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These comprise soluble factors such as toxins, antibodies, 

chemokines, and several types of immune cells with discrete 

functions such as phagocytosis and targeted cytotoxicity. Due to 

the body’s permanent exposure to potentially harmful environ-

mental substances, pathogens, commensal bacteria and malig-

nantly transformed cells, maintenance of its homeostasis repre-

sents a challenge, which requires the concerted action of a large 

variety of different immune effector functions. Moreover, path-

ogens and malignantly transformed cells can actively outsmart 

the immune system and escape from immunological selection 

pressure by adaptation, even during an ongoing immune re-

sponse. The dynamic interplay of pathogens and malignantly 

transformed cells with the immune system is referred to as ‘im-

muno-editing’. The process of immuno-editing can be divided 

into three phases: elimination, equilibrium, and escape [1]. Ac-

cording to this model, pathogens and malignantly transformed 

cells are eradicated instantaneously (elimination), coexist for 

some time with the body’s defense armamentarium (equilib-

rium), and, if eradication cannot be achieved, evade immuno-

surveillance (escape), allowing for persistence and, conse-

quently, establishment of a potentially life-threatening disease 

condition. 

Current approaches to treat persistent infections and cancer 

aim either at restoration of the equilibrium phase, thus transform-

ing the pathological condition into a chronic but stable disease, or, 

ideally, at restoration of the elimination phase, thereby curing the 

patient. Immuno-surveillance of parasites, infected tissue, and ma-

lignantly transformed cells crucially depends on NK cells and cyto-

toxic T cells (CTLs), which specifically kill target cells after the po-

larized release of cytotoxic granules. Therefore, it is not surprising 

that both cell types are subject to numerous immune evasion strat-

egies which have evolved over time and result in the disarming or 

sequestration of immune cells from the pathological lesion. Con-

versely, targeted therapies aim at improved recruitment and activa-

tion of cytotoxic NK cells and CTLs to the site of infection or ma-

lignant alteration.
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Summary
Immunotherapy has the potential to support and expand 
the body’s own armamentarium of immune effector func-
tions, which have been circumvented during malignant 
transformation and establishment of cancer and is pres-
ently considered to be the most promising treatment op-
tion for cancer patients. Recombinant antibody technolo-
gies have led to a multitude of novel antibody formats, 
which are in clinical development and hold great promise 
for future therapies. Among these formats, bispecific an-
tibodies are extremely versatile due to their high efficacy 
to recruit and activate anti-tumoral immune effector cells, 
their excellent safety profile, and the opportunity for use 
in combination with cellular therapies. This review article 
summarizes the latest developments in cancer immuno-
therapy using immuno-engagers for recruiting T cells 
and NK cells to the tumor site. In addition to antibody for-
mats, malignant cell targets, and immune cell targets, op-
portunities for combination therapies, including check 
point inhibitors, cytokines and adoptive transfer of im-
mune cells, will be summarized and discussed.

© 2017 S. Karger GmbH, Freiburg

Introduction

To protect against pathological alterations such as infections, 

parasites and cancer, vertebrates have evolved a complex net-

work of innate and adaptive immune effector mechanisms. 
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NK Cells in Cancer Immuno-Surveillance

Even though recent reports have attributed adaptive features to 

NK cells, they are a part of innate immunity due to the expression 

of germline-encoded receptors [2, 3]. NK cells are distributed 

throughout the body, but are enriched in the bone marrow, liver, 

blood, spleen, and lymph nodes. Phenotypically, NK cells are de-

fined by the presence of the cellular markers CD56 and NKp46 

(NCR1, CD335), and the absence of T-cell-specific (CD3 and TCR) 

and B-cell-specific markers (CD19). Furthermore, NK cells are dis-

criminated on the basis of two principal subsets: CD56bright CD16– 

NK cells, which represent the predominant species in lymphoid 

organs and are generally characterized by high cytokine produc-

tion, and CD56dim CD16+ NK cells, which are the predominant 

Fig. 1. Major inhibi-

tory and activating NK 

cell receptors. Inhibitory 

receptors (blue) are im-

portant for self/non-self-

discrimination. The net 

input of individual or 

several activating recep-

tors (orange/red) triggers 

cytotoxicity of NK cells 

towards target cells. NK 

cell activation can be ini-

tiated by loss of inhibi-

tory signaling, e. g. upon 

downregulation/loss of 

HLA molecules on the 

plasma membrane of 

target cells (‘missing 

self’), and/or (over)ex-

pression of stress-in-

duced ligands on target 

cells which trigger sig-

naling of activating NK 

cell receptors (‘induced 

self‘). CD16A = Fc-

gamma RIII-alpha; 

LFA-1 = complement re-

ceptor C3 subunit beta; 

MAC-1 = macrophage 

integrin VLA-4 = integ-

rin alpha-4; VLA-5 = in-

tegrin alpha-5; NKp30 = 

natural cytotoxicity trig-

gering receptor 3; 

NKp44 = natural cyto-

toxicity triggering recep-

tor 2; NKp46 = natural 

cytotoxicity triggering 

receptor 1; DNAM-1 = 

DNAX accessory mole-

cule 1; NKG2D = killer 

cell lectin-like receptor 

subfamily K member 1; 

NKG2C = killer cell lec-

tin-like receptor subfamily C = member 2; KIR2DL = killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail; KIR2DS = killer cell immuno-

globulin-like receptor, two domains, short cytoplasmic tail; TRAIL = tumor necrosis factor-related apoptosis-inducing ligand; FASL = Fas ligand; GITR = glucocor-

ticoid-induced TNFR-related protein; CD27 = tumor necrosis factor receptor superfamily member 7; OX40 = tumor necrosis factor receptor superfamily member 

4; CD137 = tumor necrosis factor receptor superfamily member 9; ILXR = interleukin X receptor (X indicates number of interleukin); 2B4 = NK cell type I receptor 

protein 2B4; LAG-3 = lymphocyte-activation gene 3; CD7 = T-cell leukemia antigen; BY55 = natural killer cell receptor BY55; CD44 = GP90 lymphocyte homing/

adhesion receptor; SLAMF7 = SLAM family member 7; CD2 = T-cell surface antigen CD2; NTB-A = SLAM family member 6; CD96 = T-cell surface protein tactile; 

TIGIT = T cell immunoreceptor with Ig and ITIM domains; NKG2A = killer cell lectin-like receptor subfamily C member 1; CEACAM1 = carcinoembryonic anti-

gen-related cell adhesion molecule 1; Ly49 = killer cell lectin-like receptor subfamily A = member 1; ADAM = disintegrin and metalloproteinase domain-containing 

protein; TIM-3 = T-cell immunoglobulin and mucin domain-containing protein 3; PD-1 = programmed cell death protein 1.
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species in peripheral blood and are regarded as highly cytotoxic 

[3]. This simplistic categorization was challenged by previous re-

ports suggesting a much broader spectrum of phenotypic and 

functional diversity due to stochastic distribution of receptors to 

individual NK cells and additional shaping by epigenetic modifica-

tion, DNA methylation, and environmental influences [4]. Adding 

another level of plasticity to the NK cell population, it is currently 

under debate whether CD56bright cells differentiate into CD56dim 

cells [5] or whether CD56dim CD16+ NK cells develop from a dif-

ferent progenitor than CD56bright CD16– NK cells, T cells, B cells, 

or myeloid cells [6]. 

CD56bright NK cells are characterized by the absence of CD16 

and KIR expression and their potency to secrete immunomodula-

tory cytokines. Even though resting peripheral blood CD56bright 

cells are poorly cytotoxic, they display a tremendous proliferative 

capacity in response to cytokines such as IL-2. In contrast, CD3– 

CD56dim NK cells express high levels of CD16A and KIR, are 

highly cytotoxic and are capable of rapid and strong production of 

IFN-γ following activation [7]. 

NK cell cytotoxicity is governed by the net result of signaling 

through inhibitory and activating receptors recognizing self and 

non-self or altered-self structures on target cells. Among many 

others (fig. 1), prominent activating NK cell receptors in humans 

comprise the natural cytotoxicity receptors (NCRs) NKp30, NKp44 

and NKp46, NKG2D, DNAM-1 as well as CD16A [8]. 

NK cell engagement and activation can be enhanced or trig-

gered by antibodies. Those antibodies can block ligand binding to 

inhibitory receptors (‘antagonist antibodies’, e.g. KIR) expressed 

on NK cells or enhance the function of activating receptors (‘ago-

nist antibodies’, e.g. CD137), by mimicking the respective ligand 

function. This type of engagement does not necessarily lead to a 

direct activation but can have a supportive effect in a very complex 

signaling network towards activation and degranulation. Con-

versely, antibodies directed against CD16A [9] or CD16A and B 

[10, 11] have the potential to directly trigger an activating pathway 

and degranulation. Another strategy to support and maintain NK 

cell activity is the inhibition of ADAM17 activity [12, 13]. 

ADAM17 is a metalloproteinase and a potential key player in im-

muno-oncology [14] that is expressed on NK and cancer cells. 

Among many other functions, ADAM17 is responsible for the 

shedding of CD16A. Based on these NK cell characteristics, differ-

ent NK cell-engaging and/or -activating antibodies are currently in 

clinical development (table 1). Prominent examples of antagonist 

antibodies are lirilumab (anti-KIR [15, 16]) and monalizumab 

(anti-NKG2A [17]) and of agonistic antibodies urelumab and 

utomilumab (anti-CD137 [18, 19]). 

Following activation, NK cells release pre-formed granules into 

the immunological synapse at the NK target interface by exocyto-

sis. These granules contain pore-forming perforin, granzymes, and 

IFN-γ mRNA, which trigger caspase-dependent and caspase-inde-

pendent apoptosis of target cells and production of IFN-γ [20, 21]. 

Alternatively, target cell apoptosis can be initiated by Fas ligand or 

tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) 

in the plasma membrane of NK cells or released from cytotoxic T
ab
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granules which recognize Fas or TRAIL receptors on the target cell. 

[22]. Importantly, NK cells can be triggered by antibody-depend-

ent cellular cytotoxicity (ADCC) after recognition of antibody-op-

sonized target cells via CD16A (see below).

Even though NK cells were discovered more than four decades 

ago, it is only now that their potential in targeted cancer immuno-

therapy is exploited in clinical settings. Several lines of evidence 

demonstrate a strong impact of NK cells on cancer immuno-sur-

veillance: i) Based on epidemiological studies, individuals with low 

cytotoxicity of peripheral NK cells have a higher incidence of can-

cer [23]. ii) NK cells are subject to numerous tumor immune es-

cape strategies, suggesting that establishment and maintenance of a 

tumor-promoting microenvironment critically depends on failure 

of NK cell immuno-surveillance [24, 25]. iii) Many tumors depend 

on blocking tumor infiltration of lymphocytes to limit access for 

anti-tumor activity of immune cells. Consequently, tumor infiltra-

tion of NK cells is a good prognostic marker in several tumor enti-

ties including clear renal cell carcinoma, non-small cell lung cancer 

(NSCLC), and colorectal cancer [26–30]. iv) NK cells mediate 

cross-talk with the adaptive immune system and therefore have the 

potential to increase the potency of several immune effector arms 

[31–34]. Notably, since NK cell activation depends on the net-acti-

vation signal of several activating receptors, NK cell killing is po-

tentially more redundant, making therapy resistance less likely to 

occur. v) Adoptive transfer of ex vivo expanded NK cells showed 

high efficacy in early clinical trials [35–37]. Furthermore, NK cells 

display many advantageous features for clinical application. Firstly, 

NK cells are the first lymphoid cells to repopulate after stem cell 

transplantation (SCT), reaching normal numbers within 1 month 

regardless of donor type or patient age [38–40]. Therefore, NK 

cells provide the first opportunity for targeted cellular anti-cancer 

therapy following SCT. Secondly, NK cells contribute to the graft-

versus-tumor/graft-versus-leukemia effect with significantly less or 

even no graft-versus-host disease (GvHD) compared to allogeneic 

T cells [36], demonstrating a superior safety profile. Thirdly, NK 

cells are more easily adaptable to an allogeneic/off-the shelf ap-

proach than T cells which require an autologous setting due to oth-

erwise fatal GvHD reactions.

Antibody-Dependent Cellular Cytotoxicity of NK 
Cells

The human body produces antibodies as a defense mechanism 

against viruses and bacteria. To protect against infectious organ-

isms, a polyclonal IgG response is mounted, whereby multiple an-

tigens and epitopes on infected cells and organisms are recognized. 

Due to the high density of these antigens, a high degree of opsoni-

zation enables multivalent binding of Fc receptors, thus compen-

sating for the low affinities of individual IgGs, and enables strong 

ADCC and immune control (fig. 2). Conversely, a low density of 

tumor antigens targeted by monoclonal antibodies, which recog-

nize a single epitope on a single tumor antigen, elicits a low degree 

of opsonization and, consequently, a limited potential to induce 

ADCC of immune cells. Interestingly, most monoclonal therapeu-

tic antibodies are blocking antibodies (e.g. cetuximab and panitu-

mumab) and were not developed for immune cell engagement. 

Therefore, the potential of these molecules to recruit immune cells 

in a therapeutic setting remains unclear. This limitation could po-

tentially be overcome by bispecific tetravalent immuno-engagers, 

which mediate robust ADCC and immune control due to multiva-

lent and apparent high affinity binding to CD16A.

A large variety of mouse and human Fc receptors have been 

identified which are able to bind the Fc portion of IgG antibodies. 

The FcγR family comprises four subclasses of receptors – FcγRI, 

FcγRII, FcγRIII, FcγRIV (only in mouse) – which are expressed on 

most hematopoietic cells, except for T cells [41, 42]. All of these 

receptors are activating except for the inhibitory FcγRIIb. Most no-

tably, the activating receptor FcγRIIIa (CD16A) is the main recep-

tor facilitating ADCC, whereas all activating FcγRs mediate anti-

Fig. 2. Scenarios of 

antibody-mediated im-

mune cell and target 

cell engagement. En-

gagement is shown at 

high antigen density 

(A) and at low antigen 

density with IgG-based 

(B) and recombinant 

bispecific tetravalent 

immuno-engagers (C). 

A At high antigen den-

sities on the target cell 

(e.g. virus infection, 

blue) a polyclonal anti-

body response is initi-

ated leading to saturat-

ing opsonization of the target cell and robust ADCC upon Fc binding to CD16A on the NK cell (red). B At limiting antigen densities on the target cell (e.g. malig-

nantly transformed cells), an insufficient degree of opsonization of the target cell by IgG molecules leads to a low level of ADCC and thus tumor immune escape 

due to few low affinity interactions between the Fc domains and CD16A. C At limiting antigen densities on the target cell (see B) bispecific tetravalent immuno-

engagers enable robust ADCC and immune control due to multivalent and apparent high affinity binding to CD16A.
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body-dependent cellular phagocytosis (ADCP [43]). Notably, NK 

cells express only FcγRIIIa but no inhibitory FcγR. For signaling, 

CD16A associates with homodimeric or heterodimeric ITAM-con-

taining adapter protein complexes of FcεRI-γ chains or CD3ζ 

chains within the plasma membrane [44]. The affinity of antibod-

ies for CD16A directly correlates with their ability to trigger NK 

cell activation, thus reducing the antibody dose required for activa-

tion [45]. CD16A is the only activating receptor triggering the cy-

totoxic activity of naïve human NK cells even in the absence of co-

stimulatory signals [21, 46, 47]. 

The X-ray crystal structure of a human IgG1 Fc fragment-

CD16A ectodomain complex has been solved to 3.2 Å resolution 

[48]. In this complex, the Fc fragment binds asymmetrically to the 

two Ig domains of CD16A. Residues of the Cγ2 domains and the 

hinge region of the Fc domain contact with residues in the mem-

brane proximal domain 2 of CD16A and two residues in the linker 

connecting domain 1 and 2 of CD16A [48]. 

In addition to NK cells, CD16A has been reported to be ex-

pressed on monocytes, macrophages, and γ/δ T cells [49, 50]. Two 

allelic single nucleotide polymorphisms have been identified in 

human CD16A altering the amino acid in position 158, which is 

important for interaction with the hinge region of IgGs. The allelic 

frequencies of the homozygous 158 F/F and the heterozygous 158 

V/F alleles are similar within the Caucasian population, ranging 

between 35 and 52% or 38 and 50%, whereas the homozygous 158 

V/V allele is only found in 10–15% [51]. The allelic variant 158V 

has a higher affinity for IgG than the 158F variant and may there-

fore confer two advantages in IgG-mediated cancer immunother-

apy: i) enhanced potential of NK cells to engage with antibody-op-

sonized tumor cells and ii) an increased release of granules by NK 

cells upon encounter with an antibody-opsonized tumor cell [52]. 

Expression of the allelic variant 158V has been described to corre-

late with positive clinical response of patients suffering from B-cell 

lymphoma, leukemia, breast cancer, or colorectal cancer to ADCC-

mediating IgG-based therapy [53–57]. Some studies suggest using 

the performance of patient-derived 158V NK cells in in vitro 

ADCC assays with antibody-coated tumor cells as a predictive 

marker for the patients’ response to anti-tumor therapy [58]. Nota-

bly, IgG antibodies with low or absent fucose side chains are more 

effective in eliciting ADCC both in vitro and in vivo when com-

pared to conventional IgG antibodies; however, the impact on 

 clinical efficacy has been very limited [59, 60]. 

IgGs can be divided into four subclasses (IgG1, IgG2, IgG3, and 

IgG4). Among these, IgG1 and IgG3 display the highest affinity to 

the two known CD16A alleles with affinities in the single digit mi-

cromolar range, whereas IgG2 and IgG4 show affinities in the 

higher micromolar range [61]. 

Notably, the binding affinities for IgG1 and IgG3 to CD16A 

158V are two-fold higher than for CD16A 158F. Although a num-

ber of specific IgGs have shown ADCC-related efficacy in pre-clin-

ical models [62], the observed micromolar affinities of IgGs for 

CD16A and variations in the binding affinities for different CD16A 

alleles are unfavorable for therapeutic application of ADCC-induc-

ing antibodies. Moreover, due to high plasma levels of IgG (roughly 

10 mg/ml), Fc-based antibody formats face competition for CD16A 

binding, thereby limiting CD16A occupancy and increasing the re-

quired dose of therapeutic antibody. Competition with plasma 

IgGs might be even more pronounced in disease conditions which 

are characterized by high levels of plasma IgGs such as multiple 

myeloma [63]. In the ground state, CD16A on innate immune cells 

Fig. 3. Models for 

CD16A engagement and 

IgG competition. A/B In 

the ground state, CD16A 

on innate immune cells is 

occupied by polyclonal 

plasma IgG. This creates a 

threshold for Fc-based 

therapeutic antibodies or 

immuno-engagers, em-

ploying the recognition 

site on CD16A also bound 

by the Fc proportion of 

IgG antibodies, thus limit-

ing therapeutic potential. 

C Tetravalent bispecific 

immuno-engagers, which 

recognize a different 

epitope on CD16A, are 

virtually unaffected by 

plasma IgG. This enables 

high affinity binding of 

CD16A and respective 

tumor antigens leading to 

strong ADCC and im-

muno-surveillance.
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is occupied by polyclonal plasma IgG (fig. 3). This creates a thresh-

old for Fc-based therapeutic antibodies or immuno-engagers 

which employ the recognition site on CD16A also bound by the Fc 

proportion of IgG antibodies [64, 65], thus limiting therapeutic po-

tential. Importantly, tetravalent bispecific immuno-engagers, 

which recognize a different epitope on CD16A [9], are virtually un-

affected by plasma IgG. This enables high-affinity binding of 

CD16A and respective tumor antigens leading to strong ADCC 

and immuno-surveillance. 

To increase the binding affinity to CD16A and to allow for 

CD16A binding independent of patient genotype, a variety of dif-

ferent antibody formats have been developed [66–68]. These com-

bine binding domains and, hence, different functionalities in one 

antibody molecule. These molecules have the potential for greater 

therapeutic success compared to administration of a mixture of an-

tibodies with the same respective specificities [69–71]. 

Principles of Bispecific Antibody Engineering

Apart from disease settings, PK/PD relationship, patient’s treat-

ment status and regimens, the target architecture and biology 

should ideally be the driver for selection of the appropriate anti-

body format. However, this information is often unavailable or in-

sufficient for a straightforward, fully rational antibody design ap-

proach. Thus, to select the best candidate bearing functional char-

acteristics for optimal therapeutic intervention, extensive molecu-

lar engineering of a desired format with multiple iterations 

combined with high-throughput automated processes for func-

tional screenings are required [72, 73]. The simplest bispecific mol-

ecules are built from only two antigen binding domains (ABDs) 

[74] that recognize different antigens. These ABDs are generally 

composed of Ig heavy and light variable domains of mouse [75] or 

human origin [76–79]. The smallest ABD units are single chain an-

tibodies (single chain variable fragment or scFv, [80]) or the larger 

antigen binding fragments (Fab). Alternatively, heavy chain varia-

ble domains of camelids [81] or non-antibody-binding domains 

[82, 83] such as anticalins [84, 85] or DARPins [82] serve as build-

ing blocks for bispecific molecules. By linking more than two ABDs 

together, avidity and functionality are substantially improved as 

demonstrated by the bispecific tetravalent tandem diabodies 

(TandAb) molecule for CD3- or CD16A-specific immune effector 

engagement [9, 86]. Depending on the linker sequence and linker 

lengths [87–89], the orientation of the VL and VH domain, the 

number of ABDs and the number of polypeptide chains, the bispe-

cific antibodies can adopt different formats. Prominent examples 

currently in clinical development include the bispecific tetravalent 

TandAbs [90], bispecific T-cell engagers (BiTEs [91]), bi- or tri-

specific killer cell engagers (BiKEs, TriKEs, [11, 92, 93], and dual-

affinity re-targeting antibodies (DARTs [94]). Adopting a different 

strategy, two or more ABDs can be genetically fused to a ‘stable’ 

scaffold allowing further diversity of bispecific molecules. Exam-

ples are Fc- or IgG-based bispecific antibody molecules [9–97], 

which have recently entered clinical trials as T-cell recruiters [98]. 

Bispecific NK- and T-Cell Engagers in Clinical  
Development

A major subclass of bispecific antibodies recruits cytotoxic lym-

phocytes such as T and NK cells via ABDs against CD3 and CD16, 

respectively. For CD3 recruitment, the majority of ABDs derive 

from the cynomolgus monkey cross-reactive antibody clones SP34 

[99] or UCHT1 [100]. In principle, NK cell recruiters are based on 

two different anti-CD16 domains: clone 3G8 [64, 101, 102] that is 

specific for both CD16A and CD16B, and clone LSIV21 [9] that 

recognizes a CD16A-specific epitope. Examples of bispecific cyto-

toxic lymphocyte engagers and different designs are the BiTE and 

TandAb molecules [9, 86]. Those bispecific formats are solely com-

posed of ABDs connected to each other via flexible linkers. The 

formation of the final expression product is largely influenced by 

its linker lengths. Long linkers between heavy and light variable 

domains enable intra-molecular pairing of both domains as is the 

case for both scFv molecules the monovalent BiTE molecule. In 

contrast, relatively short linkers between heavy and light chain do-

mains allow homo-dimerization of two identical polypeptide 

chains in a head-to-tail fashion, thereby creating a tetravalent 

bispecific molecule with two binding sites for each antigen as 

shown for the TandAb molecule. Other cytotoxic lymphocyte en-

gager molecules that are currently under clinical development are 

combined with an Fc portion. Table  2 shows the bispecific cyto-

toxic lymphocyte engagers currently in clinical development. Most 

formats in development are T-cell engagers comprising an anti-

CD3 domain for immune effector cell recruitment in combination 

with different ABDs directed against tumor-associated antigens 

such as CD19 [103], CEA [104, 105], CD20 [106], PSMA [107], 

EpCAM [108], CD33 [109], BCMA [110], GPA33 [111], P-cad-

herin [112], B7-H3, and Her2 [113]. The number of T-cell engag-

ers in clinical development also illustrates the great variety of dif-

ferent bispecific designs, ranging from relatively small molecules to 

bigger scaffolds employing Fc portions. Even though, to date, T-

cell engagers have been the predominant class of bispecific im-

mune cell engagers, they have been challenged by severe side ef-

fects in recent clinical trials. Conversely, bispecific NK cell engag-

ers, which only recently have entered the clinic, have shown effi-

cacy and superior safety profiles in clinical [9, 86] or late-stage 

pre-clinical development [10, 11, 114, 115].

Enhancing NK Cell Efficacy with Cytokines

Cytokines hold great promise to improve the anti-tumor activ-

ity of NK cells. Beyond IL-2 and IL-15, which are arguably the best 

studied cytokines in a therapeutic setting [36], IL-12, IL-18, IL-21, 

and type I IFNs can be used for in vitro expansion and activation of 

NK cells before adoptive transfer. The combination of IL-12, IL-15, 

and IL-18 has recently been reported to induce a population of 

memory-like NK cells, which showed high efficacy in a phase I 

clinical trial in acute myeloid leukemia (AML) [35]. Moreover, it 

has been reported that stimulation of NK cells in vitro with IL-2 or 
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Table 2. Overview of bi-specific T-cell engagers in clinical development*

Bispecific Format Compound/Program Target combination Clinical phase 

(indication)

Company [references]

BiTE  

 

Blinatumomab AMG103 MT103 CD19xCD3 Market  

(ALL)

Amgen [103]

MT111, AMG211, Medi565 CEAxCD3 I  

(GC, ADC)

Amgen [104]

Pasotuxizumab MT112 BAY2010112 PSMAxCD3 I 

(PC)

Bayer

Solitomab MT110 AMG 110 EPCAMxCD3 I 

(CRC, GIC, LC and ST)

Amgen [108]

AMG330 CD33xCD3 I (AML) Amgen [109]

AMG420, BI 836909 BCMAxCD3 I 

(MM)

Boehringer Ingelheim,  

Amgen [110]

TandAb 

AFM11 CD19xCD3 I

(NHL, ALL)

Affimed [86]

AMV564 CD33xCD3 II

(AML)

Amphivena [152] 

Crossmab
 

RG7802 (2+1) CEAxCD3 I  

(CEA+ ST)

Roche [105]

DART  

MGD006 S80880 CD123xCD3 I 

(AML)

Macrogenics, Servier [153]

MGD007 GPA33xCD3 I 

(CR)

Macrogenics, Servier [111]

PF06671008 P cadherin 

CD3

I 

(ST)

Pfizer, Macrogenics [112]

Fc-DART

 
 
 
 
 

 

MGD009 

(Fc-DART)

B7H3 

CD3

I  

(ST)

Macrogenics

Duvortuxizumab, MGD 011,  

JNJ64052781 

(Fc-DART)

CD19 

CD3

II  

(ST)

Macrogenics, Janssen [154]

Table 2   continued on next page

IL-15 for several days resulted in NK cell activation and killing of 

malignantly transformed cells, which were initially resistant to kill-

ing by naïve NK cells [116]. 

IL-2 and IL-15 bind to the shared dimeric receptor complex 

comprised of the IL2ββ (15Rβ, CD122) and γc (CD132) chains 

with only nanomolar affinity thus requiring relatively high concen-

trations of cytokines for activation. Alternatively, a high-affinity 

trimeric IL-2 receptor comprised of the IL-2Rαα (CD25) and βγc 

chain binds to IL-2 with picomolar affinity. CD25 is constitutively 

expressed by CD56bright NK cells and Tregs; however, its expres-

sion requires induction by cytokine stimulation on CD56dim cells 

[117–120]. IL-2 has been extensively studied in cancer patients and 

was demonstrated to be toxic at effective doses. Only few clinical 

responses were described after monotherapy as high-affinity bind-

ing of IL-2 to Tregs results in extensive expansion, sequestration of 

IL-2, and inhibition of NK cell responses [121]. Interestingly, de-

spite these undesirable side effects, combination therapy of IL-2 

with anti-tumor monoclonal antibodies was shown to be safe and 

demonstrated ADCC-related clinical response in some neuroblas-

toma and melanoma patients [122].

In contrast, IL-15 does not activate Tregs. IL-15 is trans-pre-

sented to the intermediate affinity receptor complex IL-15Rβγc on 
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NK cells by high-affinity receptor chain IL-15α, which is expressed 

on dendritic cells and macrophages [123]. Ligation induces NK cell 

differentiation and proliferation as well as cytotoxicity of the NK 

cells via JAK1, JAK3, and STAT5 signaling [124]. Deletion of IL-

15, its receptor, or its downstream signaling proteins results in NK 

cell lymphopenia [125]. The IL-15α chain can also be secreted and 

endocytosed, and subsequently trans-present IL-15 to other cells 

[126, 127]. 

In non-Hodgkin’s lymphoma, high concentrations of serum 

IL-15 following autologous hematopoietic stem cell transplanta-

tion are associated with better survival [128]. Moreover, in a phase 

I clinical trial in patients suffering from metastatic malignancies, 

daily infusion of recombinant human IL-15 induced NK cell prolif-

eration, albeit, without objective response [129]. Several clinical 

studies with recombinant human IL-15 are currently ongoing in 

melanoma, renal cell carcinoma (NCT01021059, NCT01369888), 

and advanced cancers (NCT01572493, NCT01727076). Another 

clinical study deals with the support of NK cells after adoptive 

transfer in leukemia patients (NCT01385423). 

Combination of bispecific NK cell-based immuno-engagers 

with IL-15 stimulation might be a promising therapeutic concept 

for various malignancies as it combines tumor targeting with im-

proved differentiation, proliferation, and activation of immune 

cells. Therefore, this combination therapy might be particularly in-

teresting in the context of solid tumors, which inhibit activation 

and infiltration of NK cells, which is otherwise a positive prognos-

Table 2. Continued

Bispecific Format Compound/Program Target combination Clinical phase 

(indication)

Company [references]

cLC / hetero-H-chain  

IgG

 

MCLA117 CLEC12A 

CD3

I/II 

(AML)

Merus [155]

REGN1979 CD20 

CD3

I

(B-cell malignancy)

Regeneron [106]

ERY974 GPC3 

CD3

I  

(ST)

Chugai

IgG assembled from

half antibodies bsmAb 
 

 

RG7828, BTCT 4465A (KiH) CD20xCD3 I

(NHL, CLL)

Genentech [156]

JNJ 63709178 Duobody CD123 

CD3

I

(AML)

Janssen, Genmab [157]

scFv-Fc-(Fab) -fusion
 

Xmab14045 Fab-scFv-Fc CD123 

CD3

I (AML) Xencor, Novartis, 

GBR1302 Fab-scFv-Fc Her2 

CD3

I

(Her2+ tumors)

Glenmark [113]

scFv-Fc-(Fab) -fusion
 

MOR 209, ES414 ScFv2-Fc-scFv2 PSMA 

CD3

I

(PC)

Morphosys, Emergent 

 Biosolutions [107]

ADC = Adenocarcinoma, ALL = acute lymphoblastic leukemia; AML = acute myeloid leukemia; CLL = chronic lymphocytic leukemia; CRC = colorectal cancer; 

GC = gastric cancer; GIC = gastrointestinal cancer; LC = lung cancer; MM = multiple myeloma; NH = non-Hodgkin lymphoma; PC = prostate cancer; ST = solid 

tumors

*Symbols for the respective bi- or trispecific antibody molecules are: Variable light chain domains (L) and variable heavy chain domains (H) are shown for CD3 

(green) and for CD16 (orange) as well as for other antigen-binding domains (blue or grey). For the IL-15 TriKE molecule, the IL-15 domain is shown as black square. 
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tic marker in renal cell carcinoma, NSCLC, and colorectal cancer 

[26, 27, 28, 29, 30]. Due to the poor bioavailability of IL-15, its 

short plasma half-life of <40 min, and an unfavorable relation be-

tween required dosing and toxicity, the potential of recombinant 

IL-15 is limited [130]. In contrast, fusion proteins combining IL-15 

and its high-affinity receptor subunit IL-15α display reduced renal 

clearance, increased potency, increased plasma half-life, and in-

creased retention times in lymphoid tissues when compared to 

IL-15 alone. 

Two molecules employing IL-15 and IL-15Rα combinations are 

currently being tested in in phase I/II mono and combination trials 

in multiple myeloma, non-Hodgkin’s lymphoma, and solid tumors 

(NCT02452268, NCT02099539, NCT03003728, NCT02523469, 

NCT03022825, NCT02138734, NCT01946789, NCT02559674, 

NCT02384954) [119, 131].

To improve NK cell numbers and anti-tumor activity, a variety 

of protocols to expand cells ex vivo have been established using NK 

cells derived from either the patient (autologous setting) or from a 

healthy donor (allogeneic setting) (fig.  4). The most established 

source for NK cells is peripheral blood, with current efforts explor-

ing the suitability of NK cells derived from bone marrow, umbilical 

cord blood, human embryonic stem cells, or induced pluripotent 

stem cells [132]. Enrichment of NK cells is usually achieved by 

magnetic depletion of T and B cells with or without additional se-

lection based on CD56. 

Preferably, autologous NK cells are used for cell transfer as these 

are less likely to promote autoimmune reactions. Indeed, ex vivo 

cytokine activated and expanded autologous NK cells were shown 

to be safe; however, no clinical responses in cancer patients with 

metastatic melanoma, renal cell carcinoma or advance gastrointes-

tinal cancer were seen [133–135]. These limitations could poten-

tially be overcome by combination of autologous NK cells (either 

the patients’ endogenous NK cells or reinfused autologous cells 

after ex vivo stimulation/expansion) in combination with a bispe-

cific immuno-engager and optional IL-15.

Table 3. Overview of bi-specific NK-cell engagers in clinical development*

Structure Compound Target combination Clinical phase

(indication)

Company [references]

TandAb AFM13 CD30 x CD16A II (HL) Affimed [9]

AFM24 EGFR x CD16A preclinical Affimed

AFM26 BCMA x CD16A preclinical Affimed

BiKE n.d. CD33 x CD16 preclinical [92, 114, 115, 158]

IL-15 TriKE n.d. CD33xIL-15xCD16 preclinical Oxis Biotech

[92, 114, 115, 158]

TriKE n.d. CD19xCD22xCD16 preclinical [92, 114, 115, 158, 159]

HL = Hodgkin lymphoma; n.d. = not determined.

*Symbols for the respective bi- or trispecific antibody molecules are: Variable light chain domains (L) and variable heavy chain domains (H) are shown for 

CD3 (green) and for CD16 (orange) as well as for other antigen-binding domains (blue or grey). For the IL-15 TriKE molecule, the IL-15 domain is shown as 

black square. 
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Conclusion and Outlook 

Immunotherapy is a highly promising approach to cancer ther-

apy. However, efficacy and safety of cellular immunotherapy based 

on activated or genetically engineered donor-derived immune ef-

fector cells need to be improved. Immuno-engagers enable tumor 

targeting and anti-tumoral cytotoxicity of transferred immune ef-

fector cells and therefore represent promising therapeutic avenues. 

Solid tumors including EGFR+ cancers such as breast cancer, 

NSCLC and head and neck squamous cell carcinoma, where im-

munosuppressive tumor microenvironments prevail, could par-

ticularly benefit from these therapies. Different variations and 

combinations of immuno-engager formats, targets on tumor cells, 

and targets on immune effector cells are currently being investi-

Fig. 4. Adoptive NK 

cells in cancer therapy. 

A A patient’s own NK 

cells can be stimulated 

by monotherapy using 

NK cell engagers to 

overcome tumor im-

mune evasion and 

 immunosuppression.  

B Ex vivo expansion 

and stimulation of au-

tologous NK cells fol-

lowed by re-infusion in 

combination with NK 

cell engagers is a viable 

therapeutic approach 

providing increased 

numbers of activated 

NK cells. C Alterna-

tively, NK cells can be 

derived from periph-

eral blood, cord blood 

or iPS cells of healthy 

donors (allogeneic set-

ting) or from immor-

talized cell lines. After 

ex vivo stimulation and 

expansion, NK cells are 

infused into the patient 

in combination with 

NK cell engagers.



Recombinant Antibodies to Arm Cytotoxic 

Lymphocytes in Cancer Immunotherapy

Transfus Med Hemother 2017;44:337–350 347

gated. Each of these has unique properties in terms of molecular 

weight, number of binding sites, specificity, serum half-life, and the 

potential to mediate cross-talk between different immune cells and 

must therefore be evaluated for its respective potency. Future and 

ongoing clinical studies will serve to identify which immuno-en-

gager and which combination product (including cytokines, check 

point inhibitors and adoptively transferred cells) is best suited for 

the treatment of a particular cancer and addresses the need for per-

sonalized therapy.
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