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Abstract

Many free-energy sampling and quantum mechanics/molecular mechanics (QM/MM) 

computations on protein complexes have been performed where, by necessity, a single component 

is studied isolated in solution while its overall configuration is kept in the complex-like state by 

either rigid restraints or harmonic constraints. A drawback in these studies is that the system’s 

native fluctuations are lost, both due to the change of environment and the imposition of the extra 

potential. Yet, we know that having both accurate structure and fluctuations is likely crucial to 

achieving correct simulation estimates for the subsystem within its native larger protein complex 

context. In this work, we provide a new approach to this problem by drawing on ideas developed 

to incorporate experimental information into a molecular simulation by relative entropy 

minimization to a target system. We show that by using linear biases on coarse-grained (CG) 

observables (such as distances or angles between large subdomains within a protein), we can 

maintain the protein in a particular target conformation while also preserving the correct 

equilibrium fluctuations of the subsystem within its larger biomolecular complex. As an 

application, we demonstrate this algorithm by training a bias that causes an actin monomer (and 

trimer) in solution to sample the same average structure and fluctuations as if it were embedded 

within a much larger actin filament. Additionally, we have developed a number of algorithmic 

improvements that accelerate convergence of the on-the-fly relative entropy minimization 

algorithms for this type of application. Finally, we have contributed these methods to the 

PLUMED open source free energy sampling software library.
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Introduction

It is a fundamental challenge of molecular dynamics (MD) simulation that the accessible 

time and length scales are limited by the level of detail at which a system is described.1 As a 

consequence, computational studies generally compromise on the size of the system under 

consideration in order to achieve a desired level of detail. A prime example arises in the 

study of enzymes where reactivity must be incorporated into the simulation, but it is thus far 

impractical to treat the entire system quantum mechanically. Hence, in order to do a 

quantum calculation on the active site while including the important role of the protein 

environment, hybrid methods have been developed to couple the protein’s fluctuations into 

the reactive subsystem. These ideas led to the commonly used practice of QM/MM 

simulation, and contributed to the 2013 Nobel Prize in Chemistry.2

The continued development of enhanced sampling techniques, as well as advances in 

computational power, have made it possible to compute complex free energy surfaces for 

quantum mechanical reactions or conformational transitions taking place in biomolecular 

systems (see, e.g., Refs. 3–4). However, many problems of current focus do not occur 

isolated in solution, but rather in a much larger macromolecular context. For example, we 

might be interested in a process occurring for a particular protein embedded in a membrane 

or one within a much larger many-protein complex. In these cases, free energy sampling 

methods, which aim to enhance sampling along “slow” degrees of freedom in a low 

dimensional set of collective variables (CVs), are constrained by our ability to sample the 

many other degrees of freedom in the system. In the past, such simulations have been made 

to be more computationally tractable by extracting the key subcomponent of the system and 

adding restraints or harmonic biases to keep this subsystem in approximately the same 

configuration as it would sample in its native (much larger) context. Unfortunately, doing so 

neglects both the effect of long range forces coming from the other molecules in the 

complex, and alters the fluctuations sampled by the subsystem, which in many cases are 
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strongly coupled with dynamics in the larger system. In this work, we focus on the latter 

problem, namely, we wish to have a protein of interest isolated in solution sample 

configurations as if it were embedded within a larger multi-protein complex, thus greatly 

reducing the computational cost and hence enabling studies where extensive free energy 

sampling is possible. In many cases, the larger complex can also first be simulated for some 

limited amount of MD sampling time in order to obtain information about the 

conformational ensemble of the subsystem of interest (alternatively, one could imagine 

approximating this information from normal mode or elastic network model analysis 

performed on experimental structures5).

In an ideal world with perfect sampling, one could simulate the subsystem by first finding an 

exact potential of mean force, by integrating over all the other configurations of the larger 

system. In the canonical ensemble, for a subsystem with N particles having the coordinates q 
= (q1, q2, …, q3N) and a supersystem with N+M particles with coordinates r = (q1, q2, …, 

q3N, q3N+1, …, q3N+3M) and overall potential energy function U(r), this corresponds to first 

calculating:

(1)

This many-body potential of mean force (PMF), F(X), captures the effects of the exact 

coupling to the larger supersystem on the subsystem variables X = q, and could be used to 

measure the average of any desired observable function of the subsystem variables, 〈f〉, as if 

we had performed the computation on the supersystem:

(2)

However, we know in practice this cannot be done for anything but the simplest cases, both 

because the amount of sampling required would be enormous and because the amount of 

information required to express the many-body PMF F(X) is too large.

In this work, we suggest an alternative approach and show that some key information about 

the supersystem can be imparted to the subsystem in a different and computationally 

practical way. Here, we will modify the potential energy function that would normally be 

used for the subsystem alone, by “learning” a bias function on coarse-grained (CG) 

observables of interest, fi, via a relative entropy based approach. The bias is such that when 

those observables are sampled by the biased subsystem they will match what would be 

observed by sampling from F(X).

The idea of adding a bias to incorporate additional information into a system’s Hamiltonian 

comes from work where experimental data is included into an MD simulation via either 

adding a set of linear biases to the system’s Hamiltonian or, alternatively, using many copies 
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of the system biased to have an ensemble averaged target observable.6–7 These techniques 

have been shown to minimally bias the system such that it samples the target values of the 

observables.6 Several techniques now exist to determine a bias to match experimental data 

on-the-fly,8–9 starting with a method called Experiment Directed Simulation (EDS), where 

the linear restraints are learned through a stochastic gradient descent procedure.8 Later 

work10 demonstrated that this type of EDS bias always decreases (or at least, does not 

increase) the relative entropy with respect to an ideal target distribution that gives the same 

desired properties, and so this method can be used to systematically improve multiscale CG 

(MS-CG) models that may utilize an imperfect molecular force field. This method of 

adaptive linear biases is also beginning to demonstrate its utility in other applications, 

including providing a significant improvement of the static and dynamic properties of an ab 
initio MD (AIMD) water system which is based on a rather inaccurate level of electronic 

density functional theory, biasing the oxygen-oxygen radial distribution function.11 A 

similar method was used to incorporate experimental data (and additionally, experimental 

errors) to improve the quality of force fields for RNA.9 The empirical evidence in all cases is 

that the biasing of one observable tends to improve (or at least not decrease) the quality of 

others which were not biased, as would be expected for this class of minimal bias 

techniques.

In this work, we test whether the methods developed in EDS can learn biasing parameters 

that constrain a subsystem to behave as if it is embedded in its native (much larger) 

supersystem environment, recapitulating some of the desired properties from Eqs. 1 and 2 

above. We apply these ideas to the protein actin, because it is a challenging biopolymer 

target with complex structural transitions that have nevertheless been relatively well 

characterized in MD simulation and experiment by our group and others. In solution, actin 

exists as a globular domain (G-actin) with a bound ATP molecule (Figure 1A)12–13 and 

adopts a twisted conformation characterized by a dihedral angle of its four sub-domains ~ 

− 20°.14 Monomers can assemble to form a non-covalent semi-flexible biopolymer (F-actin), 

within which each subunit is flattened, adopting a dihedral angle > −10°. This flattening is 

associated with an increase in rate of actin catalyzed hydrolysis of the bound ATP molecule 

by a factor of > 104,3, 15 such that the hydrolysis rate is on the order of ~1 sec−1. The release 

of the free inorganic phosphate is very slow, occurring on a time scale of ~5 min,16 and 

makes the actin filament softer and more prone to depolymerization.17–20 The hydrolysis 

and phosphate release are crucial processes governing the lifetime and structural properties 

of actin filaments and cytoskeletal networks in cells, and the molecular mechanisms have 

been studied using simulations. While it is now relatively standard to simulate with MD a 

semi-periodic actin filament consisting of 13 subunits (~500,000 atoms when solvated with 

water), the extensive simulation time needed to study phosphate release by free energy 

methods and the QM/MM methods required to study the explicit hydrolysis reaction 

preclude simulating such a large system; instead, only a single actin monomer has been used 

while being restrained in the filamentous or globular form.3–4

Below, we will show that using the EDS approach on a set of CG observables (a 

combination we call Coarse-grained Directed Simulation, or CGDS) can be used to 

minimally bias an actin monomer to be in a filamentous-like configuration while 

maintaining correct fluctuations for the two collective variables that characterize the 
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transition from globular to filamentous actin structure.13, 21–22. However, given the large and 

complex system size compared to what has been studied previously, we found that the 

previous algorithms did not learn EDS biasing parameters fast enough to achieve these 

goals. Hence a major part of the present work is devoted to improving the algorithms for this 

type of problem so they can be practicable for similar future applications. These 

enhancements are first developed on a CG model of actin for speed of testing and 

development, then demonstrated on fully atomistic systems. All of these algorithms have 

been implemented and are available for use in the open source sampling library 

PLUMED2,23 and the major components are already included in the main release of the 

PLUMED2 software as an optional module.

The remaining sections of this paper is organized as follows:

1. Methods: The construction both of atomistic systems and CG systems are 

described. The CGDS relative entropy minimization algorithm is written in a 

general framework that encompasses both prior work and our changes to the 

algorithms.

2. Results: A CG model is used to show how the prior methods can be optimized, 

and the performance of a first order guess for bias parameters. We then show 

how the optimization algorithm can be further improved for multiple CVs by 

transitioning to a simultaneous update of the bias parameters rather than a 

stochastic one, in this case. These improved algorithms are then demonstrated to 

work for a monomeric as well as trimeric actin system which would be 

appropriate for future free energy simulations.

3. Discussion and Conclusions: Future outlook and ramifications, as well as the 

challenges encountered are discussed.

Methods

Molecular dynamics simulations of actin filaments and monomers

G-actin with a bound ATP and a periodic 13 subunit F-actin structure with bound ATP were 

built and equilibrated at 310 K as described previously21–22, 24 (~94,000 atoms and 

~485,000 atoms respectively), with the structure of ATP-bound actin derived from the 

crystal structure PDB ID 1NWK25 and for F-actin from the electron microscopy structure in 

PDB ID 2ZWH.14 For the filament, the actin subunit had its nucleotide replaced by an ATP, 

bound magnesium, and waters within 5 angstroms of the nucleotide from a previously 

equilibrated monomer simulation. MD simulation of these structures was then performed 

using GROMACS26 for ~5 ns to relax the configurations before the data shown below. A 

third and fourth system were then created by solvating a single actin monomer (~94,000 

atoms) and a trimer of actin monomers (~138,000 atoms) from the equilibrated filament 

structure and relaxing those structures for ~5 ns.

Construction of an elastic network model for an actin monomer

An MD trajectory of the G-actin monomer bound to ATP was used to generate a CG elastic 

network model of an actin monomer as follows: after equilibrating the structure for 20 ns, 
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the next 50 ns of simulation data were mapped onto a previously characterized 12-bead 

representation of an actin monomer, with beads 1–4 representing the four major subdomains 

of actin, seven others comprised by other important sub-regions, and a final bead for the 

nucleotide (Figure 2A);21–22 a heterogeneous elastic network model (hENM) was then built 

from this trajectory using the method of Ref. 27. In brief, all pairs of beads closer than 100Å 

were connected by an effective spring whose rest length was given by the average separation 

in the MD trajectory and whose spring constants are all identical at first. An iterative 

procedure was then performed that updates the values of the spring constants by an amount 

proportional to the difference between the normal mode fluctuations along that bond in a 

given iteration and the fluctuations of that pair distance in the mapped MD simulation 

(summed over 3Nbeads normal modes). MD simulations of this CG model then reproduce 

approximately the structural ensemble observed in the original all-atom trajectory.27 This 

hENM model was then used to quickly test improvements in the methods described next.

Relative entropy minimization

In this work, the objective is for our system to evolve under minimally biased dynamics such 

that average value of particular CG observables of a subsystem of interest match target 

values obtained via simulations of a larger encompassing supersystem (or alternatively 

values obtained from experiment). In principle, as in previous work, we can derive the 

necessary change to the system Hamiltonian (H0) by minimizing the relative entropy 

between the distribution normally sampled by that system, P0(X), and the distribution, P(X), 

arising from an unknown Hamiltonian (H). The latter unknown Hamiltonian system is 

subject to constraints on a mean of a set of observables, {fi(X)}, which are scalar functions 

of the configuration of the system and are known properties of the system described by the 

unknown Hamiltonian.8, 10 In other words, we want to minimize the functional

(3)

with the constraints ʃ dX P (X) = 1, and . This is formally solved by 

introducing Lagrange multipliers, {λi}:

(4)

with β =1/kB
T. Using the first normalization constraint to set λ0, and taking P0 from the 

canonical ensemble gives the result:

(5)
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By comparison with the usual canonical ensemble distribution function, we see here that in 

order to simulate our system and have it maintain particular target values of our observables, 

, i.e., that are manifest in a simulation (or experiment) for the full and larger 

encompassing supersystem, we must modify the Hamiltonian H0 of our system to include a 

linear term for each observable with (at this point) unknown proportionality constants {λi} 

(these are the same as the {αi} in Ref. 10 and {λi} in Ref. 9, but differ by a constant factor 

 from {αi} in the EDS formulation in Refs. 8 and 11).

Several papers have offered suggestions for how to determine these parameters in a 

molecular simulation context.6–9, 28 In each case, the idea is to iteratively update the values 

of {λi} proportional to the difference , where the average is taken by 

sampling for a time τavg using the Lagrange multipliers from the tth iteration. The rule for 

updating λ = {λi} (bold font indicating vectors, double-bar indicating matrices, dots 

indicating vector matrix multiplication, other vector arithmetic is element-wise) then takes a 

form similar to:

(6)

where n = 1 corresponds to gradient descent,8 n = 0 a scheme that only depends on the 

current distance from the average observables,9 and n = −1 to Newton’s method, and the 

error function being function being minimized is the total squared difference from observed 

to target CV values, i.e. εt = ΣiΔi(λt)2.7 The way that the pre-factor ηt is adjusted 

corresponds to a learning rate rule, that is, how much trust to ascribe to the step size coming 

from the other λ-dependent terms. For example, Bussi and coworkers use9:

(7)

while White and Voth use8, 10–11:

(8)

For the linear bias, the gradient term is a matrix with entries given by:

(9)

so, the gradient is proportional to the covariance of the two observables on iteration t:
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(10)

In all cases where these methods have been applied in a molecular context, a stochastic 

procedure was used where one Lagrange multiplier was chosen randomly and adjusted based 

on this recipe (using only the diagonal elements in Eq. 9). Below, we will use the learning 

rate rule of White and Voth, but show that for the type of problems we are interested in, 

rather than the stochastic gradient descent (SGD) a simultaneous adjustment of all the 

parameters using the full covariance, either with gradient descent (Covar) or a Levenberg-

Marquardt-type algorithm (LM) as suggested previously (see below)28 can be superior, and 

prevent the need for tuning of the constant factor Ai for each observable. (Note that in the 

work of White and Voth and in this implementation, the constant Ai is scaled by the target 

observable value, so the Ai in this general formulation is replaced by , with 

the value set as a RANGE parameter in the current Plumed2 implementation. The bias 

parameters λi always have units [Energy]/[CV], so in this way,  has units of [Energy]. 

These are the values reported simply as A below.)

In the LM algorithm, the step size in Eq. 6 is replaced by

(11)

where  is the purely diagonal matrix having the same diagonal elements as , 

and γt is a mixing parameter (which in general could be made adaptive as in Ref. 28), and 

causes the method to behave with some character of Newton’s method (γ = 0) and steepest-

descent (γ ≫ 1).28 We have implemented an adaptive version of the algorithm where we 

average the total squared error εt for all CVs over LM_stride iterations of the algorithm. 

This quantity is retained over m windows of length LM_stride*τavg. If the error decreases 

monotonically for these m stages, γ is increased by a multiplicative factor l >1, i.e. γt+1 = 

lγt. If it decreases in each stage, γt+1 = γt/l. If it is not monotonic over m stages, then γ is 

not changed.

All algorithmic parameters for each figure are listed in Table 1. We make a practical note 

here, that in order to reduce the overhead of biasing via PLUMED, CVs are defined using 

only two atoms per protein residue (Cα, Cβ) and for all-atom simulations we use the built-in 

multiple time stepping procedure of Bussi and coworkers,29 with the bias algorithm 

performed every-other MD time step (STRIDE=2).
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Results

Actin monomers in solution are more twisted and open, with larger fluctuations than 
subunits in a filament

As described in the methods section, MD simulations of an actin filament and actin 

monomers from two different starting configurations were performed. The difference 

between the G-actin and F-actin structure can be well characterized (as in previous 

works13, 21) by defining the cleft distance (d) and twist angle (ϕ) as shown in Figure 1A. In 

this study, CG bead positions used for analysis and for biasing are defined by computing the 

center of mass of the Cα and Cβ in each actin subdomain. Using these definitions, we 

computed the value of actin monomer twist angle and cleft distances in our MD simulations. 

In Figure 1B, we show that, as in previous simulations and experimental studies, an actin 

subunit in a filament is flat (ϕ ≥ −10°) and closed (d ⪅ 21Å)13–14 while a G-actin with bound 

ATP is twisted, (ϕ ⪅ −20°) and more open (d ⪆ 25Å).22, 25 Interestingly, in our simulation of 

an ATP-bound monomer starting from a filamentous configuration, the monomer readily 

adopts a G-actin like structure over the course of a relatively short MD simulation, 

suggesting that the twisted/open structure has a lower free-energy outside of a filamentous 

context, as expected based on known actin biology.13 Finally, we observe that the 

fluctuations of these two CVs for an actin monomer in solution are larger than in a filament, 

where allosteric coupling to adjacent actin subunits constrains the range of conformations 

(see Table 2).

Linear bias method can out-perform harmonic bias for matching target CV value

Unconstrained simulations of our hENM test system show a ϕ angle oscillating around the 

atomistic G-actin value from Figure 2B. Applying a harmonic bias (HB) to the hENM model 

of the form  with spring constant kϕ =103 kJ/mol/rad2 and even kϕ =104 

kJ/mol/rad2 centered at  moves the sampled value of ϕ closer to but not all the way 

to this target value. As discussed previously, applying this bias also substantially changes the 

size of fluctuations of this observable (see Table 2).6 In contrast, Figure 2C shows that when 

using the adaptive algorithm of Ref. 8, the target average is achieved exactly, although it 

takes some time to learn the bias parameter.

Adaptive algorithm has optimal averaging time for 1 CV

The adaptive algorithms discussed in the Methods section sample observable values over a 

time τavg before adjusting the bias parameter based on a learning rule. In Figure 1C we show 

in simulations of the hENM actin model that the convergence of the gradient descent 

algorithm can be very sensitive to the value of τavg, and appears to have an optimal value, in 

this case approximately 10–15 ps. Very short averaging windows produce a poor average of 

the variance of the observable used in the update rule, and very long averaging time 

produces a better average, but too long is spent on this process. An idea of how to set this 

can come from computing the autocorrelation function (ACF) for the CV in an unbiased 

simulation. For the twist angle, we estimate the autocorrelation time (when the ACF decays 

to 1/e) at ~ 4 ps. Hence to get a good estimate for the average and variance of this CV used 

in the algorithm, it seems that at least 2 autocorrelation times are needed. The speed of 
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convergence can also be adjusted by changing the constant A in the learning rule (in this 

case all simulations used A = 10 kBT), but we have found that having too large of an initial 

value of A can cause the bias parameters to overshoot, hence it is better to choose good 

values for τavg first, as this has a non-linear effect on the learning time.

Derivation and validity of a linear response approximation to bias parameters

If the target value for a CV is close to the value in an unbiased simulation, then we know 

that λi for that CV will be small. Hence, we can expand the exponential as a Taylor series 

around λi = 0. We will illustrate this derivation first for a single CV. From Eq. 5, we can see 

that when the correct Lagrange multiplier has converged for a CV f′:

(12)

Without loss of generality, we can consider the CV , with target value . 

Hence for this new CV, the left-hand side of this equation is zero and the denominator on the 

right-hand side, as a constant, does not affect the equality. We can then expand the 

exponential in the numerator and write:

(13)

Dividing both sides of the equation by the unbiased partition function , we 

can express each term as an average that can be obtained in the unbiased simulation. This 

gives an equation to be solved for the unknown constant λ.

(14)

If the averages 〈fj〉 can be computed accurately from an unbiased simulation, then this 

equation can be truncated at some power and solved for λ, using, for example, 

Mathematica.30 At first order, this equation is trivially solved:

(15)

For N CVs {fi} centered at the target value, we get N equations:
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(16)

At first order, we get the multi-dimensional equivalent expression to equation 15:

(17)

This solution is equivalent to taking a single step of Newton’s method (see, equation 10 and 

11).

These results are tested on the hENM model in Figure 2. In Figure 2D we vary the target 

value for the twist angle in an actin monomer from above to below the average ϕ. Using 

Mathematica, we compute the moments  and solve Eq. 14 numerically 

truncating from first to fifth order in λ. We find for the distribution of ϕ generated by our 

hENM model, the even-ordered solutions can be purely imaginary. However, the odd 

ordered equations always have a real solution and these are shown on the right as a function 

of how far the target is from the unbiased mean, scaled by the standard deviation, 

.

As expected, for target values close to the unbiased average, the bias parameter is very 

small. We observe that the first order approximation breaks down near Z = ±0.5 and the fifth 

order solution breaks down around Z = ±1. The linearity of the learned bias parameters in 

this range is likely a consequence of applying this method to a purely harmonic test system 

(although the cost of twisting ϕ is not perfectly quadradic).

Given the simplicity of computing the first order solution (even for N CVs), we suggest that 

future practitioners of these relative entropy minimization algorithms start with this as an 

initial guess. Since it arises from a linear response approximation, this amount of bias is 

unlikely to cause an irreversible change in the system when activated. However, in the rest of 

the data below, this is not done so as to show the full process of the learning algorithm.

Simultaneous update of bias parameters outperforms stochastic gradient descent

To fulfill our goal outlined in the introduction, we need to bias the actin monomer to behave 

as if it is in a filament. To do this, we will attempt to simultaneously bias four CVs: the twist 

angle and cleft distance, as well as their second moments (fluctuations). As discussed 

before, the optimal τavg for a CV is related to that CV’s auto-correlation time. The problem 

that can be encountered when going to multiple CVs is that there can be a large timescale 

separation. This forces a user of the method to use a τavg as big as needed for the slowest-to-

average CV. In the stochastic algorithm, only one CV is updated at a time, and so it is 

possible to have many long averaging periods in a row where only the faster averaging CV’s 

bias parameter is updated. In Figure 3A(top), we first show in simulations of the hENM 
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model that the SGD algorithm is effective for biasing the average cleft distance and twist 

angle. However, in order to bias these parameters and their second moments, a longer 

averaging time is needed, making convergence much slower. We show in Figure 3A(bottom) 

that in this case, using the full covariance matrix as in Eq. 10 greatly accelerates 

convergence (note that this is after choosing a 10x lower learning rate parameter A for the 

covariance calculation).

Levenberg-Marquardt algorithm greatly improves on gradient descent

Since we were no longer using the stochastic version of the optimization algorithm, we 

modified our learning algorithm to include the LM update rule.28 In Figure 3B, we compare 

results of LM to the covariance version of our algorithm. We see that the LM algorithm with 

γ = 0.01 accelerates convergence by another factor of >10x (~50 vs ~500 ns) over the 

covariance gradient descent. This allows us to easily see the difference in speed between the 

two algorithms. This also demonstrates that when using the more “intelligent” step sizes of 

the LM algorithm, we no longer find it necessary to tune A to get fast convergence. We also 

show one simulation using the adaptive algorithm described above. In this case, we see that 

the adaptive LM algorithm converges at about the same speed as the algorithm with its fixed 

initial γ. However, we note that this method may be useful in atomistic contexts (such as 

discussed in the following sections), where it could be advantageous to for this this 

confidence parameter γ to change as the atomistic system moves from one state to another.

Linear bias on monomer CVs is effective as a restraint, matches structure in filament

Having now developed and implemented improved learning algorithms, we sought to test 

these methods on the all-atom MD simulation of G-actin and F-actin monomers. The four 

CVs, cleft distance and angle, as well as their second moments, were targeted to match the 

values from a single actin monomer in the 13-mer simulation shown in Figure 1B (see Table 

2). The LM algorithm of all various flavors were found to converge in reasonable amounts of 

simulation time, with the amount of time required to match all CVs depending upon the 

particular parameters. In the upper panels of Figure 4A, we show a simulation using the 

adaptive LM that matches the target CVs in ~100ns, with a small error in all 4 CVs (see 

Table 2). We note that given the moderately large expense of simulating this system, we did 

not try to optimize the parameters used much beyond what was learned from the simpler 

hENM, besides increasing τavg to account for the slower fluctuations in the atomistic 

system. Nevertheless, the algorithms showed themselves to be robust, converging eventually 

in all trials of the LM algorithm with large enough τavg. The LM results in Figure 4A are 

compared to a harmonically biased simulation with a very large spring constant applied to 

both the twist angle and cleft distance CVs. Despite being ~10x larger than what was used 

previously in a QM/MM application,3–4 the harmonic bias (starting from the G-actin 

structure) fails to match the target twist angle. In Figure 4B, we compare the structure of this 

biased G-actin monomer to a filament subunit configuration. We see that as the algorithm 

progresses, the G-actin structure (which is already similar to an F-actin monomer structure) 

converges to a structure that has a lower RMSD to the target, although RMSD was not an 

observable explicitly biased. We note that previous simulation studies have shown that actin 

filaments are heterogeneous,20 and the RMSD of an actin subunit in a filament compared to 

another or compared to itself later in an MD simulation is typically in this range (for the last 
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100ns of the simulation in Figure 1B, the subunit-subunit RMSD is 3.35 ± 0.30 Å). Hence, 

we cannot expect to achieve a closer match than what is seen in Figure 4B without explicitly 

biasing RMSD.

In the lower panels of Figure 4A, the adaptive LM algorithm is used on a simulation of an 

actin monomer starting from a flat, filamentous like structure. In this case, it can be seen that 

around 50 ns, the structure begins to twist and open, as was seen in the unbiased simulation 

in Figure 1B. Remarkably, the bias algorithm is able to adapt to this change in observable 

and return the configuration to close to the target value. In other trials using the stochastic 

gradient descent and covariance gradient descent, the convergence was not fast enough to 

prevent the structure from twisting, and then it took a much longer time for the system to 

return to a flattened structure. We note that during this 200ns simulation, convergence is not 

yet achieved, meaning that there is greater error here/slower convergence to the target CV 

values than starting from the twisted structure. This seems to be a general trend, and we will 

consider this idea further in the Discussion section. Finally, in these lower panels we show 

the result of freezing the bias that has been learned at 80ns from the flat-monomer (before 

convergence) and show that the simulation approximately maintains the CV values from that 

starting time.

Biasing CVs in a larger subsystem is an effective alternative constrained moiety

When considering the problem of biasing a subsystem to represent aspects of its behavior 

within a larger supersystem, in general there will be many possible subsystems of different 

sizes to consider using. In most cases, it would be advantageous to choose the smallest 

system size possible, as we have done by choosing a single actin subunit in a filament. 

However, larger systems afford the advantage of representing a more native-like context; for 

example, including more protein-protein interfaces. To demonstrate this idea, we tested our 

algorithms for an actin trimer which was previously used in a metadynamics study19 of the 

nucleotide effect on the conformational states of actin (Figure 5A). In Figure 5B, we show 

data from a simulation where the cleft distance and dihedral angle in all three actin subunits 

are biased, but in this case only the mean values for these six CVs are set. The algorithm is 

able to find six parameters for which all the CVs closely match their target values (see Table 

2). Interestingly, due to the allosteric coupling between monomers, variances of these six 

CVs are much closer to the full filament values than in the case of an unbiased monomer. 

This is reflected in Figure 5C where the dihedral angles of an unbiased trimer simulation are 

histogrammed and compared to the filament value, with the unbiased dihedral distributions 

having only ~35% larger standard deviations than an actin subunit in a filament (and the 

distance distribution being even closer, ~20% different, not shown). When the bias is 

applied, then, the peak of the distribution shifts as desired while leaving the rest of the 

distribution approximately the same. The result is only ~10% error in the mean of twist 

angle and <15% error in the second moment (with distances having <3% error in both). 

Although a larger system, we believe this kind of tradeoff between size and additional 

molecular context could be appropriate in some future applications of our GCDS 

methodology.
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Discussion and Conclusions

In this work, we present the idea that linear biases learned by a relative entropy 

minimization scheme can be used to restrain a molecular system in such a way that it retains 

some information about its behavior within a larger macromolecular “supersystem” context. 

In particular, we show that in the case of actin, we can bias two CG observables and their 

second moments, with the result being that an actin monomer can adopt and maintain a 

filament-like conformation with native-like fluctuations in these observables. Although the 

CGDS algorithm takes some time as compared to simply applying a harmonic bias, these 

methods can achieve a closer match for the distribution of the target observables. We have 

also made a number of algorithmic improvements which for this application greatly reduce 

the amount of sampling needed to learn the biasing parameters, down to a very reasonable 

amount of simulation time (<100ns), and produce systems that would be appropriate for use 

in subsequent free energy or reactive (QM/MM or otherwise) MD simulations where a small 

subsystem is required but including the effects of larger scale fluctuations are expected to 

affect the results.

In previous studies from our group, the stochastic gradient descent algorithm was sufficient 

to learn biasing parameters in a very short amount of simulation time.8, 11 We note that the 

context we are presenting here is very different, where within the simulation the observables 

to be biased depend on the positions of a few CG observables. In the previous studies, the 

systems of interest were isotropic liquids, and the CVs of interest (averages over radial 

distribution functions) depend on the pairwise distance between each molecule. This 

produces a self-averaging such that the effect of changing the biasing parameter can be 

sampled over many environments simultaneously. In the protein context, the relaxation time 

of the observable is much longer and moreover it is likely to be sampled only over a single 

copy of the system. We suggest that (1) starting from a linear response approximation to the 

bias parameters, (2) optimizing sampling time, and (3) using methods such as the 

Levenberg-Marquardt algorithm that take advantage of covariance and try to make “smart” 

step sizes based on that information, are all important steps that should be applied in this 

(CGDS) context. Although we suspect these three steps are likely useful in the prior cases, 

in practice the learning time for previous applications was not a bottleneck.

Previously, there was some concern in the literature that using the full covariance matrix 

with correlated observables might result in an optimization problem that was non-convex 

and might not converge.6 Although in this work we have biased both the first and second 

moment of our CVs, which are correlated, we have not found this to be a problem in practice 

(as also discussed in Ref. 9). Another concern with using the full covariance matrix and a 

Newton-like method with correlated observables is that it might be singular and hence 

produce divergent step sizes in the iterative algorithm. As noted previously, the Levenberg-

Marquardt term proportional to γ (Eq. 10) is specifically designed to avoid this problem.28

Finally, we return to one challenge encountered during our CGDS studies, which is that 

these adaptive algorithms are not well tailored to biasing a system that starts close to a target 

configuration in a state that is metastable on simulation time scales. An idealized free energy 

surface in such a case is likely to look something like the illustration in Figure 6. We in fact 
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know this for an actin monomer from previous and ongoing umbrella sampling and 

metadynamics simulations using these CVs to obtain the free energy landscape for actin 

flattening.21, 31 If the starting state of the system is a local free energy minimum, such as for 

an ATP-bound actin monomer in a flattened configuration, then the initial estimate for the 

Lagrange multiplier on that CV will be close to zero until fluctuations begin to cause the 

system to drift towards a deeper minimum. This is exactly what is observed in Figure 4A. 

On the other-hand, starting in another state is less desirable for two reasons: (1) starting from 

the lower free energy minimum, the Lagrange multiplier estimate may be very large at first, 

and then it may take some time once the system is near the target state for the Lagrange 

multiplier to return to its fixed point, and (2) during this process, there is no guarantee that 

the simulation will find the target structure as the values of the CVs are improved (although 

we demonstrate in Figure 4B that this was not an issue for the case of G-actin). This is a 

challenge for which we do not yet have a complete solution. Yet, we have found in our 

experience that biasing the second moment of the target CV in addition to the mean when 

starting from the higher free-energy state goes a long way towards solving this problem. We 

believe that this is because, as illustrated in Figure 6, even if the minimum for the subsystem 

has the same mean as the target system, it is likely to be much less constrained, and hence 

will have a much wider basin in any CG CV such as the ones considered in this work.

The present paper does not claim to provide the final word in the development of CG 

“guided” or “directed” methods to bias an all-atom MD simulation of a subsystem within a 

larger supramolecular complex, so that it “feels” certain key effects of being in the 

macromolecular supersystem, such as a structural bias and altered fluctuations. However, we 

suggest that the CGDS method developed herein is an important step in that direction. We 

will certainly improve and extend this approach in the future, and we encourage other 

researchers to contribute to this effort.
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Figure 1. 
(A) Left, a snapshot from an actin filament simulation shows one actin subunit in ribbon 

style with a bound ATP molecule, surrounded by adjacent subunits. Right, a single actin 

subunit is overlaid with CG beads at the center of mass of its four major subdomains. 

Important CVs describing the transition from globular to filamentous conformation are the 

“cleft distance” from bead 2 to 4, and the “twist” dihedral angle formed by the four 

subdomains, a rotation around the central “bond” as shown. (B) The values of twist angle 

and cleft distance are shown for three systems. In blue is a single actin subunit within a 

filament, in green, a single G-actin in solution starting from its crystal structure, and in red, a 

single actin in solution starting from the filamentous structure.
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Figure 2. 
(A) Twelve-site hENM of an ATP-bound actin monomer parameterized as described in the 

main text. The four major subdomains of actin are labeled, and cleft distance and twist angle 

CVs are defined as in Figure 1A. (B) Twist angle for an unbiased hENM, as well as with a 

harmonic bias with force constants 103 and 104 kJ/mol/rad2 centered at  (dashed 

line). (C) Twist angle evolution as well as biasing parameter using gradient descent 

algorithm of Ref. 8 is shown for different τavg. (D) Left, bias parameter as in C (τavg = 10ps) 

with target values for ϕ from −25.2° to −9.16°. Right, comparison of final bias parameters on 

left (dots) with first, third, and fifth order predictions given in the main text. The horizontal 

axis shows difference of target ϕ from ϕunbiased scaled by the unbiased standard deviation as 

computed from data in (B).
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Figure 3. 
(A) Simulation of hENM model using stochastic gradient descent (blue) and full covariance 

matrix (green) to bias the two shown CVs as well as their variance, with otherwise identical 

algorithmic parameters, (B) The full covariance method is compared to the Levenberg-

Marquardt (LM) algorithm with γ = 0.1, γ = 0.01, and the adaptive algorithm with starting 

γ = 0.1.
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Figure 4. 
(A) Top, Adaptive Levenberg-Marquardt (LM) algorithm matching 4 CVs: cleft distance, 

twist angle, and their second moments is compared to harmonic bias on angle and distance 

with large spring constants on both. Data is for all-atom MD simulations of the G/monomer 

system in Figure 1. Bottom, in blue, the LM algorithm is performed on an actin monomer 

starting from a filament structure (F/monomer in Figure 1). In red, the bias parameters at 

time 80 ns are fixed and a separate simulation is run using this learned bias. (B) Comparison 

of the structure of the G/monomer in the LM trajectory from (A,top) with a filament subunit 

by backbone RMSD. Color shows progress along the trajectory in (A).
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Figure 5. 
(A) Illustration of all-atom three actin sub-filament with CG subdomains from Figure 1A 

overlaid. (B) Twist angle and cleft distance for each of the subunits in (A) during LM bias 

simulation. (C) Observed distribution of twist angles in the final 50ns of an unbiased 100ns 

simulation of the structure in (A) (dashed line) vs. the final 50ns of the biased simulation 

with data plotted in (B) and the final 50 ns of filament data from Figure 1B.
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Figure 6. 
A structure of a target system (in this study, an actin filament) is likely to be known from 

experiment, and as such is in a relatively deep local free-energy minimum. Hence, the 

observed values for a CV (Q) are likely to be normally distributed around a single value 

(with a roughly harmonic potential of mean force F(Q)). When a sub-structure such as an 

actin monomer is removed to solution, the starting structure (A) will likely still be near a 

local free energy minimum, however there may be alternative lower free-energy 

configurations (B). The initially-estimated Lagrange multipliers needed to have the 

subsystem stay in state A will depend on whether the system starts in state A or B.
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Table 1

Algorithmic parameters

Fig/System Algorithm Parameters

Fig. 2B/hENM HB

, , 

Fig. 2C/hENM SGD
, τ̅avg = from 1–100 ps

Fig. 2D/hENM SGD

, . 

Fig. 3A (top)/hENM SGD
τavg = 10 ps, A = 10kBT, , 

Fig. 3A (top)/hENM Covar See above, but A = 1kBT

Fig. 3A (bottom)/hENM SGD

τavg = 100 ps, A = 10kBT, , , , 

Fig. 3A (top)/hENM Covar See above, but A = 1kBT

Fig. 3B/hENM Covar

τavg = 100 ps, A = 1kBT, , , , 

LM See above, with γ = 0.1,0.01

Adaptive LM See above, with γ0 = 0.1, m = 3, l = 1.2, LM_stride = 10

Fig. 4A (top), 4B/G-
monomer

HB

, , 

Adaptive LM
τavg = 100 ps, A = 10kBT, γ0 = 0.1

, , , , m = 3, l = 1.2, 
LM_stride = 100

Fig. 4A (bottom)/F-monomer Adaptive LM See above, except γ0 = 0.1

Frozen bias 
(after 80 ns 
of above)

, , , 

Fig. 5B,C LM
τavg = 100ps, A = 1kBT, γ0 = 0.01

, 
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Table 2
Observed values for collective variables parameters

Quantities are computed for the final 50ns shown in each figure. Percentages are comparison with respect to a 

single actin monomer, data on the first line of the table (bold). Biased parameters are underlined.

Fig. 1B/F-actin (1 subunit) 20.62 (0.0%) 425.03 (0.0%) −6.32 (−0.0%) 40.86 (0.0%)

Fig. 1B/G-monomer 23.82 (15.5%) 568.15 (33.7%) −16.93 (168.0%) 290.70 (611.4%)

Fig. 1B/F-monomer 26.52 (28.6%) 704.00 (65.6%) −17.37 (175.0%) 307.00 (651.3%)

Fig. 2B/hENM (no bias) 23.95 (16.2%) 574.24 (35.1%) −17.44 (176.1%) 317.18 (676.2%)

Fig. 2B/hENM HB K=1000 23.79 (15.4%) 566.72 (33.3%) −10.54 (66.8%) 116.27 (184.5%)

Fig. 2B/hENM HB K=10000 23.82 (15.5%) 568.04 (33.6%) −6.95 (9.9%) 49.07 (20.1%)

Fig. 2C/hENM SGD τavg = 15 ps 23.88 (15.8%) 570.98 (34.3%) −6.30 (−0.2%) 54.97 (34.5%)

Fig. 3A/hENM SGD 2 CV 20.62 (−0.0%) 425.72 (0.2%) −6.48 (2.6%) 52.02 (27.3%)

Fig. 3A/hENM Covar 2 CV 20.65 (0.2%) 427.28 (0.5%) −6.53 (3.4%) 52.65 (28.8%)

Fig. 3A/hENM SGD 4 CV 20.60 (−0.1%) 425.03 (−0.0%) −6.50 (2.8%) 50.99 (24.8%)

Fig. 3A&B/hENM Covar 4 CV 20.60 (−0.1%) 424.88 (−0.0%) −5.99 (−5.2%) 40.03 (−2.0%)

Fig. 3B/hENM LM γ = 0.1 20.62 (0.0%) 425.95 (0.2%) −6.04 (−4.3%) 44.52 (8.9%)

Fig. 3B/hENM LM γ = 0.01 20.63 (0.0%) 426.02 (0.2%) −6.07 (−4.0%) 44.63 (9.2%)

Fig. 3B/hENM LM Adapt γ0 = 0.1 20.62 (0.0%) 425.94 (0.2%) −6.02 (−4.7%) 43.97 (7.6%)

Fig. 4A/G-monomer HB 2 CV 20.87 (1.3%) 435.78 (2.5%) −7.37 (16.7%) 55.38 (35.5%)

Fig. 4A/G-monomer LM Adapt 4 CV 20.55 (−0.3%) 422.51 (−0.6%) −6.04 (−4.4%) 38.03 (−6.9%)

Fig. 4A/F-monomer LM Adapt 4 CV 20.44 (−0.8%) 418.08 (−1.6%) −5.11 (−19.1%) 28.01 (−31.5%)

Fig. 4A/F-monomer Fixed Bias 4CV 20.32 (−1.4%) 412.95 (−2.8%) −4.37 (−30.9%) 20.56 (−49.7%)

Fig. 5/Trimer-A1 LM Adapt 20.32 (−1.4%) 412.90 (−2.9%) −6.21 (−1.7%) 40.78 (−0.2%)

Fig. 5/Trimer-A2 LM Adapt 20.53 (−0.4%) 421.68 (−0.8%) −7.03 (11.3%) 51.62 (26.3%)

Fig. 5/Trimer-A3 LM Adapt 20.53 (−0.4%) 421.39 (−0.9%) −6.75 (6.8%) 47.31 (15.8%)
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