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Abstract

Molecular Dynamics (MD) simulations based on the implicit solvent generalized Born (GB) 

models can provide significant computational advantages over the traditional explicit solvent 

simulations. However, the standard GB becomes prohibitively expensive for all-atom simulations 

of large structures; the model scales poorly, ~ n2, with the number of solute atoms. Here we 

combine our recently developed Optimal Point Charge Approximation (OPCA) with the 

Hierarchical Charge Partitioning (HCP) approximation to present an ~ n log n multi-scale, yet 

fully atomistic, GB model (GB-HCPO). The HCP approximation exploits the natural organization 

of biomolecules (atoms, groups, chains, and complexes) to partition the structure into multiple 

hierarchical levels of components. OPCA approximates the charge distribution for each of these 

components by a small number of point charges so that the low order multipole moments of these 

components are optimally reproduced. The approximate charges are then used for computing 

electrostatic interactions with distant components, while the full set of atomic charges are used for 

nearby components. We show that GB-HCPO can deliver up to two orders of magnitude speedup 

compared to the standard GB, with minimal impact on its accuracy. For large structures, GB-

HCPO can approach the same nominal speed, as in nanoseconds per day, as the highly optimized 

explicit-solvent simulation based on particle mesh Ewald (PME). The increase in the nominal 

simulation speed, relative to the standard GB, coupled with substantially faster sampling of 

conformational space, relative to the explicit solvent, makes GB-HCPO a suitable candidate for 

MD simulation of large atomistic systems in implicit solvent. As a practical demonstration, we use 

GB-HCPO simulation to refine a ~1.16 million atom structure of 30-nm chromatin fiber (40 

nucleosomes). The refined structure suggests important details about spatial organization of the 

linker DNA and the histone tails in the fiber: (1) the linker DNA fills the core region, allowing the 

H3 histone tails to interact with the linker DNA, which is consistent with experiment; (2) H3 and 

H4 tails are found mostly in the core of the structure, closer to the helical axis of the fiber, while 

H2A and H2B are mostly solvent exposed. Potential functional consequences of these findings are 

discussed. GB-HCPO is implemented in the open source MD software, NAB in Amber 2016.
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Graphical Abstract

1 INTRODUCTION

Atomistic simulation is one of the most widely used theoretical tools in bio-medical 

research;1–3 high accuracy of solvent representation in these simulations is of paramount 

concern. Arguably the most accurate among classical models of solvation is the one in 

which individual water molecules are treated explicitly on the same footing with the target 

biomolecule.4–8 Yet, accuracy of this explicit solvent representation comes at extremely high 

price, computationally. 9,10 In particular, even straightforward atomistic simulations of very 

large structures in explicit solvation4–8 can be extremely challenging. For example, a recent 

study of a 64 million atom structure of the complete HIV-1 capsid model required one of the 

most powerful supercomputers in the world11 to produce a 100ns long trajectory. Structure 

sizes and/or time scales affordable to a typical computational lab with much more limited 

resources are considerably smaller. At the same time, there are many situations when a fully 

atomistic simulation of a large structure may yield meaningful results: for example, parts of 

the structure may be moving on time-scales that can still fall within reach of atomistic 

simulations, but these motions may be significantly affected by the rest of the “scaffold”, 

making their study in isolation uninformative.

An alternative that can significantly reduce the cost of conformational sampling in atomistic 

simulations is the implicit (or continuum) solvation model that treats solvent implicitly as a 

continuum with dielectric and non-polar properties of water.15–24 A particularly 

computationally efficient version of the approach, the so-called generalized Born (GB) 

model, 25,26 is the current “workhorse” in Molecular Dynamics (MD)27–34 including 

QM/MM35,36 and REMD simulations.37 GB provides significant computational advantage 

over explicit solvent MD simulations in two main ways: First, GB approximates the discrete 

solvent as a continuum, thus drastically reducing the number of particles to keep track of in 

the system,20,25,38–61 which significantly increases the nominal speed (nanoseconds per day 

of simulation time). Second, the GB model can sample conformational space substantially 

faster than explicit solvent model due to the reduction of solvent viscosity. For instance, it 

has been shown that the conformational sampling in implicit solvent simulations can be 

~100 times faster compared to common explicit solvent PME simulations.62–66 The 

combination of these two benefits makes the GB model particularly well suited for all-atom 

MD simulations in several areas, notably the protein folding process,27–34,67 and protein 

design.68,69
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Despite these advantages, GB is rarely used for simulating very large structures, in part 

because of its poor algorithmic complexity: the functional form for the most widely used 

practical GB models scales as ~ n2, where n is the number of solute atoms. Therefore, GB-

based simulations can become too slow for large and especially very large (100,000 atoms 

and more) structures, essentially negating all of the potential benefits of the implicit 

solvation. In contrast, the most common explicit-solvent simulations based on the “industry 

standard” particle mesh Ewald (PME),70–73 or the fast multipole,74–76 scale as ~ N log N, 

where N is the total number of solvent and solute atoms combined. Thus, even though n ≪ 
N in a typical simulation, the nominal computational speed of the GB model can become 

much lower than that of the corresponding explicit-solvent simulation for large systems, 

with the “break-even” point being around n of several thousand atoms, depending on the 

specifics of the structure and implementation details.26 In cases where large-scale atomistic 

level modeling is desired, practitioners currently have no choice but to resort to the 

traditional, explicit solvent approach which leads to inordinate computational costs, or resort 

to further drastic approximations within the GB.

A common approach for reducing the computational cost of GB models is to apply the 

concept of spherical cutoff, i.e. ignore interactions and computations involving atoms 

beyond a cutoff distance, referred to as cutoff-GB here. The cutoff-GB reduces the 

computational cost of traditional GB-based MD simulations from ~ n2 to ~ n log n. 

However, it was known for a long time that the use of spherical cutoffs in explicit solvent 

simulations could lead to unacceptable errors and severe artifacts, such as spurious forces 

and artificial structures around the cutoff distance,77–79 especially when the structures were 

highly charged, such as nucleic acids.80 It was the possibility of unpredictable artifacts, and 

the availability of the considerably more accurate yet efficient PME 

implementations, 70–73,80 that made the community eventually abandon the use of spherical 

cutoffs in routine explicit solvent simulations. However, the absence of a clear alternative to 

the cutoffs for the GB simulations extended the “life” of this once indispensable approach to 

reducing computational costs. In what follows we revisit the issue of cutoff artifacts 

specifically in the context of the GB model, then describe in detail the proposed alternative.

Namely, in this study, we combine our recently developed Optimal Point Charge 

Approximation (OPCA)81 with the Hierarchical Charge Partitioning (HCP) 

approximation82,83 to present an ~ n log n multi-scale, yet fully atomistic, approach based 

on the generalized Born model (GB-HCPO). We evaluate the accuracy, speed, and stability 

of the GB-HCPO on a set of representative biomolecular structures. We show that GB-

HCPO can deliver up to two orders of magnitude speedup compared to the standard GB, 

depending on structure size.

We then apply GB-HCPO to gain insight into the structure of ~1.16 million atom 30-nm 

chromatin fiber. Chromatin fiber is the next hierarchical level of chromatin compaction 

beyond the nucleosome (Figure 1), its organization is believed to be important for regulation 

of gene expression.84 Specifically, modifications to N-terminal tails of the histone proteins 

that make up the fiber core are known to regulate DNA accessibility, and affect vital cellular 

processes such as transcription.85 However, due to the large size of the fiber –millions of 

atoms–only low-resolution (e.g. cryo-EM) experimental structures of the fiber are currently 

Izadi et al. Page 3

J Chem Theory Comput. Author manuscript; available in PMC 2017 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



available;86,87 its atomistic details, including relative location of the histone tails, are not 

known experimentally. Atomic-level studies of the histone tails and linker DNA dynamics of 

the nucleosome have so far relied on single nucleosome particle,88,89 a detailed 

characterization of the histone tails in the presence of many other nucleosomes within the 

chromatin fiber remains elusive. Computational studies investigating the organization of 

chromatin fiber have so far used coarse-grain simulations,90,91 in which small groups of 

atoms are treated as single particles. However, such simulations can not elicit finer atomistic 

details. In addition, force fields utilized by these studies do not have the accuracy of fully 

atomistic potentials that have been refined for decades.92

Here we start with a ~1.16 million atom model of the 30-nm chromatin fiber, “manually” 

constructed from 40 nucleosomes based on a model13 consistent with low resolution cryo-

EM data (Figure 1). We perform multi-scale, all-atom GB-HCPO simulations of 30-nm 

chromatin fiber to investigate the atomistic detail of the tails (H3, H4, H2A and H2B) in 

solvent exposure and position relative to the core of the fiber and the linker DNA. Based on 

these findings, we discuss potential functional roles of different histone tails in compaction 

of chromatin components and post-translational modifications.

2 METHODS

2.1 The Reference GB (Without Further Approximation)

The GB models available in most widely used MD software packages, such as Amber, 93,94 

approximate the electrostatic energy Eelec of a solvated system as below,25,95

(1)

(2)

(3)

where Evac and Esolv are the electrostatic vacuum and solvation energy, εw is the dielectric 

constant of the solvent, qi and qj are the charges of atoms i and j, and rij is the distance 

between the atoms. Here we employ the most widely used functional form25 of 

, where Bi and Bj are the so-called effective Born 

radii. For the most prevalent case where the atoms i and j do not overlap the effective Born 

radii, Bi, can be calculated as:
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(4)

where Ri is the intrinsic radius of atom i, rij is the distance from i to any point j in the solute 

volume.

As seen from eq 2 and eq 3, the calculations of Evac and Esolv scale as ~ n2, the 

computational implementation of analytical pairwise approximation to the effective Born 

radii Bi, eq 4, also scales as ~ n2. Therefore, without further approximation, the 

computational cost of the GB model described above scales as ~ n2, where n is the number 

of solute atoms.

2.2 The ~ n log n Multi-scale All-atom GB Approximation

Previously,83 we showed that an ~ n log n approximation of the GB model can be achieved 

by resorting to the concepts of the Hierarchical Charge Partitioning (HCP).82 Based on the 

HCP approximation, the biomolecular structures are partitioned into multi-level hierarchical 

components using the natural organization of biomolecules, as illustrated in Figure 2 – 

atoms (level 0), nucleic and amino acid groups (level 1), protein, DNA and RNA subunits 
(level 2), complexes of multiple subunits (level 3), and higher level structures such as fibers 

and virus capsids. To apply the HCP approximation to the GB model (i.e. GB-HCP83), the 

charge distribution for each component c beyond level 0 (groups, subunits and complexes) is 

approximated by two point charges (qc1, rc1 and qc2, rc2), which are used in place of qj 

charges to approximate the electrostatic interactions of the corresponding component c with 

charge qi (eq 2 and eq 3). Accordingly, two equivalents of the effective Born radii, Bc1 and 

Bc2, are assigned to the approximate point charges.83 These equivalent effective Born radii 

are used to approximate the contribution of distant components to the solvation energy of 

atom i, instead of the effective Born radii (Bj) of the individual atoms within these 

components. Also, an equivalent radius for each component, Rc, is calculated and used in 

place of the intrinsic radius of atoms j (Rj) (eq 4).83 The HCP method then uses the 

approximate point charges and their corresponding parameters (qc1, qc2, rc1, rc2, Bc1, Bc2 

and Rc) for computations involving distant components, while the full set of atomic point 

(partial) charges and their corresponding parameters (qj, rj, Bj, Rj) are used for computations 

involving nearby components (Figure 2). The level of approximation used is determined by 

the distance of a component from the point of interest: the greater the distance from the 

point of interest, the larger (higher level) is the component used in the approximation. As a 

result, the computational cost of the GB model (eqs 2, 3, and 4) is reduced from n2 to ~ n log 

n.83

The accuracy of the ~ n log n approximation described above is strongly influenced by the 

magnitudes and positions of the approximate point charges, and their corresponding 

effective Born radii. The original GB-HCP83 simply places the approximate charges at the 

center of charge (for the 1-charge approximation), or at the center of the positive and 

negative charges (for the 2-charge approximation) for each component. Although 

Izadi et al. Page 5

J Chem Theory Comput. Author manuscript; available in PMC 2017 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



straightforward in technical implementations, such simple charge placement does not 

guarantee an optimal representation of the electrostatic potential around the original charge 

distributions of the components, 81 and can translate into inaccurate representation of 

electrostatic forces and energies. As will be seen in the results section, such inaccuracies can 

lead to unacceptable instabilities in MD simulations of biomolecules (e.g., see Figure 9).

In our new ~ n log n GB model presented here, GB-HCPO, we significantly improve the 

accuracy of the HCP approximation of GB by rigorously optimizing the placement of the 

approximate charges. The optimization is performed based on the concept of Optimal Point 

Charge Approximation (OPCA):81 the approximate charges (qc1, rc1 and qc2, rc2) are 

calculated such that the lowest order multipole moments of the original charge distribution 

for each component is optimally reproduced, ensuring that the error in electrostatic potential 

far from the distribution is minimized. Furthermore, to fully take advantage of the improved 

accuracy in the computations of electrostatic interactions in GB-HCPO achieved by the 

implementation of OPCA, here we also present a new expression for computing the 

“equivalent” effective Born radii (Bc1 and Bc2), as described below.

2.2.1 Calculation of Approximate Charges (qc1, rc1 and qc2, rc2) Based on 
OPCA—To best represent the electrostatic potential around a given component, OPCA 

places a small number of approximate point charges so that the lowest order multipole 

moments of the corresponding charge distribution are optimally reproduced.81 A general 

framework for numerically computing OPCA, for any given number of approximate charges 

was described previously.81 Briefly, for any input charge distribution, and a desired number 

of approximating charges, OPCA finds their location such that maximum possible number 

M of the lowest multipole moments of the original distribution are reproduced exactly, while 

the error in the next multipole order is minimized. The resulting error in the electrostatic 

potential computed using OPCA is guaranteed to fall off at least as fast as 1/RM+1, where R 
is the distance from the charge distribution.

The two approximate charges for HCP components (qc1, rc1 and qc2, rc2) can be calculated 

via closed-form analytical expressions developed based on OPCA,81 which provide 

computational efficiency and algorithmic simplicity for MD simulations. The analytical 

expressions for 2-charge OPCA exactly reproduces the monopole (for charged structures) 

and the dipole, and optimally approximates the quadrupole moments of the original charge 

distribution (minimum rms error). Due to important differences in the characteristics of 

charged and uncharged components,81 the analytical expression for these components are 

different, as described below (Figure 3).

OPCA for Uncharged Components: For uncharged components, the monopole and dipole 

moments are exactly reproduced when a pair of charges of equal magnitude but opposite 

sign are aligned with the direction of the dipole moment of the original charge distribution.81 

The quadrupole moment for uncharged charge distributions is optimally reproduced if the 

geometrical center of the optimal point charges coincides with the center of dipole for the 

original charge distribution (green square in Figure 3(a)). This leaves only one unknown 

parameter, the separation between the charges drn = |rc2 − rc1|, where rc1 and rc2 are the 

position vectors of the approximate charges. The drn value is chosen so that the octupole 
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moment is optimally reproduced. Depending on whether or not there exists an analytical 

solution to the equation that relates the OPCA charges to the octupole moment of the 

original charge distribution, drn can vary from a very small value (drn ≪ R0) to a value close 

to R0 (drn ~ R0),81 where R0 is the distance of the furthest charge from the center of 

geometry. 81 For practical applications it is computationally more efficient to use an 

empirically determined value for drn.81 For each test case described in the Results section 

below, we varied the value of drn so that the RMS error in force (explained below) is 

minimized. Our testing suggests that drn in the range of 0.1R0 and 0.4R0 is optimal for the 

force calculations for the test cases studied here (results not shown). Given the diversity of 

the structures sizes studied here (Table 1), we suggest that the same range of drn values can 

be applied for structures other than those studied here. For practical applications, the 

recommended procedure for setting drn is to test accuracy of force calculations for the 

starting configuration of the structure in the above range (0.1R0 < drn < 0.4R0) in increments 

of 0.05R0. An illustration of 2-charge OPCA for a sample uncharged distribution is given in 

Figure 3(a).

OPCA for Charged Components: For charged components, the monopole and the dipole 

of the original charge distributions are exactly reproduced if two approximate charges with 

total net charge equal to the net charge of the original charge distribution are positioned so 

that their center of charge coincides with the center of charge of the original distribution81 

(green square in Figure 3(b)). The quadurpole moment is optimally reproduced if point 

charges are placed along the eigenvector with largest corresponding eigenvalue obtained 

from the quadrupole moment of the original charge distribution. 81 The distance between the 

two approximate charges from the center of charge is determined empirically. It was 

previously shown that fixing the distance of one of the two approximate charges to 1.5R0 

from the center of geometry of the component, which automatically fixes the position of the 

other charge, is the best fit to optimally approximate charge distribution of amino acids.81 

Our testing shows the same value of 1.5R0 can be applied for GB-HCPO (results not 

shown). The eigenvalues and eigenvectors of the quadrupole moment are computed using 

the analytical solutions previously introduced by Sigalov et al96 for calculating the the 

principal moments of inertia of a mass distribution. An illustration of 2-charge OPCA for a 

sample charged distribution is given in Figure 3(b).

Removing Overlaps Between Charge Distributions: For both charged and uncharged 

components, it is possible that the calculated approximate point charges fall outside the 

interior region of the corresponding charge distribution. In such case, accidental overlaps 

between approximate charges and their neighboring charge distributions can introduce 

instabilities in MD simulations. To avoid such instabilities, we define a smooth function that 

restricts the calculated approximate point charges within a certain threshold from the center 

of geometry of components. Consider d to be the calculated (based on OPCA) distance of 

the approximate point charges from the center of geometry of the original charge 

distribution, the corrected distance from the center of geometry (dc) is obtained from the 

smooth function below,
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(5)

where R1 is the radius of an inner spherical threshold, and R2 is radius of an outer spherical 

threshold. R2 should be smaller than the size of the charge distribution (R0) defined as the 

distance from its center of geometry to the outermost charge, and R1 should be smaller than 

R2. Here we use R1 = 0.8R0 and R2 = R0 for approximations at level 1, and R1 = 0.8R0 and 

R2 = 0.9R0 for approximations beyond level 1.

2.2.2 Equivalent of Effective Born Radii (B c1 and B c2)—To calculate the 

equivalent of effective Born radii to be assigned to the approximate charges, we use the 

following equation

(6)

where  is the effective Born radii for components at level k+1,  is the effective Born 

radii for components at level k, qk is the point charges associate with , and rkc is the 

distance between qk and qk+1 (the charge associated with ). For k = 0,  and qk 

represent atomic Born radii and atomic charges. For k ≥ 1,  and qk represent the 

equivalent effective Born radii and approximate charges calculated at level k.  is a 

harmonic average of  weighted by qk and 1/rkc. Note that effective Born radius of a point 

charge represents its degree of burial within the component, and therefore it is best 

approximated by the charges in close proximity of that point, thus in this expression (eq 6) 

 is weighted by 1/rkc. For the two-charge approximation, two separate component 

effective radii are computed, one for each of the two approximate charges (Bc1 and Bc2). In 

this case, the sum in eq 6 is performed over the positive and negative point charges, and the 

component effective Born radius obtained from the sum over positive charges is assigned to 

the larger approximate charge (with sign), and the effective Born radii obtained from the 

sum over negative charges is assigned to the smaller approximate charge. We found that, 

when applied to GB-HCPO, the approximation described by eq 6 is significantly more 

accurate than the expression previously developed for GB-HCP83 (results included in 

Appendix A.1). We have therefore chosen to base all further analysis on eq 6.

2.2.3 Component Radius (Rc)—The component radius Rc is used in place of the 

intrinsic radius of atom j (Rj) (eq 4). Rc is the radius of a sphere with the same volume as the 

sum of volumes of its constituent atoms, that can be estimated as below,83
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(7)

2.3 Test Structures

We used a set of eight representative biomolecular structures ranging in size from 632 atoms 

to 1159998 atoms with absolute total charge ranging from 1 to 8238 e to test the accuracy 

and speed for GB-HCPO (Table 1). The test structures were taken from Ref.,83 except for 

the largest structure, the ~1.16 million atom chromatin fiber which is manually constructed 

in this work, see Figure 1 and Section 3.1.

2.4 Simulation Protocols

We compare the performance of GB-HCPO to two other GB models that also scale as ~ n 
log n: its predecessor model without OPCA (GB-HCP83), and the commonly used spherical 

cutoff method with GB (cutoff-GB). Both GB-HCP and GB-HCPO are now available in 

NAB, the open source molecular dynamics (MD) software in Amber 2016.94 In some sense, 

NAB is a minimal version of the production Amber MD software and is particularly suitable 

for experimentation unlike the highly optimized but also more complex production version. 

NAB uses the same force fields and implements the same GB implicit solvent methods and 

options as the production Amber code.

The following parameters and protocol were used for the simulations, unless otherwise 

stated. For the purpose of this study, we employed the commonly used OBC GB model (igb 

= 5, gbsa = 1 in Amber) for reference GB, and as the basis for all GB approximations tested 

here. The HCP threshold distances (for both GB-HCPO and GB-HCP) were chosen such 

that, for a given atom within a given test structure, the exact atomic computation (level 0) is 

used for interactions with other atoms within its own and nearest neighboring groups (level 

1) as illustrated in Figure 2. To satisfy this condition, threshold distances hl are calculated as 

 where l is the HCP level,  is the maximum component radius at 

level l, and  is the maximum group (level 1) radius, for a given structure. The HCP 

threshold distances thus calculated for each of the test structures are shown in Table 1. These 

are the suggested conservative defaults for these and other similar structures, and unless 

stated otherwise, were used for all of the testing described in the Results section.

The spherical cutoff-GB method ignores all interactions beyond a cutoff distance for the 

computation of electrostatic energy and effective Born radii in eqs 1, 2 and 3. The atom-

based cutoff, parameter cut in Amber, is used to truncate nonbonded pair-wise charge-

charge interactions, without any switching/shifting function. The rgbmax parameter for the 

cutoff-GB computations is set equal to the cutoff distance. The rgbmax parameter in Amber 

controls the maximum distance between atom pairs that will be considered in carrying out 

the pairwise summation involved in calculating the effective Born radii;94 i.e. atoms that are 

further away than rgbmax from a given atom will not contribute to that atom’s effective Born 

radius. The setting cut=rgbmax makes the entire calculation (including the cost of building 

the pair list) scale as n log n, as opposed to n2 of the reference GB.
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When comparing HCP and cutoff-GB, the level 1 threshold distance for a given structure is 

used as the cutoff distance for the corresponding cutoff-GB computations.

12-6 van der Waals interactions for GB-HCPO and GB-HCP were computed using only the 

atoms that are within the level 1 threshold distance, i.e., atoms that are treated exactly. The 

simulations used the Amber ff99SB force field.99 Langevin dynamics with a collision 

frequency of 50 ps−1 (appropriate for comparison to explicit water results) was used for 

temperature control, a surface-area dependent energy of 0.005 kcal/mol/Å2 was added, and 

an inverse Debye-Hückel length of 0.125 Å−1 was used to represent a 0.145 M salt 

concentration. To remove center of mass drift and rotation during the course of molecular 

dynamics, a velocity correction algorithm (the NSCM option in Amber) was used to remove 

center-of-mass motion every 100 steps. A 1 fs time step was used for the simulation with the 

nonbonded neighbor list being updated after every step.

For explicit solvent simulations, the structures were solvated in a truncated cuboid box of 

TIP3P water model, extending 10 Å from the solute. The system was neutralized by adding 

counterions. The Joung/Cheatham monovalent ion parameters100 optimized for TIP3P were 

used to model ion-water interactions. SHAKE algorithm101 was used to constrain covalently 

bound hydrogen atoms (its analytical variant102 was used to constrain the geometry of the 

water model). We used the particle mesh Ewald (PME) method70 with constant-volume 

periodic boundary condition. The explicit solvent simulations were run using the GPU-

accelerated pmemd.cuda available in the Amber 2015 suite of programs.103,104

The simulation protocol consisted of five stages. First, the starting structures were 

minimized using the conjugate gradient method with a restraint weight of 5.0 kcal/mol/Å2. 

Next, the system was heated to 300 K over 10 ps (600 ps for explicit solvent) with a restraint 

weight of 1.0 kcal/mol/Å2. The system was then equilibrated for 10 ps (500 ps for explicit 

solvent) at 300 K with a restraint weight of 0.1 kcal/mol/Å2, and then for another 10 ps (1 ns 

for explicit solvent) with a restraint weight of 0.01 kcal/mol/Å2. Finally, all restraints were 

removed for the production stage. Default values were used for all other simulation 

parameters.

The protocols used for GB-HCPO simulation of chromatin fiber is slightly different from the 

protocols explained above. The collision frequency was reduced to γ = 0.01ps−1 to enhance 

sampling of conformational space. Also, the nscm and gbsa options were turned off to 

reduce the run time. After the starting structure of chromatin was minimized using the 

conjugate gradient method with a restraint weight of 5.0 kcal/mol/Å2, the structure was 

heated to 300 K over 5 ps with a restraint weight of 1.0 kcal/mol/Å2. For the production 

stage, we ran 95 ps unrestrained simulation. The chromatin fiber simulation was performed 

on a regular compute cluster (Virginia Tech’s Blueridge computer cluster, see http://

www.arc.vt.edu) using 192 cores, which took about 30 days of wall clock time.

2.5 Accuracy and Speed Evaluation

The accuracy of the approximate methods were evaluated using relative error in electrostatic 

solvation energy (relative energy error), ErrE, and relative RMS error in electrostatic force 

(relative force error), ErrF, calculated as
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(8)

(9)

(10)

(11)

where Eapprox is the electrostatic solvation energy calculated using an approximation, Eref 

the electrostatic solvation energy calculated using the reference GB computation (without 

cutoff or any further approximations),  is the average force, and  and  are the 

total force on atom i calculated using the approximate and reference GB computations, 

respectively. Errrms is the root-mean-square (RMS) error in force for the atoms in a given 

structure.

ErrE and ErrF are calculated for GB-HCPO, GB-HPC and cutoff-GB for the starting 

configuration of the test structures (Table 1). As another accuracy test, we also evaluate GB-

HCPO in dynamics: the backbone RMS deviation from the crystal structure for 50 ns 

simulation predicted by GB-HCPO is compared to the predictions by GB-HCP, reference 

GB and explicit solvent (TIP3P) simulations.

Speedup was measured as CPU time for the reference GB computation divided by the CPU 

time for the approximation tested. Testing was conducted on Virginia Tech’s Blueridge 

computer cluster (http://www.arc.vt.edu) consisting of 408-node Cray CS-300 cluster, each 

node is outfitted with two octa-core Intel Sandy Bridge CPUs and 64 GB of memory. Where 

possible, testing was performed using a single CPU (a single core of the octa-core processor) 

to reduce the potential variability due to interprocessor communication. For the 475 500 

atom virus capsid and the 1 159 998 atom chromatin fiber we used 16 and 64 cores, 

respectively. To limit the run time for the reference GB computation to a few days, speedup 

was calculated for 1000 iterations of MD for structures with < 10000 atoms, 100 iterations 

for structures with 10000 − 1000000 atoms and 10 iterations for the structure with > 
1000000 atoms. To make the results representative of typical simulations involving much 

larger numbers of iterations, the CPU time excludes the time for loading the data and 

initialization prior to starting the simulation.
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2.6 Calculation of Electrostatic Binding Free Energies

To illustrate the artifacts of spherical cut-offs within the GB model, we calculated the 

electrostatic binding free energies (ΔΔGpol) for a set of 15 small protein-ligand complexes 

provided in Ref.,105 using the reference GB without cutoff, cutoff-GB (cut=15Å) and GB-

HCPO (h1=15Å). The set of complexes is diverse with respect to values of electrostatic 

binding free energies. The ligands are neutral and the proteins are either neutral or are forced 

to be neutral.105

The electrostatic component of binding free energies (ΔΔGpol) were computed as below

(12)

where  and  are electrostatic solvation free energy of the 

complex, the protein and the ligand, respectively. ΔECoulombic is the difference in Coulombic 

energies in vaccum ( ).

The accuracy of the GB models in estimating the ΔΔGpol was evaluated in terms of their 

ability in reproducing the values from Possion-Boltzman (PB) calculations. The PB values 

were computed using the Adaptive Poisson-Boltzmann Solver (APBS) software package.106 

The solute dielectric constant was set to 1 and the solvent dielectric constant was 80. The 

grid spacing was set to 0.3 Å and the grid dimension size was set to 449 in x, y and z 

directions for all of the structures. The solvent probe radius is 1.4 Å. We use APBS default 

values for the remaining parameters, see Ref.105 for further details.

3 RESULTS AND DISCUSSION

In this section, we first demonstrate a practical application of GB-HCPO by using it to 

simulate the structure of ~ 1.16 million atoms (40 nucleosome) chromatin fiber. Next, a 

detailed technical analysis of GB-HCPO’s performance (accuracy, speed and dynamics) as 

compared to cutoff-GB and GB-HCP will be presented.

3.1 Insights into the Structure of Chromatin Fiber

It is now well established that details of DNA packing inside the cell nucleus are critical for 

many cellular processes including cell differentiation and transcription.85,109 The primary 

level of DNA compaction in eukaryotes is the nucleosome – a protein-DNA complex of 

about 25,000 atoms.109,110 While the next level of the genome compaction, Figure 1, is still 

debated,111,112 one widely discussed option is the so-called 30 nm chromatin fiber, which is 

a well-defined helical arrangement of the nucleosomes.86 And while the structural features 

of individual nucleosomes have been known to atomistic detail109 for almost 20 years, the 

same level of structural detail is not available for the 30-nm chromatin fiber. Histone N-

terminal tails have been shown to regulate DNA accessibility, gene transcription and 

chromatin structure.85 These tails are highly positively charged and the above regulation 

may be partly through the modulation of this charge by post translational modifications. 
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However, due to the large size of the chromatin fiber, only low-resolution (e.g. cryo-EM) 

experimental structures of the fiber are available,86 its atomistic details including the tails, 

are unknown.

Here we start with a “manually” constructed 40-nucleosome (~1.16 million atom) model of 

the 30-nm chromatin fiber, consistent with low resolution cryo-EM data. The model is 

constructed by repeatedly combining 40 crystal structure of nucleosomes (1KX5), linker 

DNA and linker histone (187 bp nucleosome repeat length) using a set of coordinate 

transformations described by Wong et. al.,98 consistent with low resolution cryo-EM data86 

(see Figures 1 and 4). The model fiber is “4-start”, meaning that (N + 4)th nulceosome is 

stacked on the Nth one. The original, unrelaxed model98 was a significant step beyond the 

low resolution representations of the fiber, but inevitably contained various structural 

artifacts (evident from the energy analysis, Figure 4(a)). These are likely consequences of 

the coordinate transformations applied, during construction of the fiber, to the entire 

nucleosomes, linker DNA and linker histone; in effect, a coarse-grained approach was used 

to build an atomically detailed model. As a result, an artificial hollow in the core of the 

structure is observed (Figure 4(a)), which appears inconsistent with the expected tight 

packing of the fiber atoms and experimental observations regarding tail-linker contacts, see 

below. Similar hollow regions of various dimensions in the fiber center are present in several 

other fiber models not considered here.13,113

To make the fiber model self-consistent at atomic level, we have relaxed the structure via an 

all-atom, muti-scale GB-HCPO simulation at room temperature. The GB-HCPO simulation 

significantly reduces the steric clashes of the starting structure, as seen by the large 

reduction in the potential energy (Figure 4(b)), and provides a much more energetically 

realistic model of the fiber (Figure 4(c)). The re-distribution of density and charge in the 

fiber structure upon equilibration is noticeable, especially near the fiber axis, Figure 5.

Importantly, the linker DNA fills the artificial hollow in the core region (Figure 4(c)), 

allowing H3 histone tail to interact with the linker DNA, as expected from 

experiment. 107,108 Among all four tails, H3 is most shielded from the solvent, Figure 6, 

consistent with a recent experimental funding that the majority of the amide protons of the 

H3 are protected from solvent exchange in 12-nucleosome arrays.114

Further analysis of the equilibrated fiber model reveals several important details that may be 

of functional importance. Specifically, H3 and H4 tails positions relative to the vertical axis 

of the fiber is clearly different from those of H2A and H2B tails, Figure 6. Namely, while 

H3 and H4 N-terminal tails are buried within the fiber, H2A and H2B are mostly solvent 

exposed. This difference in tail positions may explain the experimentally observed 

tendency115,116 of H3 and H4 tails to have stronger relative effect on condensation/

decondensation of nucleosomal arrays. It may also explain why charge-altering post-

translation modifications (PTMs) of H3 and H4 tails, such as acetylations of several lysines 

in H4, affect chromatin compaction.117 Indeed, being in the “bulk” of the fiber offers these 

positively charged tails multiple opportunities to participate in internucleosomal and DNA-

tail electrostatic interactions, strengthened by the relatively low dielectric environment. One 

can draw an analogy here with the nucleosome itself – it was shown that altering the charge 
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of the globular histone core has a strong effect on the histone-DNA association, leading to a 

suggestion that charge-altering PTMs in the globular core are important for selective 

accessibility control of nucleosomal DNA.118

In contrast to H3 and H4, H2A and H2B histones are more solvent exposed within the fiber, 

lowering the strength of potential fiber stabilizing interactions that these tails may be part of. 

On the other hand, being solvent exposed offers greater accessibility to histone binding 

proteins that may regulate chromatin compaction indirectly.

The above suggestions are just an example of the kind of structural analysis made possible 

by the availability of an experimentally consistent atomistic model of the 30-nm fiber. We 

stress again that how ubiquitous the 30-nm fiber is in in-vivo systems remains an open 

question. Where it exists, it may take on many different forms,119 possibly dependent on cell 

type and cell-cycle stage.113 Our approach can help construct consistent atomistic models of 

any of these structures from available low resolution data.

3.2 Accuracy limitations of spherical cut-offs within the GB models

In contrast to modern PME-based treatment of long-range electrostatics, where the use of 

even relatively short, e.g. 9 Å, direct sum cutoff makes negligible impact on the accuracy, 

the use of even much longer cutoff distances within the GB formalism can significantly 

impact the accuracy of the computed electrostatic energies, Fig. 7. As an example, we have 

evaluated the accuracy of the GB model with different cutoff distances in estimating the 

electrostatic binding free energies for a set of small neutral protein-ligand complexes, Fig. 7. 

A detailed description of these complexes is provided elsewhere.105 The average size of 

these complexes is 47.7 Å. Fig. 7 demonstrates that setting the cutoff distances to values 

smaller than 40Å can cause large deviations from electrostatic binding free energies 

calculated within the standard numerical Poisson-Boltzmann approach. In particular, for the 

cutoff distance equal to 15Å, commonly used in the GB MD simulations, the accuracy 

completely deteriorates both relative to the PB and, perhaps more importantly, to the 

reference GB without the cutoff. Even with a computationally very demanding 30 Å cutoff, 

the correlation with the PB reference (or no cutoff GB) is virtually absent. It is also 

noteworthy that in each complex, both the protein and the ligand are net neutral – even these 

systems are not immune to the cutoff errors. Note that the use of switching or shifting 

functions,92 with any practically reasonable buffer region, will have little effect on the errors 

shown in Fig. 7. In contrast to the use of the spherical cutoff, the proposed GB-HCPO can 

provide virtually the same accuracy as the reference GB model without the any cutoffs, at 

the fraction of the computational cost.

The relationship between the cutoff errors seen in Figs. 7, and artifacts that these errors may 

lead to in long MD simulations is complex. What the size of the above errors demonstrate is 

that the possibility of such artifacts can not be ignored.

3.3 Technical Analysis GB-HCPO’s Performance

In this section, we provide a detailed technical analysis of some characteristics of GB-HCPO 

that are important for Molecular Dynamics, including accuracy, speed and dynamics, which 

are described below.
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3.3.1 Accuracy—Figures 8(a) and (b) show the accuracy of GB-HCPO in calculating 

electrostatic force and electrostatic solvation energy for the set of test structures shown in 

Table 1. The accuracy of GB-HCPO is tested by computing the relative errors in electrostatic 

solvation energy and electrostatic force for the starting configuration of the test structures, 

relative to the values obtained from reference GB (without approximation). The accuracy of 

GB-HCPO is compared to that of GB-HCP (2-charge) and cutoff-GB. For the test structures 

considered here, the electrostatic force and solvation energy obtained with GB-HCPO is in 

closer agreement with those obtained with reference GB. The smaller deviation of GB-

HCPO from reference GB compared to GB-HCP and cutoff-GB is uniform across the broad 

range of test structure sizes. In particular, the relative error in electrostatic solvation energy 

computed using GB-HCPO can be up to two orders of magnitude smaller than that of cutoff-

GB, and up to one order of magnitude smaller than that of GB-HCP (Figure 8(a)). The 

relative RMS error in electrostatic force calculated by GB-HCPO can be up to one order of 

magnitude smaller than that by GB-HCP and cutoff-GB (Figure 8(b)).

For large structures where we expect GB-HCPO to be most useful, the associated relative 

force error is expected to be similar to that of the equivalent “industry standard” PME-based 

calculation. Specifically, for an ~104 atom structure GB-HCPO gives 10−2 relative force 

error, comparable to our previous estimate for the PME,82 and an order of magnitude smaller 

compared to the cut-off scheme.

3.3.2 Speedup—Figure 8(c) shows that GB-HCPO can be up to two orders of magnitude 

faster than the reference GB, depending on structure size. The speedup for GB-HCPO and 

GB-HCP are nearly the same indicating that the higher accuracy of GB-HCPO compared to 

GB-HCP is achieved without sacrificing its speed. However, both GB-HCPO and GB-HCP 

are, expectedly, slower than cutoff-GB: the average speedup for the 8 structures tested here 

was ~78× for the cutoff-GB, while it is ~30× for the GB-HCP and GB-HCPO methods. The 

higher speed of cutoff-GB is expected as cutoff-GB totally ignores the electrostatic 

interaction beyond a certain threshold, in contrast to GB-HCPO and GB-HCP that take into 

account distant electrostatic interactions. Generally the speedup is higher when the number 

of atoms increases. However, for the largest structure considered here; the ~1.16 million 

atom chromatin fiber; the speedup is slightly smaller than that for 475500 atom virus capsid 

(1A6C) for all of the approximations, which is because the threshold and cutoff distances 

used to simulate the chromatin fiber are larger than those used for virus capsid (see Table 1).

Note that an equivalent simulation of chromatin fiber (Section 3.1) using the regular GB 

without additional approximation on the same compute cluster is ~100-fold slower in terms 

of nominal speed (Figure 8(c)).

3.3.3 Stability in MD simulations—The primary purpose for the development of 

computationally efficient GB approximations is application in dynamics; we test GB-HCPO 

by conducting 50 ns MD simulations of the immunoglobulin binding domain (1BDD), 

thioredoxin (2TRX), and ubiquitin (1UBQ). Note that a comprehensive analysis of the 

conformational stability of GB-HCP in dynamics (such as RMS difference in distribution of 

χ1, χ2 angles and RMS residue fluctuations) was previously conducted, and the method was 

compared extensively to cutoff-GB and reference (no cut off) GB simulations.83 Severe 
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artifacts of cut-off GB for highly charged systems were also discussed previously.83 Overall, 

it was shown that GB-HCP simulations are in better agreement with the reference GB 

simulation than the cutoff-GB simulations. Given the significant improvement of GB-HCPO 

in electrostatic forces and energies relative to GB-HCP (see Section 3.3.1), we assume that 

GB-HCPO is no worse than GB-HCP in conformational stability of trajectories. Therefore, 

here we focus on testing the ability of GB-HCPO to maintain over-all structural of proteins 

on 50 ns time scale (Figure 9). Since the intended use for GB-HCPO is MD simulations of 

very large structures, in which case the affordable time-scales are necessarily limited and 

fine details are less important, this is a reasonable testing strategy.

The results shown in Figure 9 suggest that MD trajectories generated by GB-HCPO method 

are generally in good agreement with the reference GB and explicit solvent simulation. For 

1BDD the GB-HCP trajectories show RMS deviations that are substantially larger than the 

GB-HCPO or the reference explicit-solvent trajectories. This example emphasizes how 

subtle errors in charge-charge interactions, as reflected in electrostatic forces and energies 

(Figure 8) can result in qualitatively different conformational dynamics. On a practical level, 

small inaccuracies in the energy or force calculations in the simulations of small flexible 

structures such as 1BDD can lead to large structural deviations over the course of the 

trajectory. Similarly, for 2TRX the trajectories obtained from GB-HCPO are in better 

agreement with the reference GB and explicit solvent simulation that those from GB-HCP. 

Due to the high stability of the structure of 1UBQ, the trajectories for 1UBQ from all of the 

simulations (GB-HCPO, GB-HCP, reference GB and explicit solvent simulation) are in close 

agreement.

3.4 The computational speed of GB-HCPO relative to explicit solvent simulations

On the basis of the run times for a GB-HCPO simulation of the ~ 150, 000 atom microtubule 

structure (tub46), compared to an equivalent PME simulation in TIP3P explicit solvent using 

sander module of Amber 2015 (default simulation parameters), the nominal speeds 

(nanoseconds per day) of GB-HCPO is only about 20% times slower than the PME 

simulations in TIP3P explicit solvent, on Virginia Tech’s HokieSpeed computer cluster 

using single node (8 cores). Note that unlike the production PME module of Amber 2015 

used here to generate the explicit solvent trajectories, NAB (where GB-HCPO is now 

implemented) is not as highly optimized.

It has been shown that the speed of conformational sampling in implicit-solvent simulations 

can be ~ 10 to 100 times faster than common explicit-solvent PME simulations.66 Therefore, 

even for the case where explicit solvent (TIP3P) PME is slightly faster than GB-HCPO, 

when combined with the speedup due to conformational sampling, the overall speed of 

conformational sampling for GB-HCPO can be substantially faster.

4 CONCLUSION

GB models can increase the computational speed of MD simulations significantly by 

approximating the discrete solvent as a continuum, and by providing much faster sampling 

of conformational space due to reduced solvent viscosity. However, currently these benefits 

of standard GB are effectively limited to small and medium size structures, because standard 
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GB models scale as ~ n2, where n is the number of solute atoms. The use of cut-off schemes 

to speed-up these calculations, while computationally effective, is problematic due to the 

possibility of severe artifacts. This is not to say that every GB-based calculation that relies 

on a cutoff will necessarily fail, but that the possibility of significant artifacts is always there, 

even with large cutoffs that may be deemed “safe”. For instance, we showed that using the 

typical cutoff distance of 15Å in the standard GB model completely deteriorates its accuracy 

in estimating the electrostatic binding free energies of small protein-ligand complexes. Even 

with a computationally very demanding 30Å spherical cutoff, the correlation with the 

numerical PB reference (or the no cutoff GB) is close to zero.

The GB-HCPO multi-scale approximation presented in this work significantly speeds up the 

GB computations as it scales as ~ n log n, but without the cut-off artifacts. The reasonable 

speedup-accuracy balance is achieved by combining the previously developed Hierarchical 

Charge Partitioning approximation with optimal placement of few point charges to represent 

complex charge distributions. Specifically, the natural organization of the biomolecules are 

used to partition the structure into hierarchical components; each being approximated by two 

point charges. The electrostatic interactions between distant components are computed using 

approximate charges, while the original atomic partial charges are used for nearby 

interactions. The approximate charges are placed so that the low order multipole moments 

(up to the quadrupole) of the corresponding components are best reproduced.

We have shown that GB-HCPO estimates the electrostatic forces and energies substantially 

more accurately, in some case up to an order of magnitude, than its predecessor model (GB-

HCP), which also relied on HCP, but simply placed the approximate charges at the center of 

negative and positive charges. The accuracy gain of GB-HCPO relative to the cutoff-GB 

approach, which totally ignores the effects of electrostatic interactions beyond a certain 

distance, is even more appreciable. For instance, unlike the cutoff-GB approach that leads to 

large deviations from PB results, GB-HCPO is virtually as accurate as the reference GB 

model without any cutoffs in reproducing the electrostatic binding free energies obtained 

from PB, at the fraction of the computational cost. The extra accuracy is achieved at a 

moderate cost: GB-HCPO is about a factor of two slower than the cut-off GB. At the same 

time, GB-HCPO can be up to two orders of magnitude faster the standard (no cut-off) GB 

computation, with the speed-up being larger for larger structures.

The latter property makes GB-HCPO particularly attractive for atomistic simulation of very 

large systems where the computational costs of standard GB or explicit solvent simulations 

becomes inordinate. By exploring the low effective solvent viscosity regime one can achieve 

an effective speed-up of conformational sampling of up to two orders of magnitude relative 

to standard explicit solvent MD.

As a practical demonstration, we have used GB-HCPO to equilibrate a ~1.16 million atom 

“manually constructed” structure of 30-nm chromatin fiber (40 nucleosomes plus linker 

DNA, 187 bp nucleosome repeat length). The goal was to obtain a realistic model of this 

potentially very important structure, consistent with experiment. With just 192 processor 

cores, effective time-scales of ~ 10 ns were reached, which was enough to observe 

substantial and meaningful structural re-arrangements in the fiber. The GB-HCPO 
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simulations successfully resolved numerous severe steric clashes, significantly improving 

the quality of the starting structure. We have demonstrated that the linker DNA fills the core 

region of the chromatin fiber, and the H3 histone tails interact with the linker DNA, 

reproducing experimental findings. Upon equilibration, the obvious hollow region in the 

center of the fiber disappears; we conjecture that the closing of the central hollow region 

might be relevant to other fiber models not considered here. The tail regions of H3, H4, H2A 

and H2B are in distinctively different locations relative to the core of the fiber: H3 and H4 

are mostly buried within the core, while H2A and H2B are mostly solvent exposed. 

Positively charged histone tails are known to be important for compaction of (negatively 

charged) chromatin components beyond the nucleosome, often regulated by charge-altering 

post-translational modifications (PTMs). In particular, acetylation of certain lysine residues 

in the histone tails is known to cause de-condensation of nucleosomal arrays. However, H3 

and H4 tails have more prominent effect compared to H2A and H2B. In this respect, the 

difference in solvent exposure and position relative to the core of the fiber may provide an 

explanation: the burial of H3 and H4 tails in the fiber core create multiple opportunities to 

participate in inter-nucleosomal and DNA-tail electrostatic interactions, strengthened by the 

relatively low dielectric environment of the core. In contrast, charge-charge interactions are 

weakened by solvent exposure of H2A and H2B, while providing easier access for histone 

binding complexes. It appears very likely now that many different structural forms of the 30-

nm fiber exist; it should be possible to construct and investigate their atomistic models in the 

same manner to identify commonalities and differences with respect to the conclusions 

drawn above.

GB-HCPO is implemented in the open sourceMD software, NAB in Amber 2016,94 for 

general use. The equilibrated structure of the 30-nm fiber, along with several files needed to 

reproduce the simulation results, are available at http://www.cs.vt.edu/~onufriev/software.
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A APPENDIX

A.1 Accuracy evaluation of component effective Born radii

As described in the Methods section, we examined two different approaches to compute the 

component effective Born radii: the new approximation (new Born) presented in this work 

(eq 6), and the approximation previously presented in Ref.83 (old Born), defined as

(13)

where qj and Bj are the charges and effective Born radii, respectively, for the atom j 
belonging to component c. Both approximations were applied to GB-HCP and GB-HCPO. 

As shown in Figure 10, the new Born approximation (eq 6) is more accurate than the old 

Born approximation (eq 13) in calculating the electrostatic forces, when applied to each of 

the GB-HCP and GB-HCPO methods. One can also see that the old Born approximation 

does not properly lend itself to the GB-HCPO model.
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Figure 1. 
Top: The hierarchy of DNA compaction in eukaryotic nuclei. The 2-nm wide DNA helices 

(blue) wrap around histone proteins to form 11-nm nuclesomes (yellow. Protruding histone 

tails are shown for the first two nucleosomes). The nulceosomes are believed to be further 

compacted to form 30-nm-diameter chromatin fibers. The chromatin fibers are further 

packed to make up the chromosomes (grey). Some elements of the top figure are taken from 

Ref.12 Reprinted with permission from AAAS. Bottom: A 30-nm chromatin fiber model 

(1.16 million atoms).13 The images were rendered using VMD.14
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Figure 2. 
Left: Illustration of hierarchical charge partitioning (HCP) for three levels of approximation. 

The greater the distance from the point of interest, the larger (higher level) is the component 

used in the approximation. Here, h1, h2 and h3 are the level 1 (group), level 2 (subunit) and 

level 3 (complexes) threshold distances, respectively. The charge distribution for each 

component at level 1 and beyond is represented by two approximate point charges,83 which 

are used for computations involving distant components. Right: Multi-level hierarchical 

partitioning of 40-nucleosome 30-nm chromatin fiber (see Figure 1) based on its natural 

structural organization: (a) The fiber is made up of 40 nucleosome complexes excluding the 

DNA, (b) each complex (level 3) is made up of 9 subunits (histones), (c) each subunit (level 

2) is made up of 68–135 groups, and (d) each group (level 1) is made up of 7–32 atoms 

(level 0). The DNA is partitioned into segments of 32 nucleotides with each segment being 

treated as a complex with a single subunit. The images were rendered using VMD.14

Izadi et al. Page 24

J Chem Theory Comput. Author manuscript; available in PMC 2017 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Illustration of a 2-charge optimal point charge approximation. (a) A sample charge 

distribution- a neutral amino acid (C-terminal arginine at physiological pH.). The 2 optimal 

point charges (red and blue diamonds) are placed in equal distances (drn) from the center of 

dipole (green square) of the original charge distribution, along the dipole moment direction 

of the original charge distribution. (b) A sample charge distribution with non-zero net charge 

(a glumatic acid group within a protein with net charge = −1 e). The 2-charge optimal point 

charges (red diamonds) are placed so that their center of charge matches the center of charge 

of the original charge distribution (the green square), along the eigenvector of the 

quadrupole moment of the original charge distribution with the largest eigenvalue.81
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Figure 4. 
(a) The manually constructed model13 of ~ 1.16 million atom chromatin fiber (consistent 

with low resolution cryo-EM data86) is energetically unrealistic; no atomically detailed 

experimental structures are available. (b) A 0.1 ns GB-HCPO simulation of the fiber 

significantly reduces the steric clashes, as seen by the large reduction in the potential energy. 

Data points represent averages over 100 time step intervals (1 fs each). In terms of sampling 

the conformational transitions involved, the 100 ps simulation performed here is effectively 

equivalent to ~10 ns explicit-solvent TIP3P PME simulation (the conformational sampling is 

~100 folds faster66), denoted as effective conformational sampling time. (c) Equilibrated 

structure (all-atom MD, GB-HCPO) suggests important structural details consistent with 

experimental results: the linker DNA fills the core region, the H3 histone tails interact with 

the linker DNA.107,108
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Figure 5. 
Density (number of atoms per unit volume) and charge density along the radius of the 

equilibrated chromatin fiber: (a) Linker DNA fills the core and H2A and H2B N-terminal 

histone tails extend out of the fiber surface, leading to a wider distribution of atoms along 

the radial axis, compared to the initial structure. (b) After equilibration, the core becomes 

more negatively charged, due to the presence of linker DNA in the core, and the outer region 

becomes positively charged due to the presence of histone tails.
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Figure 6. 
The atomistic details of the histone tail positioning within the 30-nm chromatin fiber, 

revealed by simulation. A “top” view. H3 and H4 N-terminal histone tails are buried within 

the fiber, participating in multiple inter-nucleosomal and tail–DNA interactions, which may 

explain why these two tails play a prominent role in condensation/de-condensation of 

nucleosomal arrays associated with charge-altering post-translational modifications. In 

contrast, H2A and H2B N-terminal histone tails extend out of the fiber surface and are 

therefore better accessible to chromatin binding factors, which may be important for other 

regulatory functions.
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Figure 7. 
Error in the electrostatic binding free energies computed by GB model using different cutoff 

distances, GB-HCPO, and reference GB without any cutoffs. The error is estimated relative 

to the standard numerical PB treatment for 15 small, neutral proteinligand complexes 

specified in Ref.105
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Figure 8. 
Accuracy ((a) and (b)) and speed (c) of GB-HCPO compared to cutoff-GB and GB-HCP, 

where standard GB (without cutoffs) is used as reference. Accuracy is computed as relative 

error in electrostatic solvation energy (a) and relative RMS error in electrostatic force (b). A 

logarithmic scale is used to better demonstrate distribution of errors in both energy and force 

over the broad range of test structure sizes. Threshold and cutoff distances used for the 

different structures are listed in Table 1. Connecting lines are shown to guide the eye.
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Figure 9. 
Backbone RMS deviation from the experimental reference structure for 50 ns MD 

simulation based on GB-HCPO (red dashed line) compared to the reference explicit-solvent 

method (TIP3P), reference GB (without approximation), and GB-HCP. The test structures 

are, from left to right: immunoglobulin binding domain (1BDD, residues 10–55), 

thioredoxin (2TRX, all residues), and Ubiquitin (1UBQ, all residues). Two independent 

trajectories were produced for each of GB-HCPO and GB-HCP approximations. Each 

trajectory is sampled every 1 ns. Connecting lines are shown to guide the eye.
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Figure 10. 
Comparison of two alternative methods for computing component effective Born radii 

showing relative RMS error in electrostatic force GB-HCP and GB-HCPO, with the GB 

model without any cutoffs used as reference. Connecting lines are shown to guide the eye.
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