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Significance: Damage-associated molecular patterns (DAMPs) and pathogen-
associated molecular patterns (PAMPs) emanate from burn-injured tissue and
enter systemic circulation. Locally and systemically, they activate pattern-
recognition receptors, including toll-like receptors (TLRs), to stimulate cytokine
secretion, which in the severest burns typically results in extreme systemic
cytokine levels, a dysfunctioning immune system, infection, impaired healing,
and excessive scarring. This system-wide disruption of homeostasis can advance
to life-threatening, multiorgan dysfunction syndrome. Knowledge of DAMP-
and PAMP-TLR signaling may lead to treatments that ameliorate local and
systemic inflammation and reduce scarring and other burn injury sequela.
Recent Advances: Many PAMPs and DAMPs, the TLRs they activate, and their
downstream signaling molecules have been shown to contribute to local and
systemic inflammation and tissue damage following burn injury.
Critical Issues: Whether TLR-pathway-targeting treatments applied at different
times postburn injury might improve scarring remains an open question. The
evaluation of this question requires the use of appropriate preclinical and
clinical burn models carried out until after mature scar has formed.
Future Directions: After TLR-pathway-targeting treatments are evaluated in
porcine burn wound models and their safety is demonstrated, they can be tested
in proof-of-concept clinical burn wound models.
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SCOPE AND SIGNIFICANCE

Toll-like receptor (TLR) signaling
is involved in damaged tissue sensing
and wound repair, but also contributes
to burn wound progression and sys-
temic inflammation. TLR signaling is
activated by pathogen-associated mo-
lecular patterns (PAMPs) of bacteria
present in injured tissue and damage-
associated molecular patterns (DAMPs)
of injured tissue to produce cytokines.
Early after burn injury, DAMPs as
well as cytokines are elevated in cir-
culation and contribute to systemic
inflammation and secondary tissue
damage that increase susceptibility to

infection, impair healing, and worsen
scarring. The potential of TLR sig-
naling as a therapeutic target for im-
proving burn outcomes is the subject
of this review.

TRANSLATIONAL RELEVANCE

In animal burn models, suppressing
TLR signaling has reduced inflamma-
tion in wounds and systemically. Dur-
ing the inflammation phase of healing,
suppressing excessive inflammation
by a variety of experimental means
can mitigate tissue damage and im-
prove healing. Lessening inflammation
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during the proliferation and remodeling phases can
also potentially benefit scar outcomes. However,
after the inflammation phase, reducing inflamma-
tion has impaired healing in some animal models.
Thus, treatments to improve scar outcome must be
properly timed and titrated and the risks of stalled
healing and infection must be managed.

CLINICAL RELEVANCE

Hypertrophic scars develop typically after the
prolonged inflammation of slow-healing burn
wounds.1 In clinical studies, the size of burn injury
correlated with the level of circulating DAMPs
(e.g., decorin and cell-free nucleic acids) and cyto-
kines. In addition, early (2 weeks postburn) serum
levels of decorin, a TLR2 and TLR4 ligand, were a
factor (along with early interleukin [IL]-1b and late
transforming growth factor [TGF]-b) that was sug-
gested to predict hypertrophic scar.2 Thus, reducing
DAMP- and PAMP-TLR signaling can potentially
improve deep burn outcomes by mitigating injury
progression, systemic inflammation, and the pro-
longed inflammation and healing associated with
hypertrophic scarring.

BACKGROUND

In the 1960s before early eschar excision and
grafting was the standard of care for deep burns
and before TLRs were discovered, burned skin ex-
tracts injected into the abdomen of mice produced
an 80% mortality rate, whereas nonburned skin
extracts had no effect. A thermally denatured lipid–
protein complex was isolated from the burn ex-
tracts that when injected into mice mimicked many
effects of burns on the immune system, such as
increased susceptibility to Pseudomonas infection,
suppressed immune responses to sheep erythro-
cytes and bacterial endotoxin, and inhibited IL-2-
dependent cell growth in culture.3

Since these early studies of burned-tissue sig-
naling, numerous DAMPs and PAMPs have been
found to activate TLRs, and the crystal structures of
some of these PAMP-TLR complexes have been
solved.4 DAMPs and PAMPs are among the nu-
merous signaling molecules that activate the innate
immune system, protecting damaged tissue from
infection, and participating in the repair of burn-
injured skin. Nonetheless, TLR signaling pathways
also contribute to tissue-damaging inflammation.

DISCUSSION
The need for anti-scar treatments

Deep partial-thickness burn wounds destroy
blood vessels and skin appendages (Fig. 1). These

wounds typically heal in 3–8 weeks with severe
scars that can be raised, red, hard, with abnormal
sensations, contraction, severe functional impair-
ment, psychological morbidity, and costly long-term
healthcare.5 Unlike full-thickness burns that
require eschar excision and grafting, deep partial-
thickness burn wounds retain some dermal ele-
ments that provide regenerative capacity but
contribute to hypertrophic scarring. Hypertrophic
scars develop in more than half of deep partial-
thickness burn wounds, typically after prolonged
inflammation, and once formed, treatments are only
minimally effective.6 Therefore, treatments are nee-
ded that promote regenerative healing before these
scars form. TLR signaling pathways are among the
candidate molecular targets for such treatments.
Hitting these targets can limit inflammation and fi-
brosis, but risks infection and inhibited healing.

Outlines of TLR signaling
TLR signaling stimulated by DAMPs and

PAMPs produces a cytokine-rich milieu for clear-
ing necrotic debris and infection and setting the
stage for angiogenesis and granulation tissue for-
mation. TLR signaling activates the expression of
many molecules, including cytokines and adhesion
molecules that promote leukocyte recruitment and
activation.7 There are 13 TLRs in mice and 10 in
man. Of the 10 human TLRs, 6 of them are located on
the cell surface (TLR1, 2, 4, 5, 6, and 10) where they
bind a diversity of molecule types, whereas TLR3, 7,
8, and 9 are in endosomes and sense nucleic acids.
Ligand binding to TLRs activates the transcription
factors CREB, AP-1, NFjB, IRF3, and IRF7 (Fig. 2).

The DAMPs that activate TLRs and other pattern-
recognition receptors can be categorized into: (1)
proteins secreted through a nonclassical secretion
mechanism involving secretory lysosomes—for ex-
ample, high mobility group box (HMGB)1 and
galectin-3; (2) molecules released by necrotic cells—
for example, S100 proteins, HMGB1, IL-1a, galectin-
3, HSP60, HSP70, HSP72, histones, and nucleic
acids; and (3) extracellular matrix molecules—for
example, hyaluronan, heparin sulfate, fibronectin,
and degraded matrix constituents. Numerous
DAMPs have been identified. Theoretically, every
molecule that normally resides inside cells and is
extruded or is part of the extracellular matrix and is
disrupted by tissue damage may potentially function
as a DAMP; and hydrophobic surfaces in general
have been proposed to act as DAMPs.8 Interestingly,
the unique proteins detected in human plasma after
trauma mostly reside inside cells.9

PAMPs in burn wounds come from pathogens
and skin microbiota that enter the dermis through
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Figure 1. Depths of cutaneous burn injuries. Shown are superficial, partial-thickness, deep partial-thickness (DPT), and full-thickness (to hypodermis, shown
by dotted line, or beyond) cutaneous burn injuries.

Figure 2. Outlines of DAMP- and PAMP-TLR signaling resulting in the production of cytokines and interferons. For the details of these outlines, see O’Neill
et al.4 (image modified from4). DAMPs and PAMPs activate similar receptors and converge on similar signaling pathways. The transcription factor–activating
kinases are prominent drug targets. Image of thermally injured patient was provided by Rodney K. Chan. DAMP, damage-associated molecular pattern; PAMP,
pathogen-associated molecular pattern; TLR, toll-like receptor.
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the breached epidermal barrier. In normal skin,
bacterial counts have been quantified using quan-
titative real-time polymerase chain reaction (16S
rRNA gene) to be 1,000,000; 50,000; and 10,000 per
square centimeter for the lower epidermal layers
(punch biopsies), the intermediate layers (scrapes),
and the epidermal surface (swabs), respectively,10

and the bacteria were of diverse species.11 There-
fore, once the epidermis is disrupted by burn, these
bacterial PAMPs likely activate TLR signaling,
possibly most strongly in the microenvironment
surrounding hair follicles where bacteria are con-
centrated.12 With time as the epidermal barrier
remains disrupted, ambient external pathogens
have opportunity to infiltrate the wound.

TLRs are expressed by circulating leukocytes
and a number of cells in the skin, including kera-
tinocytes, Langerhans cells, T and B cells, mast
cells, endothelial cells, myofibroblasts, and pri-
mary fibroblasts that can release cytokines.13

Burn injury progression
Over the first 2 days after a partial-thickness

burn injury, the damaged tissue can expand. This
‘‘burn wound progression’’ is thought to result from
progressive ischemia due to thrombosed vessels,
increased capillary permeability, hypoperfusion,
and oxidative damage, which are exacerbated by
locally released signaling molecules from extra-
cellular matrix and ruptured necrotic cells (i.e.,
DAMPs and PAMPs) that activate surviving
proximal cells to produce inflammatory media-
tors.14 In addition, burn progression likely involves
ischemia/reperfusion (I/R) injury because burned-
tissue blood flow on the day of injury fluctuated
repetitively (Laser Doppler Imaging) in parallel to
changes in base deficit.15 In other types of tissue
damage involving I/R injury, the importance of
TLR signaling, including HMGB1-TLR signaling,
has been demonstrated in a large number of in vivo
studies (see Ref.16 Tables 1 and 2). In peri-burn
tissue during injury progression, necrotic cells re-
leased HMGB1 from chromatin into the cytoplasm
and extracellular space.17 Extracellular HMGB1
under the highly oxidizing conditions of burns is
expected to be in the C23-C45 disulfide form, which
activates TLR4 to induce cytokines.18 In addition,
oxidized lipoproteins can stimulate TLR2 and
TLR4, resulting in inflammation,19 suggesting that
oxidized macromolecules in burn tissue may acti-
vate this inflammatory pathway.

Although HMGB1-TLR signaling has not been
studied in burn-injured tissue per se, in an I/R he-
patic injury model (mouse), HMGB1-neutralizing
antibody decreased injury and, conversely, ad-

ministration of recombinant HMGB1 worsened it,
but only in TLR4-competent mice, suggesting that
HMGB1-TLR4 signaling can mediate tissue dam-
age under I/R redox conditions, as occurred during
wound progression.20 Furthermore, when HMGB1
was knocked out specifically in hepatic epithelial
cells, there was a profound reduction of infiltrating
neutrophils and inflammatory-gene expression,21

suggesting that HMGB1 may be generally required
for recruiting neutrophils to necrotic tissue where
they may amplify tissue injury.

Burn eschar contributes to inflammatory
signaling and scarring

The burn eschar likely contributes to inflam-
matory signaling and scarring at least partially by
acting as a reservoir of DAMPs and PAMPs. Pa-
tients with >40% total body surface area (TBSA)
burns whose eschars were excised early showed
reductions in circulating cytokines, hypermetabo-
lism, and mortality.22 In addition, in a mouse study
that compared early (day 1) and late (day 8) exci-
sion of 8%-TBSA full-thickness burns (without
grafting), early excision of the eschar prevented the
extreme inflammation and immune dysfunction
occurring after late excision (analyzed on day 2 and
6 post eschar excision) that is associated with sus-
ceptibility to infection, organ dysfunction, and
scarring.23 In porcine models, early eschar excision
accelerated reepithelialization and reduced scar-
ring compared with no excision or delayed exci-
sion.24,25 These results suggest that the longer the
necrotic eschar remains in situ, the more the in-
flammation and scarring, which may result at least
partially from continuously-released DAMPs and
PAMPs within the eschar.

Water loss from breached and immature
epidermis signals inflammation
through S100A12-TLR4

Evaporative water loss from breached epidermis
increases sodium concentration, which can in-
crease inflammation and scarring.26 An increase in
sodium concentration of 10% mimics the increase
in sodium concentration due to water loss from
injured epidermis. Keratinocytes exposed to 10%
higher sodium or cultured stratified keratinocytes
exposed to reduced hydration secreted increased
amounts of the TLR4-activating protein S100A12
(and expressed increased transcripts for COX-2,
IL-1b, and IL-8). In addition, reduced hydration
caused a sixfold increase in a-smooth muscle actin
(SMA) transcripts of fibroblasts in keratinocyte–
fibroblast cocultures, which was abolished by RNA
interference (RNAi) knockdown of S100A12 in the
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keratinocytes before coculture. Furthermore, re-
combinant S100A12 activated fibroblasts alone in
culture, and this activation was diminished by
specific antagonists of TLR4 or receptor for
advanced glycation end product (RAGE), which
additively inhibited the fibroblast activation.
Moreover, intradermal delivery of recombinant
S100A12 to rabbit-ear excision wounds resulted in
hypertrophic scar.26

In burn wounds, water loss also likely upregu-
lates the secretion of S100A12 that activates TLR4,
which upregulates inflammatory mediators, acti-
vating fibroblasts to increase scarring. Water loss
stays elevated long after reepithelialization of
cutaneous wounds in general; for example, split-
thickness skin-graft donor sites completed re-
epithelialization by postwound day 14, but water
loss from the immature epidermis remained ele-
vated for 200–400 days.27 In addition, S100A12
was highly expressed in hypertrophic scar,28 which
occurs commonly after deep partial-thickness
burns. And, S100A12 expression was elevated from
postburn day 0–17 in the margins of partial-
thickness burn wounds in a clinical study29 (Fig. 3).

These studies suggest that pharmacological tar-
geting of pathways downstream of water loss could
potentially improve scarring, and they also support
the use of occlusive water-impermeable barriers
(e.g., silicone sheets) applied after reepithelializa-
tion to reduce scarring (as discussed26). In addition,
topical treatments that reduce signaling resulting

from water loss before reepithelialization might
possibly benefit scar outcome, consistent with the
benefits of moist wound healing.

PAMP-TLR signaling in burn wounds
Although infections impair healing, low-level

bacterial colonization of wounds can sometimes
help healing, depending on the level of colonization
and the wound type.13 The normal inflammation
at the edges of full-thickness incision wounds was
reduced in Tlr3-/- mice, suggesting that double-
stranded RNA (dsRNA) from damaged cells
normally activates TLR3 signaling. However, Sta-
phylococcus epidermidis lipoteichoic acid (LTA)
applied to the wounds inhibited the increase in IL-6
and tumor necrosis factor (TNF)-a at the wound
edge of wild-type but not Tlr3-/- mice.30 In vitro, in
primary human keratinocytes, S. epidermidis LTA
activated TLR2 signaling that inhibited dsRNA-
TLR3 signaling. Mechanistically, LTA-TLR2 sig-
naling induced TRAF1, which inhibits TRIF, an
adaptor protein required for TLR3 signaling. Thus,
S. epidermidis appears to balance the normal in-
flammatory dsRNA-TLR3 signaling during heal-
ing, and this mechanism might possibly function in
the microenvironment of the wound edge where
local inflammation may be downregulated when
keratinocytes touch S. epidermidis.

Although LTA-TLR2 signaling inhibited dsRNA-
TLR3 inflammatory signaling of keratinocytes
in vitro and inhibited cytokine production at the

Figure 3. Elevated gene expression in the margins of clinical partial-thickness burn wounds. These data were obtained from a clinical study by Greco and
Nanney and colleagues that used the Affymetrix U133 plus 2.0 GeneChip�29 to evaluate global gene expression in the wound edge of burns at postburn time
periods: Early (0–3 days), Middle (4–7 days), and Late (7–17 days). The significantly elevated genes graphed were extracted from Gene Expression Omnibus
accession record GSE8056 (using R69). The genes shown were upregulated in cultured keratinocytes in response to high sodium, dependent on the activity of
the sodium channel Nax (scn7a).28
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incision wound edge, LTA-TLR2 signaling con-
versely stimulated cytokine production by other
cell types in vitro: macrophages and dendritic and
endothelial cells.30 Thus, the activation of TLR2
signaling by skin flora might benefit or impair
wound healing depending on the wound locale.

Deep partial-thickness burn wounds, compared
to incision wounds, have a large surface area where
LTA-TLR2 signaling might be inflammatory. At
the wound perimeter and at appendage stubs,31

such as hair follicles where bacteria are concen-
trated,12 LTA-TLR2 signaling might be predomi-
nantly anti-inflammatory—hypothetically, to
protect sites of regenerative growth.

Such speculative beneficial effects of skin micro-
biota, however, might be eliminated by anti-microbial
standard-of-care treatments, such as silver sulfadia-
zine cream, possibly explaining at least partially why
this treatment has both retarded healing in several
studies and increased hypertrophic scarring (rabbit
ear excisional wound model).32

The importance of PAMP-TLR signaling in
noninfected wounds has also been suggested by
studies of germ-free mice. Never exposed to bacte-
rial products, these mice expressed much less
TRAF1 in their skin,30 as expected since they lack
Staphylococcal LTA to stimulate TLR2 and in-
crease TRAF1 (possibly to balance dsRNA-TLR3
inflammatory signaling). However, despite lacking
this anti-inflammatory mechanism, the wounds of
germ-free mice had fewer neutrophils, more mast
cells, more macrophages expressing healing genes,
increased angiogenesis, accelerated healing, and
reduced scar—which were reversed when germ-
free mice were ‘‘conventionalized’’ by receiving the
conventional-mouse microbiota.33 Thus, the im-
proved wound healing of germ-free mice might re-
sult from their complete absence of PAMP
signaling in wounds and/or to an alternatively
configured immune system resulting from the
lifetime absence of microbiota.

Conversely, bacterial colonization benefited
wound healing in some studies (as described in13),
suggesting that heightened inflammation may aid in
clearing necrotic debris and increasing blood flow.
But these studies used rodents that are million-fold
more resistant to endotoxin or bacterial loads com-
pared to humans.9 In human partial-thickness burn
wounds that already have high inflammation, bac-
terial colonization may not be beneficial.

Large burns disrupt homeostasis systemically
As with other traumatic injury, large burn injury,

*20% TBSA and greater, can hyperactivate in-
flammatory cascades that can result in systemic cy-

tokine storm with a paralyzed immune system that
can progress to multiorgan dysfunction syndrome
(MODS) in the most severe cases.34 The inflamma-
tory cascade is initiated in the wound as signals,
including DAMPs, ignite local inflammation. The
inflammation, as well as damaged and clogged blood
vessels, cause local edema, increased hydrodynamic
pressure, I/R injury, and redox imbalance, which
contribute to local spreading of tissue damage (burn
injury progression) and an immune response that
can spillover into the circulation to result in system-
wide capillary leak, edema, and the release of large
amounts of oxygen and nitrogen radical species.
Stress hormones surge, up to more than 10-fold
baseline, and can persist together with hyperme-
tabolism and catabolism for up to and beyond 2 years
after severe burn injury.35 Circulating cytokine lev-
els are altered before the metabolic abnormalities,
and larger burns produce greater and more persis-
tent perturbations in circulating inflammatory me-
diators, immune functions, and stress hormones, as
well as more severe catabolism and hypermetabolism
to compensate for the evaporative water and heat
loss due to the denuded skin.22 The systemic effects of
large burns include increased susceptibility to infec-
tion, organ damage and dysfunction, disrupted
healing, hypertrophic scarring, and at the extreme
end, MODS and mortality (Figs. 4 and 5).

In a large study of >20% TBSA burns, white
blood cell (WBC) gene expression was drastically
changed (*80% of genes), referred to as a ‘‘genomic
storm,’’ which showed simultaneous upregulation
of innate immunity and compensatory anti-
inflammatory responses, together with down-
regulation of adaptive immunity.9 Among the
upregulated innate immunity genes were 8 of the
10 human TLRs (Fig. 6), with the two down-
regulated TLRs being the endosome-localized
TLR3 and TLR7 that recognize dsRNA and single-
stranded RNA, respectively.9

DAMPs/cytokines at early postburn times
Extensive WBC gene expression changes fol-

lowing severe burns9 likely result at least, in part,
from DAMPs elevated in circulation. In a mouse
model of *30% TBSA full-thickness scald injury,
mitochondrial DNA (mtDNA) was elevated three-
fold in plasma at 3 h postburn, and it remained
significantly elevated up to 4 days before returning
to baseline by day 10.36 In mice with 25% TBSA
full-thickness burn, DAMPs (cytochrome C,
HMGB1, fibronectin, and hyaluronan) were ele-
vated in plasma as early as 3 h postburn at the
same time that TNF-a, IL-6, and IL-10 were ele-
vated, but these cytokines stayed elevated longer,
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until 24 h postburn.37 However, by day 3, all the
DAMPs and cytokines dropped to baseline, except
hyaluronan which remained elevated out to the
final time point on day 7.

In a prospective clinical study, cell-free nuclear
DNA (nDNA) was elevated*10-fold (2,685 genome-
equivalents/mL) in the plasma of flame/flash burn
patients and *2-fold in the plasma of scald burn
patients several hours after injury; and in the scald
burn cohort, the circulating nDNA quantity corre-
lated with the burn TBSA and the number of oper-
ations needed.38 In addition, using a direct rapid
fluorometric technique, cell-free DNA at patient
admission was elevated 5-fold and correlated with
the degree of burn and TBSA.39 Both nDNA and
mtDNA can activate TLRs, and condensed com-
plexes of these self-DNAs with proteins such as

histones, HMGB1, and LL-37 can protect them from
nucleases and may be crucial for their delivery to
endosomes and TLR9 (discussed in40).41

In addition, another DAMP, decorin, was ele-
vated in patient serum for 2 weeks after burn injury,
correlated with TBSA, and predicted hypertro-
phic scar better than burn size.2 Decorin is a
small leucine-rich proteoglycan that can activate
TLR4 (and downstream p38, extracellular signal–
regulated kinase [ERK], and NF-jB pathways) and
lead to increased secretion of TNF-a, pro-IL-1b, and
leukocyte chemoattractants.2

DAMPs from mitochondria, in addition to
mtDNA, appear to contribute to systemic and local
wound inflammation since they activate neutrophils.
In vitro, these DAMPs (supernatants of mito-
chondrial sonicates), but not purified mtDNA,

Figure 5. Disruption of systemic homeostasis following burn injury. Larger, deeper, and infected wounds produce uncontrolled inflammation with dysre-
gulated systemic inflammation, susceptibility to infection, organ damage and dysfunction, impaired healing, and high risk for hypertrophic scar (red arrows).

Figure 4. Correlation between burn size and systemic effects. The relationship is not necessarily linear.
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activated neutrophils, as well as their p38 and
ERK1/2 MAPK signaling,42 and inhibition of
these TLR-downstream kinases by small mole-
cules blocked the neutrophil activation.43 In ad-
dition, mitochondrial DAMPs administered
intravenously to rats, in an amount equivalent to
5% of their liver, caused marked injury to lung
tissue.42

Overall, the results suggest that DAMPs re-
leased from traumatized tissue activate circulating
leukocytes, as well as various cell types in peri-
burn tissue, to produce excessive amounts of in-
flammatory mediators that contribute to organ
damage. In addition, the paralyzed leukocyte
function in the state of genomic storm9 undoubt-
edly contributes to infection susceptibility and
perturbed healing.44

Altered immune functions postburn
Elevated circulating DAMPs and cytokines in

burns have been associated with altered functions

of immune cells, consistent with the heightened
innate immunity and suppressed adaptive immu-
nity shown by the leukocyte genomic storm data.
For example, leukocyte responses to TLR agonists
were altered in mice at 3–7 days postburn (25%
TBSA full thickness): ex vivo leukocytes stimulated
with the DAMPs zymosan (TLR2 agonist) or lipo-
polysaccharide (LPS) (TLR4 agonist) were primed
to produce more cytokines.45 In addition, dendritic
cells were dysfunctional following burn injury (25%
TBSA, mouse model): in the early days postburn,
ex vivo treatment with the TLR9 ligand, un-
methylated CpG oligodeoxynucleotide, caused
splenic conventional dendritic cells to produce a cy-
tokine profile that was anti-inflammatory and could
not activate CD4+ T cells to produce Th1 and Th17
cytokines, while plasmacytoid dendritic cells showed
impaired ability to secrete pro-inflammatory cyto-
kines and activate T cell proliferation, and both of
these defects were associated with low levels of
transcripts of TLR9 and several key molecules of the

Figure 6. TLR gene expression in WBCs of severely burned patients (n = 244) over postburn time and healthy subjects (n = 35). Blood was sampled from
patients with severe burns (>20% total body surface area; admitted within 96 h of injury; The Inflammation and the Host Response to Injury Large-Scale
Collaborative Research Program).9 Gene expression was analyzed using the Affymetrix U133 plus 2.0 GeneChip. These data were extracted from Gene
Expression Omnibus GSE37069. The healthy subject expression values are plotted along the y axis with their mean indicated by a dotted line. The burn-patient
TLR expression values were fitted using locally estimated scatterplot smoothing regression, with the 95% confidence interval shown as gray shading.
Interestingly, TLRs that heterodimerize (TLR1/TLR2 and TLR4/TLR5) were expressed similarly in WBCs over postburn time. In addition, TLR9 and TLR10 were
expressed similarly after burn injury, and both are known to be expressed predominantly in human B cells and to be upregulated with similar kinetics after B
cell activation, including activation by CpG DNA.70 WBC, white blood cell.
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TLR signaling pathway.46 Furthermore, from 1 to
7 days following burn, spleen cells were primed to
produce greater amounts of pro-inflammatory cyto-
kines after ex vivo exposure to TLR2 and TLR4 li-
gands; and burn-injured mice challenged with LPS
expressed higher levels of inflammatory cytokines
in the lung, liver, spleen, and plasma, primarily due
to dendritic cells and macrophages, as judged by in-
tracellular cytokine staining.47 Moreover, increased
TLR2 or TLR4 signaling in Kupffer cells has been
suggested to be a source of elevated circulating cy-
tokines in burned mice. Kupffer cells isolated from
burned rats (30% full thickness) at 24 h postburn
and exposed to HMGB1 ex vivo produced more
TNF-a and IL-1b proteins than Kupffer cells isolated
from sham-burned animals.48 In addition, in these
cells, burn injury enhanced HMGB1-induced activa-
tion of p38 MAPK, JNK, and NF-jB, and preincu-
bation of the cells with antibody to TLR2 or TLR4
reduced this activation, as well as cytokine production.

These studies suggest that burn injury, within a
day, causes priming of the responsiveness of im-
mune cells—in circulation and residing in lymphoid
tissues and organs, including lung and liver—to
produce greater quantities of inflammatory media-
tors in response to activation of TLRs by DAMPs,
resulting in altered immune system functions.

Organ dysfunction in severe burns
Larger and deeper burns are at greater risk for

MODS and death, and patients with MODS have
elevated inflammatory markers.49 A role for TLR4
in postburn systemic inflammation and organ
damage has been indicated. First, in a mouse burn
model (25%-TBSA full thickness), adhesion of leu-
kocytes to mesenteric venules (i.e., distal to the
burn wound) at 30 min postburn was lower in
Tlr4-/- mice (C3H.HeJ) as was microvascular
leakage at 1–3 h postburn.50 Second, endothelial
cell monolayer cultures exposed to burn plasma
became permeable, which was attenuated by small
interfering RNA (siRNA) to TLR4. Overall, the
data suggest that in systemic inflammation after
trauma, including burns, TLR-4 plays a role, which
in addition does not involve LPS, as LPS-resistant
Cd14-/- mice showed the wild-type level of inflam-
mation in response to trauma.50 Furthermore, at
48 h postburn in a rat model of 30% TBSA (no fluid
resuscitation), secondary tissue damage was indi-
cated by elevated TNF-a and IL-1b in serum, as
well as elevated HMGB1 mRNA and protein in
lung, liver, and kidney.51

Altered healing following severe burn injury
In a mouse model of regenerative wound healing

in which punch holes in the ear regenerate tissue

(MRL/MpJ), a dorsal full-thickness 15% TBSA
burn caused an increase in inflammatory media-
tors in serum, lung, and the earhole wound remote
from the burn. In addition, the burn injury caused
the earhole wounds to fail to undergo regenerative
healing; instead, the wounds were infiltrated with
inflammatory cells, ulcerated, and necrotic.52

TLR signaling in hypertrophic scar fibroblasts
Consistent with prolonged inflammation being a

known factor contributing to hypertrophic scarring,
cultured fibroblasts from hypertrophic scars of
burn-injured patients, versus normal skin fibro-
blasts from the same patients, showed upregulated
TLRs and greater expression of cytokines in re-
sponse to TLR activation.53 The hypertrophic scar
fibroblasts had upregulated mRNA for all 10 TLRs
and MyD88 (a TLR adaptor), as well as upregulated
inflammatory-mediator proteins (prostaglandin E2,
IL-6, IL-8, and monocyte chemoattractant protein
[MCP]-1). In response to LPS stimulation, the hy-
pertrophic scar fibroblasts produced more MyD88,
IL-6, IL-8, and MCP-1 mRNA and protein, but siR-
NA knockdown of MyD88 decreased these. Thus,
hypertrophic scar contains fibroblasts primed for
inflammatory reactions, producing greater amounts
of cytokines that attract leukocytes which pro-
duce pro-fibrotic growth factors such as TGF-b and
MCP-1, which stimulate fibroblasts to produce ex-
cessive extracellular matrix.53 TLRs of cells of
healing wounds with roles in organ fibrosis have
been recently reviewed.54

Therapeutic targeting of TLR signaling
Reviewed elsewhere are strategies for reducing

burn wound progression,55 dampening cutaneous
wound inflammation for improving healing,56 and
treating diseases (metabolic) driven by DAMPs57;
in this study, we review therapeutic strategies that
can potentially ameliorate burn wound progres-
sion, systemic inflammation, and hypertrophic
scarring through targeting of TLR pathways. Tar-
gets of TLR signaling pathways span from the
DAMPs and PAMPs that trigger TLRs and extend
to downstream kinases that activate the tran-
scription factors driving the expression of inflam-
matory mediators (Fig. 2).

Within hours after burn injury, topical applica-
tion of p38 MAPK inhibitors can reduce inflam-
mation, possibly reducing burn wound progression,
organ damage, and scarring. For example, in a rat
model of partial-thickness burn (30% TBSA), a
topical p38 MAPK inhibitor (SB202190) applied
immediately after the burn injury reduced der-
mal inflammatory cytokines, neutrophil infiltra-
tion, microvascular damage, and hair follicle cell
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apoptosis at 6–24 h postburn.58 In addition, in a
full-thickness burn (30% TBSA) model in mouse,
topical p38 MAPK inhibitors applied 4 h postburn
reduced cytokines in the dermis and circulating
leukocytes.59 Thus, p38 inhibitor treatment could
penetrate the full-thickness burn eschar and be
effective within a 4 h window, which suggests the
feasibility of using early topical treatments to
suppress inflammation that can damage tissue lo-
cally and systemically. However, these studies did
not evaluate end points past 24 h.

Pointing to the potential efficacy of p38 MAPK
inhibitors to reduce scarring, MAPK inhibition re-
duced fibroblast contraction in vitro (fibroblast-
populated collagen-lattice contraction assay) and
reduced wound contraction when applied topically
to excision wounds, immediately and daily for
10 days, in a rat model.60 Similar results were ob-
tained in red Duroc pig (as described61). In addition,
in a preliminary study in Duroc pig, topical p38 in-
hibitor attenuated inflammation and improved
healing of deep partial-thickness excision and burn
wounds; importantly, infection of the wounds,
which received neither antibiotic nor dressing,
when followed out to 20 weeks, was absent.62

Further suggesting a role of p38 MAPK in hy-
pertrophic scarring, a prospective-cohort genome-
wide association study of postburn hypertrophic
scarring, which tested MAPK-pathway gene single
nucleotide polymorphisms for association with the
four Vancouver Scar Scale variables in a joint re-
gression model, found a rare missense variant (1.5%
minor allele frequency) in the gene for PTPN5, an
inhibitor of MAPK, which was associated with de-
creased severity of postburn hypertrophic scar
( p = 1.3 · 10-6), although this result awaits confir-
mation in an independent clinical cohort.61

Topical MAPK inhibition also protected against
severe burn-induced organ damage in a rat model
of 30% TBSA partial-thickness burn.63 Topical
application of p38 MAPK inhibitor to the burn,
immediately and at 8 and 16 h, ameliorated cardiac
function deficits at 24 h. This protective effect did
not appear to be due to systemic absorption of the
inhibitor because p38 MAPK activation in cardiac
tissue was not changed. In addition, in vitro, burn-
injured skin homogenates or serum added to car-
diomyocytes impaired their contractility, but not
when the homogenates or serum came from rats
whose burns were treated with the topical p38
MAPK inhibitor. Thus, these results suggest that
local treatment of burns can reduce systemic me-
diators of organ dysfunction.

Therapeutic targeting of the signaling involved
in water loss–induced inflammation involving TLR4

has shown effectiveness in proof-of-concept studies
in a hypertrophic scar model (rabbit ear exci-
sion wounds). The water loss–induced increase in
sodium concentration is sensed and signaled through
two sodium channels, and blocking these channels—
Nax by RNAi and ENaC by amiloride—after re-
epithelialization, reduced scar formation, as did
blockade of more downstream molecules, including
TLR4 (using TAK-242), RAGE, p38a, COX-2, and
IL-1.64 These findings are likely relevant to burn
wounds that have high water loss for long times
after reepithelialization.

HMGB1 is a candidate therapeutic target for
mitigating burn wound sequela. HMGB1 was re-
leased from necrotic cells of peri-burn tissue during
burn injury progression, likely in the form with C23–
C45 disulfide that activates TLR4. HMGB1 can be
inhibited by glycyrrhizin—a triterpene glycoconju-
gate derived from licorice root (Glycyrrhiza glabra)
that has been used in Japan for decades to treat
patients with hepatitis B and C (up to 140 mg/day).65

Glycyrrhizin directly binds HMGB1 (Kd *150 lM),
partially explaining its anti-inflammatory proper-
ties.65 During diverse types of acute inflammation,
glycyrrhizin treatment reduced the activation of
downstream molecules (NF-jB, STAT3, and the
MAPKs, JNK, p38, and ERK).66

The potent, well-tolerated synthetic TLR4 an-
tagonist Eritoran is a small molecule that has
mitigated diverse types of I/R injury67 and there-
fore may mitigate I/R injury in burn wounds. In
addition, antibody to HMGB1 reduced hepatic I/R
injury, and knocking out HMGB1 specifically in
hepatic epithelial cells profoundly reduced num-
bers of infiltrating neutrophils and inflammatory
gene expression.21 Thus, blocking HMGB1 or its
TLR4 receptor may benefit burn wound outcomes.

Suggesting that inhibiting inflammation early
after burn can be beneficial, in a clinical study, a
monoclonal antibody against ICAM-168 adminis-
tered intravenously at 6, 12, and 24 h postburn in-
hibited immune cell extravasation, which was
associated with a threefold increase in the number
of patients that healed within 21 days. However,
scar at 6 months evaluated by laser Doppler and
Vancouver scale was not different, possibly because
only 40% of the 110 patients could be evaluated.

Collectively, these studies suggest that targeting
TLR-signaling pathways to reduce inflammation
has potential to improve burn wound outcomes.

SUMMARY

Deep partial-thickness burn wounds that heal
over long times with prolonged inflammation
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typically result in hypertrophic scars. To
prevent these scars from forming, treat-
ments are needed that can be applied to
wounds early in the repair process to pro-
moteregenerativehealing.Treatmentsthat
target TLR signaling pathways can limit
inflammation and fibrosis and can poten-
tially act at multiple stages of wound repair
to protect against scarring. In addition,
blocking TLR signaling pathways can po-
tentially mitigate systemic inflammation/
MODS.

TLR signaling appears to be involved in
burn wound progression since from peri-
burn tissue, HMGB1 was released from
chromatin into the cytoplasm and extra-
cellular space17 on the day of injury where
it might activate TLR4 to promote tissue-
damaging inflammation. Second, I/R
injury occurs during burn wound pro-
gression, and TLR signaling is known to
be involved in I/R injury of other organs.
In addition, oxidative damage is high in burn tissue,
and oxidized lipoproteins can stimulate TLR sig-
naling. In addition to HMGB1, other TLR ligands,
such as nucleic acids, are released from burn-
injured tissue, contributing to inflammatory sig-
naling and burn wound progression.

DAMPs are present in circulation within a few
hours after burn injury and correlate with TBSA
(e.g., cell-free nuclear and mtDNA, decorin, etc.). At
the same time, cytokines in circulation are elevated
and leukocyte gene expression changes are perva-
sive (i.e., genomic storm), indicating simultaneous
upregulation of innate immunity and compensatory
anti-inflammatory responses, as well as down-
regulation of adaptive immunity. Consistent with
the upregulated innate immunity genes (including 8
of 10 TLRs), immune cells in circulation and resid-
ing in lymphoid tissues and organs, including lung
and liver, are primed to produce greater quantities
of inflammatory mediators in response to TLR ac-
tivation by DAMPs. In addition, adaptive immune
functions are paralyzed. Overall, the results suggest
that DAMPs released from traumatized tissue ac-
tivate various peri-burn skin cells, circulating leu-
kocytes, and cells of distant organs to produce
excessive amounts of inflammatory mediators that
inhibit healing, activate fibroblasts, increase sus-
ceptibility to infection, and contribute to organ
dysfunction and risk for mortality.

Immediately after epithelial barrier rupture,
water loss increases. Evaporating water leaves a
higher sodium concentration, which can increase
keratinocyte secretion of S100A12, which can ac-

tivate fibroblasts (increased a-SMA) through TLR4
and RAGE. In addition, intradermally injected
S100A12 increased hypertrophic scar (rabbit ear
wound model). Inhibiting molecules in this path-
way (sodium channels, TLR4, RAGE, p38 MAPK,
COX-2, and IL-1) starting after reepithelialization
resulted in reduced hypertrophic scarring in the
rabbit ear model of excision wounds; although not
a burn wound, these findings are likely relevant to
burn wounds in which, like other traumatic skin
wounds, water loss remains high for months after
reepithelialization.

Therapeutic targeting of HMGB1 or TLR4 has
mitigated inflammation and injury in several animal
models of organ injury (not burn). In addition, topical
p38 MAPK inhibitor applied immediately to burn
wounds in a mouse model reduced dermal and cir-
culating cytokines, infiltrating neutrophils, and early
tissue damage; and when applied up to 4 h postinjury
in a rat model, reduced dermal and circulating cyto-
kines. Although these studies did not evaluate long-
term outcomes, other preliminary studies suggest
that topical p38 MAPK inhibition can inhibit wound
contraction in mice and may have had beneficial ef-
fects on healing in a pig model. In addition, topical
p38 MAPK inhibition protected against severe burn-
induced cardiac function deficits at 24 hrs.

To promote regenerative healing, reduce hyper-
trophic scarring, and mitigate systemic sequela of
burn injury, many drugs that target TLR signaling
pathway molecules are available for testing. Some of
these have demonstrated proof-of-concept efficacy in
mitigating short-term end points, mostly in small-

TAKE-HOME MESSAGES

� The extent of the systemic sequela of burn injuries, including circulating
cytokines, immunosuppression, impaired wound healing, hypertrophic
scarring, susceptibility to infection, hypermetabolism, catabolism, muscle
wasting, and mortality, is directly related to burn size.

� Deep partial-thickness burn wounds that heal over long times with
prolonged inflammation typically result in hypertrophic scars.

� Molecules from burn-injured tissues (DAMPs) are released and interact
locally and systemically with TLRs of cells to signal danger. Molecules
from microbes, called PAMPs, also activate TLRs. Cells having these
receptors overactivated produce excessive amounts of inflammatory
mediators that are damaging to organs, stimulate fibrosis, and inhibit
healing, which contribute to hypertrophic scarring.

� Inhibitors of TLR signaling pathways are available that can be tested in
animal models for efficacy in inhibiting the adverse effects of TLR ac-
tivation.

� For evaluating treatments to mitigate scarring after burn injury, animal
models are used (rodent, rabbit, and pig), and each has strengths and
weaknesses; therefore, testing of treatments should be started in clinical
studies as soon as their safety is established.
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animal models. The development of treatments for
improving final wound outcome requires evaluating
wounds several months after injury, optimally in
pigs and then in proof-of-concept clinical models.
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HSP ¼ heat shock protein

I/R ¼ ischemia/reperfusion
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mtDNA ¼ mitochondrial DNA
MyD88 ¼ myeloid differentiation

primary response gene 88
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type 7
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non-receptor type 5
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SIRS ¼ systemic inflammatory
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TLR ¼ toll-like receptor
TNF ¼ tumor necrosis factor
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