. The representative serotype M1 and M3 clinical GAS

isolates MGAS2221 and MGAS10870, respectively, were used in this study (36, 46). Information about
these strains and their derivatives is presented in Table 1. GAS isolates were grown in THY broth.
Chloramphenicol (4 �g/ml), kanamycin (200 �g/ml), spectinomycin (150 �g/ml), LL-37 (100 nM), and
MgCl2 (50 mM) were added to the THY broth when needed. For standard cloning, E. coli DH5� cells were
used. The E. coli cells were grown in LB broth with agitation at 37°C, with ampicillin (100 �g/ml),
kanamycin (50 �g/ml), and chloramphenicol (20 �g/ml) added when needed.

Creation of plasmids pRocA-M1, pRocA-M3, and pRocA-M18. To facilitate the plasmid-based
complementation of select rocA mutant strains, we created plasmid pRocA-M1, a plasmid that contains
the functional rocA allele from serotype M1 GAS. The M1 rocA gene, along with its native promoter, was
amplified by PCR (see Table S7 in the supplemental material for a list of primers used in this study) and
cloned into the vector pDC123 (32, 53). Similar plasmids containing the serotype M3 or M18 rocA allele
(plasmids pRocA-M3 and pRocA-M18, respectively) were also constructed. All the plasmids were se-
quence verified.

Creation of a library of pRocA-M1 derivatives expressing C-terminally truncated RocA proteins.
To identify which domains of RocA are essential for regulatory activity, we created derivatives of
pRocA-M1 in which deletions of increasing size were introduced at the 3= end of the gene, resulting in
the production of RocA proteins with C-terminal truncations of increasing size. The plasmids were
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created by PCR (see Table S7 in the supplemental material), followed by Gibson assembly (New England
BioLabs), and were verified by sequencing.

Hyaluronic acid capsule assays. Hyaluronic acid capsule assays were performed essentially as
described previously (54). Briefly, GAS strains were grown in THY broth to mid-exponential phase.
Aliquots of each culture were recovered, and the bacteria were pelleted by centrifugation. The bacterial
pellets were resuspended in water, and serial dilutions were performed to ensure equivalent CFU
numbers across strains. To remove the capsule, resuspended GAS cells were mixed with chloroform in
a FastPrep machine before centrifuging to pellet the cellular debris. The aqueous phase was transferred
to a clean tube, and the hyaluronic acid content was determined using an enzyme-linked immunosor-
bent assay (ELISA) kit (Corgenix) in accordance with the manufacturer’s instructions.

Plate-based hyaluronidase assays. Plates containing 1% agarose, 1% bovine serum albumin (BSA),
and 0.4 mg ml�1 of HA (sodium salt from Streptococcus equi) in 0.3 M sodium phosphate buffer (pH 5.3)
were prepared as previously described (55). Wells (4 mm in diameter) were aseptically cut into the plates,
and 100 �l of spent medium, taken from sterile-filtered THY broth cultures of each tested GAS strain
grown to the exponential phase of growth (optical density at 600 nm [OD600] 	 0.5), were pipetted
into separate wells. The plates were incubated overnight (18 to 20 h) at 37°C prior to flooding the
plate with 2 M acetic acid. Clear zones were visualized against a background of opaque precipitated
BSA conjugated to undigested HA, and their diameters were measured. Serial dilutions of hyaluron-
idase (MP Biochemicals, LLC) were used to enable construction of a standard curve to determine the
concentration of hyaluronidase in the spent medium. Biological replicates of each GAS strain were
assayed in duplicate.

Lancefield bactericidal assays. Bactericidal assays were performed essentially as previously de-
scribed (24). Briefly, cultures of the three GAS strains to be compared were grown to the early
exponential phase of growth (corresponding to an OD600 of 0.15 to 0.2). Upon reaching the correct OD,
each sample was diluted to �1 � 104 CFU/ml using sterile phosphate-buffered saline (PBS). Subse-
quently, 50 �l of the diluted GAS cultures was added to individual aliquots of nonimmune heparinized
whole human blood and incubated by end-over-end rotation for 3 h at 37°C. At the same time, 50 �l of
the PBS-diluted GAS cultures was plated onto blood agar plates to enable accurate calculation of the
initial inocula. Following incubation, 50 �l of the blood-GAS mixtures was plated onto blood agar directly
and also after performing 1:10 and 1:100 dilutions with PBS. All the plated samples were incubated
overnight at 37°C with 5% carbon dioxide. Colony counts of each strain were categorized and tabulated
for average survival in human blood.

Total RNA isolation from GAS. Total RNA was isolated from select GAS strains as previously
described (30). Briefly, GAS strains were grown to the mid-exponential phase of growth (corresponding
to an OD600 of 0.5) in THY broth. One volume of GAS culture was subsequently added to 2 volumes of
RNAprotect bacterial reagent (Qiagen) and incubated at room temperature for 5 min. Following
centrifugation at 5,000 � g for 10 min at 4°C, the bacterial pellets were snap-frozen in liquid nitrogen and
stored at �80°C until ready for use. The bacterial cells were processed for RNA isolation using a
mechanical lysis method in conjunction with the RNeasy minikit (Qiagen). Contaminating DNA was
removed by three 40-min treatments with Turbo-DNase-free (Life Technologies). The quality and quantity
of the isolated RNA were assessed by using a Bioanalyzer 2100 system (Agilent Technologies).

RNA-seq analysis. THY broth cultures of the tested GAS strains were grown to the exponential phase
of growth (OD600 	 0.5). Total RNA was isolated, and rRNAs, which represent �96% of the total RNA,
were depleted using the Ribo-Zero Gram-positive rRNA removal kit (Epicentre). The rRNA-depleted RNA
was then used to generate cDNA libraries for sequencing according to a previously described protocol
using a ScriptSeq kit (Epicentre) (56). Briefly, RNA was fragmented, cDNA was synthesized using random
hexamers containing a 5= tagging sequence, the RNA was hydrolyzed, and the cDNA was tagged at the
3= end. A limited number of PCR cycles (n 	 12 to 14) were used to amplify the libraries via the 5= and
3= tags (the libraries were barcoded using different primers), and the libraries were size selected (170 to
300 bp). The size-selected and barcoded libraries were run on an Illumina flow cell using a HiSeq (Fig. 2)
or MiSeq (see Fig. S2 in the supplemental material) instrument. Data were analyzed using CLC Genomics
Workbench and normalized to the overall sequencing depth using total mapped read data. Statistical
significance was tested using Kal’s Z test with a false-discovery rate correction (24).

Quantitative RT-PCR analysis. Total mRNA samples were isolated and converted into cDNA using
the reverse transcriptase Superscript III (Life Technologies). The generated cDNA was analyzed via
TaqMan-based quantitative RT-PCR analysis using a CFX Connect Real-Time System (Bio-Rad). TaqMan
primers and probes for genes of interest, and the internal control gene proS, are shown in Table S7 in
the supplemental material. Transcript levels were determined using the ΔΔCT method.

Accession number(s). The RNA-seq data have been deposited in the Gene Expression Omnibus
(GEO) database at the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/geo)
and are accessible through accession numbers GSE97325 and GSE101893.
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