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ABSTRACT

Background. Differential expression analysis on the basis of RNA-Seq count data
has become a standard tool in transcriptomics. Several studies have shown that prior
normalization of the data is crucial for a reliable detection of transcriptional differences.
Until now it has not been clear whether and how the transcriptomic approach can be
used for differential expression analysis in metatranscriptomics.

Methods. We propose a model for differential expression in metatranscriptomics
that explicitly accounts for variations in the taxonomic composition of transcripts
across different samples. As a main consequence the correct normalization of meta-
transcriptomic count data under this model requires the taxonomic separation of the
data into organism-specific bins. Then the taxon-specific scaling of organism profiles
yields a valid normalization and allows us to recombine the scaled profiles into a
metatranscriptomic count matrix. This matrix can then be analyzed with statistical
tools for transcriptomic count data. For taxon-specific scaling and recombination of
scaled counts we provide a simple R script.

Results. When applying transcriptomic tools for differential expression analysis directly
to metatranscriptomic data with an organism-independent (global) scaling of counts
the resulting differences may be difficult to interpret. The differences may correspond
to changing functional profiles of the contributing organisms but may also result from
a variation of taxonomic abundances. Taxon-specific scaling eliminates this variation
and therefore the resulting differences actually reflect a different behavior of organisms
under changing conditions. In simulation studies we show that the divergence between
results from global and taxon-specific scaling can be drastic. In particular, the variation
of organism abundances can imply a considerable increase of significant differences
with global scaling. Also, on real metatranscriptomic data, the predictions from taxon-
specific and global scaling can differ widely. Our studies indicate that in real data
applications performed with global scaling it might be impossible to distinguish between
differential expression in terms of transcriptomic changes and differential composition
in terms of changing taxonomic proportions.

Conclusions. As in transcriptomics, a proper normalization of count data is also
essential for differential expression analysis in metatranscriptomics. Our model implies
a taxon-specific scaling of counts for normalization of the data. The application
of taxon-specific scaling consequently removes taxonomic composition variations
from functional profiles and therefore provides a clear interpretation of the observed
functional differences.
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BACKGROUND

Metagenome analysis can provide a comprehensive view on the metabolic potential of

a microbial community (Eisen, 2007; Simon ¢ Daniel, 2009). In addition to the static
functional profile of the metagenome, metatranscriptomic RNA sequencing (RNA-Seq)
can highlight the multi-organism dynamics in terms of the corresponding expression
profiles (Poretsky et al., 2005; Frias-Lopez et al., 2008; Gilbert et al., 2008; Urich et al., 2008).
In particular, metatranscriptomics makes it possible to investigate the functional response
of the community to environmental changes (Gilbert et al., 2008; Poretsky et al., 2009).

In single organism transcriptome studies, differential expression analysis based on
RNA-Seq data has become an established tool (Marioni et al., 2008; Trapnell et al., 2012).
For the analysis, first, quality-checked sequence reads are mapped to the organisms
genome for transcript identification. Then the transcript counts are compared between
different experimental conditions to identify statistically significant differences. Several
studies have shown that read count normalization has a great impact on the detection
of significant differences (Bullard et al., 2010; Dillies et al., 2013; Lin et al., 2016). The aim
of the count normalization is to make the expression levels comparable across different
samples and conditions. This is an essential prerequisite for distinguishing condition-
dependent differences from spurious variation of expression levels.

In metatranscriptomics, already the transcript identification step can be challenging.
In many cases, RNA-Seq faces a mixture of organisms for which no reference genome
sequence is available. Several strategies have been suggested: de novo transcriptome
assembly combined with successive homology-based annotation (Celaj et al., 2014),
the direct functional annotation of reads by classification according to some protein
database (Huson et al., 2011; Nacke et al., 2014; Hesse et al., 2015) or parallel sequencing of
the corresponding metagenome with successive mapping of RNA-Seq reads to assembled
and annotated contigs (Mason et al., 2012; Franzosa et al., 2014; Ye ¢ Tang, 2016). For
the subsequent comparison of counts between different conditions no standard protocol
exists for differential expression analysis on metatranscriptomic data. Several studies
and tools apply methods that have been developed for differential expression analysis in
transcriptomics to metatranscriptomic count data (McNulty et al., 2013; Martinez et al.,
20165 Macklaim et al., 2013). However, the question of under which conditions established
models from single organism transcriptomics also apply to organism communities has not
been addressed sufficiently so far.

Here we present an extended statistical model for count data from metatranscriptomic
RNA-Seq experiments. The model provides a novel view on metatranscriptome data, which
negates the impact of taxonomic abundance differences between samples for differential
expression analysis. Theoretical considerations, as well as studies on simulated and real
count data, show that our approach can help to identify differentially expressed features
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which actually reflect a changing behavior of the organisms. For our model to work, accurate
normalization of the data is crucial and in general, requires an organism-specific rescaling
of expression profiles. The application of differential expression analysis to mixed-species
data without prior separation can be found in several metatranscriptomic studies (Nacke
et al., 2014; McNulty et al., 2013; De Filippis et al., 2016) as well as in dedicated pipelines
for metatranscriptome analysis (Martinez et al., 2016; Westreich et al., 2016). Our results
suggest that this approach may imply a large number of significant differences which lack

a clear interpretation in terms of functional responses.

MATERIALS & METHODS

Normalization in transcriptomics

To clarify our arguments for an alternative normalization of metatranscriptomic data we
need to explain the statistical nature of the normalization problem. We first follow the
approach of Anders ¢ Huber (2010) for single organism RNA-Seq count data and start
with a basic model for the mean of the observed counts. The expected (mean) count E [Yij]
for gene (feature) i and sample j arises from a product of the per-gene quantity A;; under
condition ¢; and a size factor s;:

E[Yij]ZKichj. (1)

The factor A is proportional to the mean concentration of feature i under condition ¢;.
The size factor s; represents the sampling depth or library size. Usually, both factors are
unknown. If we assume the ith feature to be non-differentially expressed (NDE) we can
represent the corresponding row of the count matrix by

E[ v ] = s 2)
where the relative feature abundance is equal for all samples and all size factors have been
comprised in the row vector s. Thus, for NDE features the size factors are proportional
to the expected counts. If we knew which features are actually NDE, we would be able
to estimate the required size (scaling) factors for normalization from the corresponding
counts.

Usually this is not the case and we need to make some assumptions. A common
assumption that is used in current tools is that most of the features are NDE. Then it is
possible to estimate the scaling factors by some robust statistics. In DESeq for each sample
the putative scaling factors from all features are calculated and then the median of all
these values is used as an estimator of the sample-specific scaling factor (Anders ¢ Huber,
2010). With a breakdown point of 50% the median requires that the majority of the data
corresponds to NDE features.

Without any distinction between DE and NDE features the scaling factors have also been
estimated from the count sums of all samples. However, the potential shortcomings of this
total count normalization have widely been discussed (Anders & Huber, 2010; Robinson ¢
Oshlack, 2010; Soneson ¢ Delorenzi, 2013).
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Normalization in metatranscriptomics

In metatranscriptomics the situation is more complicated because for each organism we
can have a different scaling factor. So we have to extend the above sampling model to an
N -organism mixture that includes a matrix S of organism-specific scaling factors sj:

N
E[Y5]=D iesi (3)
k=1

where 1,7,k are the feature, sample and organism indices, respectively. We omitted the
condition dependency (c;) for convenience.

In analogy to Eq. (2) for NDE features we have the following model for a feature row i
of the count matrix:

E |:Yi(.NDE):| =ATs7 (4)

where the column vector A; contains all organism-specific rates for feature i and A
indicates transposition of this vector.

Application of the above single-organism scheme for estimation of scaling factors is only
valid if the matrix of scaling factors has the following form:

S=[a;s, a8, ...,axs] =sa’ (5)

where & is a column vector of organism-specific abundances and s contains the sample-
specific scaling factors, now in a column vector, which is equal for all organisms. Then we
can write

S)\.,'=SOCTX1'=X,'S (6)
where ; results from the dot product of the organism and the feature rates. This corresponds
to Eq. (2) and allows to apply DESeq or other tools for single organism differential
expression analysis to the metatranscriptomic count matrix. However, the underlying
assumption that S has column rank 1, i.e., all column vectors are collinear, would be hard
to justify in practice. Implicitly we would assume that the relative contributions of all
organisms are constant across all samples. In general, this assumption is not met, because
for a real metatranscriptome, the organism composition of transcripts cannot be controlled
and will be different for different samples.

In the following we show how to normalize metatranscriptomic counts so that the data
actually meet the former assumption.

Taxon-specific scaling and global scaling
We propose a method to prepare metatranscriptomic data for differential expression
analysis. The method is referred to as taxon-specific scaling. As an essential prerequisite
our approach requires that the data is first partitioned according to the contributing
organisms. Then the count data matrix from each partition is normalized separately.
Here, established tools from transcriptomics can be used to estimate the corresponding
scaling factors.

Finally, the normalized count data matrices are summed up to provide normalized
metatranscriptomic count data which can be analyzed in terms of differential expression
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Figure 1 Work flow for taxon-specific normalization. (A) Sequence samples from conditions A (white)
and B (light gray). Assign each sequence read to taxonomic and feature categories. (B) Compute feature
profiles from the assignment counts. (C) Obtain count matrix from taxon-specific feature profiles. (D)
Normalize feature profiles of each taxon-specific count matrix separately. (E) Recombine normalized fea-
ture profiles of all taxa into a metatranscriptomic profile. (F) Perform differential expression analysis on

metatranscriptomic count matrix.
Full-size Gl DOI: 10.7717/peer;j.3859/fig-1

(Fig. 1). Here all statistical models and tools for count-based differential expression analysis
in transcriptomics can in principle be used to identify differentially expressed features.

If we denote the original count matrix for organism k as Y and the associated vector
of estimated scaling factors as §; the normalized metatranscriptomic count matrix is

computed by
Y= ZYk diagfl(ﬁk). (7)
k

Here, the diag~! operator transforms the scaling vector to a diagonal matrix with inverse
scaling factors on the diagonal and zeros everywhere else. We provide an R script where we
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use DESeq?2 for scaling factor estimation and identification of significant differences (see
File S1).

In principle, our method is computationally simple and the hard work has to be done
beforehand in order to provide the partitioned data in terms of the organism-specific count
matrices. This is the realm of binning methods and, in addition, may require sequence
assembly tools to achieve a sufficient sequence length for reliable separation.

At this point, the question may arise as to why get back to metatranscriptomic data
when differential expression analysis could be performed for separate organisms or specific
taxa. In this context, by metatranscriptomic counts we refer to mixed counts that arise
from a sum over superimposed organisms. There are several reasons why the analysis of
the recombined metatranscriptome data can be useful: first of all, the statistical power of
organism-specific tests may be low due to decreased counts. If several organisms show
the same slight difference, this difference may only become statistically significant when
accumulating their normalized counts. Or a feature may show differences for single
organisms but these differences may cancel out when correctly summarized. In this case
the corresponding feature is not indicative for the experimental condition with regard to
the whole community. Therefore the analysis of separate organism transcriptomes and the
analysis of the rectified metatranscriptome data should be combined to provide a complete
picture of the community response.

In our study and in the supplied R script we use DESeq2 to compute scaling factors
and to identify significant differences on the basis of the normalized count matrices. We
decided for DESeq? for several reasons. It is an established tool in transcriptomics which
has shown a good performance in comparative studies (Soneson ¢ Delorenzi, 2013; Dillies
et al., 2013) and which has already been used for metatranscriptome analysis (McNulty
et al., 2013; Martinez et al., 2016; De Filippis et al., 2016). In particular, the estimation of
scaling factors is robust and can be performed as a separate prior step apart from the
computation of significant differences. The latter aspect is important for taxon-specific
scaling which requires applying the normalization independently. However, we would like
to emphasize that our arguments for the taxon-specific scaling approach do not depend
on a particular statistical tool and in fact the main findings of our study can be reproduced
with other tools, such as edgeR, SAMseq (Li ¢ Tibshirani, 2013) or limma (Ritchie et al.,
2015). In some experiments we also used edgeR and total count (TC) normalization to
study the impact of different transcriptomic scaling methods.

In contrast to taxon-specific scaling, global scaling performs the normalization of
metatranscriptomic data without prior separation, i.e., sample-specific scaling factors are
estimated from the original metatranscriptomic counts. In general, taxon-specific and
global scaling will result in distinct normalized count matrices which in turn can lead to
largely differing results in differential expression analysis.

Taxon-specific scaling and global scaling provide two different views on the
metatranscriptome. Taxon-specific scaling considers varying taxonomic abundances as
a confounding factor and eliminates its influence on the identification of differentially
expressed features (DEF) by scaling the profiles of each organism individually. In
contrast, global scaling normalizes the data with respect to the total library size, i.e.,
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the sample-specific count sum, and taxonomic abundance shifts can strongly influence
the identification of DEF. With global scaling, the researcher expects the taxonomic
composition of the samples to be informative for differential expression analysis. However,
it is not always clear how this information can be utilized. When relative taxonomic
abundance varies within a condition, this implies a higher dispersion of the corresponding
count data, which in turn may prevent the identification of DEF. Furthermore, if DEF
are identified, it is unclear whether they result from organisms which show a differing
functional profile between conditions or whether they result from organisms with
unchanged functional profiles but with varying relative abundances. Finally, if taxonomic
composition variations in the data are maintained it may happen that for organisms that
are only abundant in one condition all of their associated functions become differentially
expressed. If this affects the majority of features, the model assumptions of statistical tools
for DEF identification may be violated (see above).

Normalization methods have also been used in the field of metagenomics to make
the taxonomic compositions between samples comparable. Here, similar techniques
can be applied (McMurdie ¢ Holmes, 20145 Weiss et al., 2017) to identify the differential
abundance of taxons. However, while in metagenomics the number of reads for a taxon is
proportional to the genome size (or marker gene copy number) and the abundance of the
organism, in metatranscriptomics, each gene can have a different transcription rate. When
using tools like edgeR (Robinson, McCarthy & Smyth, 2010) or DESeq2 (Love, Huber &
Anders, 2014) for the identification of differential taxonomic abundance in metagenomic
data, the model assumptions may be violated. In particular, it is unclear if the majority of
taxons do not change between different communities.

Simulated metatranscriptome
The aim of our simulations was to demonstrate and explain the differences between
taxon-specific and global scaling in practice, using a fully controlled data generation
setup. To make the differences visible and understandable it is sufficient to simulate small
communities as an increased complexity requires more parameters to be controlled which
may even complicate interpretation. In some cases even a minimal community with two
organisms may be sufficient to clearly show the different effects of the two scaling methods.

In our simulations, a metatranscriptome arises from a mixture of various organisms,
each with individual features. We assume that all organisms somehow react to a change
of experimental conditions in terms of changing feature profiles. A metatranscriptome
can include features covered by all taxa as well as features occurring only in few or a
single organism. The sum of contributed counts from a single organism we refer to as the
organism-specific library size. Generally, the count contributions from different organisms
are not equal and vary across samples. We refer to this as the variation of the library
size. To simulate the variation of organism-specific library sizes, we generated multiple
transcriptomic count data sets with different total count numbers. Thereby, each generated
data set mimics the contribution of a single organism. The data sets were then combined
to simulate a metatranscriptomic count matrix.

As with all simulations, the generated data can only provide a coarse approximation of
real data and the obtained counts depend on particular parameters. Therefore, settings for
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the number of features and the total count values influence the results. Each organism is
simulated with 100 differentially expressed features (DEF), 50 of them upregulated, and
with 900 features that were non-differentially expressed (NDE).

Each data set consists of two conditions, A and B, with six samples (replicates) per
condition and up to five organisms (Orgl to Org5) per sample. In the first three simulations,
the different organism profiles are stacked, to exclude any interference between features
from different organisms in the combined data. Accordingly, the final count matrix has
12 columns and 5,000 rows that correspond to samples and features, respectively. In
our simulated metatranscriptome experiments we show under which circumstances, the
differences between global scaling and taxon-specific scaling increase in respect to the
number of identified DEF. With the stacked profiles we focus on the ability to recover
DEF which the data generation process labeled as DE for the simulated transcriptomes.
Within this context, the data generation provides the necessary information to calculate
the number of true positives (TP) and false positives (FP). The label L; is DE or NDE
according to feature i being differentially expressed or non-differentially expressed. The
statistical test used to detect DEF, provides a p-value for each feature. The predicted label
L; is DE if the adjusted p-value (Benjamini ¢ Hochberg, 1995) is below a threshold of 0.05
for feature i. The TP and FP counts are calculated for each organism k individually:

TPy =|{i: L;=DEAL;=DE}| (8)
FPy =|{i:L;=DEAL;=NDE}|. (9)

Synthetic data generation and analysis tools

The tool compcodeR (Soneson, 2014) was used to generate all simulated data. The tool
generates count data based on a negative binomial distribution model with parameters
estimated from real transcriptome data (Pickrell et al., 2010; Cheung et al., 2010). If not
explicitly specified, the compcodeR parameters in the R function “generate.org.mat” are
used (see File S1). We also included the real data in csv format (File S2) and a R function
“run.experiments.tax.glo” (File S3) to perform the simulations and real data analyses. All
analyses were performed with R version 3.3.0, DESeq2 version 1.8.2 and edgeR version
3.10.5, Bioconductor version 3.1 and compcodeR version 1.4.0.

Simulation I: “Without library size variation”

In the first experiment we simulate the case where the library size (LS) for each of the five
organisms does not vary across different samples. Although this is an unrealistic case we
performed this simulation to verify that both normalization approaches produce the same
results under idealized conditions.

In addition, we wanted to investigate how different organism abundances affect the
identification of DEF. Each organism was assigned a fixed total count number across all
samples, without variation in library size. We simulated organism Orgl with a base count
of le” followed by organism Org2 with 5¢°, 1e® for organism Org3 and organism Org4,
Org5 with 5e°, 1e” respectively. This results in relative abundance fractions of 0.60, 0.30,
0.06, 0.03 and 0.01 for the 5 organisms. Because data is generated without variation for the
number of counts per sample, no normalization is required, i.e., the correct scaling factors
for all samples and all organisms are the same (=1).
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Simulation II: “Variations in library size of species present in the
metacommunity”

In the second experiment we simulated a more realistic situation, with varying LS for all

included organisms. Organism base counts are identical to the first simulation but the LS
is randomly increased or reduced according to a random factor between 0.5 and 2. Due to
the different library sizes in the samples, a prior normalization for both global scaling and
taxon-specific scaling is required.

Simulation lll: “Condition dependent variation”

In the third simulation, we investigated to what extent a condition dependent variation
of LS can affect the normalization results. Under condition A we increase LS of Orgl by a
random factor between 1.5 and 2 while under condition B we decrease the LS by a random
factor between 0.5 and 0.667. For Org2 the direction of change is reversed, with a random
decrease under condition A and an increase for condition B. For Orgl and Org2 the same
base count as for Simulation I and II is used and for Org3-5 all parameters from Simulation
IT are used.

Simulation IV: “Mixed feature effects”

In this simulation, we investigated the different effects that can be observed for taxon-
specific scaling and global scaling when using superimposed (mixed) counts. For the
superposition, we assume that the corresponding counts of equal functional categories are
summed up across different species.

For an easier visualization, we reduced the setup to two organisms with a base count of
le7 for both. Here, we used the LS variation range for Orgl and Org2 from Simulation III.
CompcodeR generated each organism profile with first 50 features as upregulated DEF,
next 50 as downregulated DEF, followed by additional 900 NDE features. As a result, we
obtain a total of 1,000 features for the superimposed data. For the mixed features, we sum
up the corresponding features (a for Orgl and b for Org2) of both organisms i.e., feature
a;+by, ay+ by, ...,a1,000 + bi1,000- Thus, the feature combination results in summing up
DEF with the same direction for both organisms.

Scaling factor divergence

The scaling divergence Dy was estimated from the difference between the sample-specific

scaling factors $jx and the actual scaling factors s, for each organism k as provided by the

simulation parameters. In both cases the factors are scaled to provide a unit mean across

samples. To obtain a value between 0 and 1, we compute the divergence by:

Dy — 2 8jk = sik] (10)
2n

where 7 is the number of samples. In addition, we used the logarithmic measure log,$jx /sik

to represent the directed divergence.

Metatranscriptome data
For a real data study, we chose a metatranscriptome dataset from mice gut (McNulty et al.,
2013). The experiment includes 12 different species (see File S4: Table 1) representing an
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artificial human gut microbial community which was inserted into germ free mice. In the
original study the diet for the mice was changed at different time points. Metatranscriptomic
data is available for six time points which provide the conditions for our analysis. The
available processed count data was obtained from the European Bioinformatics Institute
(http://www.ebi.ac.uk/, ArrayExpress, E-GEOD-48993) and contains gene names and the
associated numbers.

Because the gene to Pfam (Finn et al., 2014) mapping is available for most organisms,
we selected Pfam protein domains as features for the differential expression analysis. Each
Pfam domain family is a feature in the resulting vector, including only Pfams observed at
least once. We transformed the available RPKM values for the genes back to raw counts.
For genes with multiple Pfam annotations, we added the raw count values of the gene to
all associated Pfam features. From the available data, we constructed a count matrix for
each condition and organism (File S5). Here, each column constitutes a different sample
and each row represents a particular feature. Because the count data from Bacteroides
cellulosilyticus WH2 did not map to gene names, all related counts are excluded from
the analysis.

A differential expression analysis for all pairwise combinations of distinguished
conditions was performed to compare the results of global and taxon-specific scaling.
We calculated the number of DEF predicted (a) with both methods with the same fold
change direction, (b) with both methods but with an opposite fold change direction and (c)
with only one scaling method. In addition, we investigated the overlap between the single
organism transcriptome analyses and the differential expression analysis for the mixture.
We applied a significance threshold on the adjusted p-value of 0.05 for the prediction of
DEF.

RESULTS

In the first part of our evaluation we examined the performance of taxon-specific and
global scaling methods on simulated data. Because simulations I to IIT had been designed
to provide a clear ground truth from a transcriptomics perspective we were able to
distinguish true positive predictions of DEF from falsely classified features. In the second
part we show results on real metatranscriptomic count data. Here the ground truth is not
known and therefore we restrict the analysis on the comparison of the results from the two
normalization approaches. Because it is impossible to verify the correctness of predictions
we focus on analyzing the agreement or disagreement on DEF detection in this case.

Simulation |

In this experiment, we measured the ability to detect DEF in a metatranscriptome without
variation of organism-specific library sizes across different samples. This situation, in
principle, does not require any normalization and therefore we expected taxon-specific
(“tax”) and global (“glo”) scaling to yield similar results. This is confirmed by the resulting
true positive (TP) predictions of DEF for the included organisms (Fig. 2). For both
approaches the number of true positives is higher for more abundant organisms due to
an increased statistical power of the corresponding tests. The final profile includes 100 DE
and 900 NDE features for each organism, resulting in 5,000 features in total.
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Figure 2 Simulation I. Number of true positive (TP) and false positive (FP) features identified with DE-
Seq2 for global (“glo”) and taxon-specific (“tax”) scaling: boxplots represent variation over 100 runs of
the simulation.

Full-size & DOI: 10.7717/peerj.3859/fig-2

We repeated the analysis with edgeR with the included normalization and DESeq2/edgeR
with TC normalization to estimate the scaling factors (see File S4: Fig. 1). For edgeR, the
number of correctly identified DEF is lower for all organisms (see File S4: Fig. 1). For
this particular data set, the library size (LS) was correctly adjusted by DESeq2 with scaling
factors close to 1 for all samples. Again both normalization approaches performed equally
well. A similar picture can be expected for a varying total LS of the metatranscriptome
samples as long as the relative LS of the organisms does not vary across different samples.

Simulation Il

When introducing organism-specific LS variation across samples the picture changes.
For the global scaling approach the results show a decrease in the average TP rate for all
organisms (see Fig. 3). This trend is also visible when edgeR with the included normalization
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and DESeq2/edgeR with TC normalization are used for differential expression analysis (see
File S4: Fig. 2). On the other hand, with taxon-specific scaling the results are very similar to
results from Simulation I (see Fig. 2). With this method more DEF are correctly identified
than with global scaling. The difference in the number of correctly identified DEF for global
scaling is dependent on the parameter settings for the LS variation. For a lower amplitude
of the LS variation, the TP rate for global scaling increases (File S4: Fig. 3). The range of TP
for the most abundant organisms Orgl and Org2 is broader with global scaling (see Fig. 3)
which also shows a higher scaling divergence for organisms with a lower sequencing depth
(see File S4: Fig. 4).

The receiver operating characteristics (ROC) shows a higher area under curve (AUC)
value for taxon-specific scaling (0.8776) than for global scaling (0.8282). The curve for
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(AUCQ) is 0.8776 for taxon-specific scaling and 0.8282 for global scaling.
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global scaling also shows a higher degree of variation across different simulation runs
(Fig. 4 dotted lines).

Simulation lll

With the inclusion of a condition dependent variation of the LS this simulation experiment
can be viewed as a worst case study. For global scaling, the observed number of true
positives is higher for all data sets compared to Simulation II (see Fig. 5). However, the
number of false positive predictions explodes and even exceeds the total number of DEF
(500) resulting in average TP and FP numbers of 228 (+11) and 1,523 (£78), i.e., ~35%
of all features are predicted to be DEF.

In particular, the biggest portion of FP accumulates in features from Orgl and Org2
(see Fig. 5). Inspecting the log2 fold changes (see Fig. 6) a shift from the correct center
of 0 upwards and downwards can be observed for Orgl and Org2, respectively. As a
result, many DEF are identified with the wrong (opposite) direction and most of the false

Klingenberg and Meinicke (2017), PeerJ, DOI 10.7717/peerj.3859 13/29


https://peerj.com
https://doi.org/10.7717/peerj.3859/fig-4
http://dx.doi.org/10.7717/peerj.3859

Peer

[ J
a . !
60 -
[ J
50 -
_|
o
40 '’ )
° ° Organism
30 - - =K

#features
(0]
8
o
w

°
400 - o
°
°
200 - °
o o
iL
0- =9 —
glo tax

normalization method

Figure 5 Simulation III. Number of true positive (TP) and false positive (FP) features identified with
DESeq2 for global (“glo”) and taxon-specific (“tax”) scaling. Boxplots represent variation over 100 runs
of the simulation.

Full-size & DOLI: 10.7717/peerj.3859/fig-5

positive detections just reflect the direction of this shift. The results with edgeR and TC
normalization show a similarly high FP rate (see File 54: Fig. 5).

As a consequence, the ROC curve collapses for global scaling (see Fig. 7) with an AUC
of 0.6396. In contrast, taxon-specific scaling does not suffer from condition-dependent LS
variation and the results compare well with those of Simulation I & II showing a similar
shape of the ROC curve (AUC: 0.8785). With taxon-specific scaling, the average TP across
all species is 237 which corresponds to a sensitivity of ~47%. For global scaling the total
number of predicted DEF (TP + FP) is dependent on the amplitude of the condition
dependent LS shift and increases for bigger shifts.
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Figure 6 Simulation III: Log2 fold changes. Log2 fold changes of features for global normalization on
one example data set. Along x-axis, features (dots) are ordered according to five stacked organism pro-
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features which are incorrectly identified as significant features.
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Note that the FP predictions under global scaling arise from a transcriptomics perspective
which assumes that all information is represented in the functional variation of organism-
specific feature profiles. We admit that for this simulation the term “false positives” can
be misleading, because we introduced a systematic condition-dependent LS variation
which might as well correspond to a meaningful reaction to a change of experimental
conditions. However, the main point here is that with global scaling it would not be
possible to distinguish between both kinds of predictions in real data. As shown above, also
the number of identified transcriptomic differences (TP) is high and in a typical application
of global scaling on mixed counts from different organisms the two types of transcriptional
differences will not be recognized.

Simulation IV

The last simulation only includes two organisms for a better illustration of the effects
that arise from a superposition of counts from different organisms. The normalized
superimposed counts show a characteristic picture (Figs. 8A and 8B) when looking at the
mean counts for condition A (x-axis) and B (y-axis). While the feature distribution for
taxon-specific scaling shows an elliptical distribution with a higher concentration near the
diagonal, for global scaling we observe a clustering of features, with a lower density near
the diagonal. The two clusters arise from the two organisms, which show a different ratio
of condition-specific means, due to different LS under the two conditions. Here we see
that it can be problematic to infer the scaling factors which are typically estimated from
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putative NDE features on and near the diagonal. In this case, for transcriptomics tools like
DEseq2 and edgeR the assumption of a majority of NDE features is obviously violated.

To illustrate how the superimposed (mixed) counts are obtained, we used arrows to
show the contribution of both organisms to the mixed counts for the first 50 features, i.e.,
all up-regulated DEF from the generated transcriptome profiles (see Figs. 8C and 8D).
Each arrow starts at the location of the transcriptomic (mean) counts and ends in the
mixed (mean) count. Because we used two organisms, each metatranscriptomic count has
two transcriptomic sources. For taxon-specific normalization, most arrows are (nearly)
parallel to the diagonal, which indicates that the type of the difference is maintained. For
global scaling the arrows form a larger angle and often cross the diagonal. A crossing
means that the direction of the difference changes for the mixed feature. A feature that was
up-regulated for one transcriptome becomes down-regulated for the metatranscriptome.
With global scaling, on average 43.6 crossings occur for the 100 features labeled as DE by the
generation process. Only six crossings were observed for taxon-specific scaling (see Figs. 8C
and 8D). Thus, the meaning of up and down regulation may completely change with global
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scaling and in large parts the results may contradict the corresponding single transcriptome
analyses. This may even rise the question whether the term “differential expression” is still
adequate for this kind of difference which arises from a shift of taxonomic abundances.

Real metatranscriptome data

While the objective of the simulation studies was to evaluate and compare the two
normalization approaches in terms of combined transcriptomic DEF, we do not have DE
and NDE labels for the analysis of the real data. Therefore we focused on an analysis of
the (dis-)agreement in results between both approaches without assessing the detection
performance. The analyzed data comprises Pfam counts from 11 organisms, six conditions
according to different time points and four replicates per condition. An overview on
predicted DEF in all pairwise condition comparisons is shown in Fig. 9.

For both approaches, the number of predicted DEF peaked at “day 13” vs. “day 27”
with 512 and 756 significant features for taxon-specific and global scaling. The number of
DEF was low when conditions close together on the time line were compared (“day 15” vs.
“day 16” or “day 29” vs. “day 30”).

For global scaling, the number of predicted DEF was generally higher than for taxon-
specific scaling. For some of the comparisons, the number of extra predictions under
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global scaling was even higher than the number of shared predictions (see Fig. 9). The high
number of extra predictions observed with global scaling is especially prevalent for the
comparisons “day 15” vs “day 16” with 16 times more extra predictions than predictions
shared with taxon-specific scaling and “day 13” vs “day 16” with three times more extra
predictions than shared predictions.

We also compared the results of the mixture analysis for global scaling and taxon-
specific scaling to the transcriptome analyses of the individual organisms. For 10 of the 15
comparisons, the majority of predicted DEF with global scaling were not predicted as DEF
in any transcriptome (see File S4: Fig. 6). In contrast, with taxon-specific scaling only the
comparisons “day 29” vs “day 30” and “day 15” vs “day 16” show a higher fraction of
significant features not predicted as DEF in the transcriptomes. These two comparisons are
also the ones with the smallest total number of predicted DEF. When taking into account
the direction of the differential expression, the number of DEF predicted by both methods
but with contrary regulation direction is low. Here, comparison “day 16” vs “day 30”
shows a maximum of 5 DEF with an opposite direction. An example of a feature that shows
a contrary result under the two scaling methods is shown in Fig. 10.
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Analysis of “day 13” vs “day 27”

As described in the original study, “day 13” and “day 27” each correspond to the final
day of a particular diet. Because the number of predicted DEF for both scaling methods
(global and taxon-specific) was the highest here, we analyze the results for this comparison
in more detail.

We mapped the Pfam-annotated features which were predicted as DEF for global scaling
and taxon-specitic scaling to Gene Ontology (GO) terms and compared the results. With
taxon-specific scaling 250 GO terms with at least one DEF mapping were identified, while
global scaling resulted in 311 GO terms. GO terms associated to biological processes with a
high agreement between the two methods were for example cellular amino acid metabolic
process where both methods identified seven of the nine associated Pfams as DEF and
carbohydrate metabolic process with 11 DEF shared between taxon-specific scaling and
global scaling. In this category, taxon-specific scaling and global scaling predicted five
additional DEF uniquely.

GO terms with predicted DEF from taxon-specific scaling alone included magnesium
ion binding and fucose metabolic process with three predicted DEF each. For global
scaling alone, we found that DNA modification, molybdopterin cofactor biosynthetic
process, and RNA modification with 3, 2 and 2 predicted DEF respectively (see File S6 for
a complete list).

Extra predictions. In the condition comparison “day 13 vs “day 27”, both normalization
approaches shared 376 DEF. With taxon-specific scaling, 136 extra predictions were
observable while global scaling resulted in 380 extra predictions. We then compared the
results of both scaling methods to the single organism transcriptome analyses where a total
of 1,302 features had been found to be DEF at least for one transcriptome. Global scaling
and taxon-specific scaling resulted in 252 and 69 predictions of DEF that were insignificant
in all single analyses (see Fig. 9). Within these predictions both methods shared an overlap
of 53 features.

The fraction of shared DEF predictions between the two scaling methods is lower
if the DEF are supported by a smaller number of transcriptome analyses. For features
supported by one transcriptome the agreement was ~48%, increasing to ~56% for two
transcriptomes. In the range of three to six supporting transcriptomes, the agreement
increases to ~59%, ~80%, 100% and 100% respectively. While the relative agreement
between taxon-specific and global scaling increases, the total number of features supported
by multiple transcriptomes decreases (File S4: Fig. 6).

The results indicate that with global scaling we encounter the same problem that we
have already outlined in the simulations. As shown above, on real data the number of
shared DEF predictions between the two scaling methods can be as high as the number of
extra predictions that result from global scaling. As also indicated by the following scaling
factor analysis there is strong evidence that these extra predictions result from taxonomic
abundance variations. Again we argue, that without taxonomic separation and further
analysis, with global scaling it is impossible to distinguish differences that result from
taxonomic abundance shifts from differences that arise from organism-specific changes of
the transcriptome.
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Scaling divergence. In the simulations, the differences in the estimated scaling factors for
the single organism profiles in comparison to the actual scaling factors were low with a
scaling divergence of ~0.01. In Simulation II we found the scaling deviation to be high in
general with global scaling (File S4: Fig. 3) and in Simulation IIT which showed the highest
divergence we observed a drastic increase of predicted DEF with global scaling when two
organisms with condition-dependent abundance shifts were combined.

To further investigate the increased number of DEF predicted by global scaling, we
compared the scaling factors estimated for the single organism profiles with the estimated
scaling factors for the global normalization in the comparison “day 13” vs “day 27”. For
several organisms, a pattern emerged which shows a condition specific scaling divergence
(Fig. 11). While the scaling factors for one condition are relatively small, the scaling
factors in the other condition are relatively high. As a result, global scaling leads to a
condition-dependent divergence which may explain the increased prediction of DEF
because the normalization introduces a shift between the two conditions. The observed
scaling divergence is also in agreement with the organism abundance for each sample (see
File S4: Fig. 7).

A single scaling factor per sample is especially problematic for features, which mainly
comprise counts from one organism or when counts from mixed organisms with the same
scaling shift are analyzed. For a quantification we determined the number of features, for
which counts from a single organism (or the mixture of organisms with the same scaling
divergence direction) exceed 80% of the normalized counts for that feature. For extra
predictions obtained only with global scaling without evidence from the transcriptome
analyses, the counts from a single organism are the main contribution for 82 of 199 features.
Additional 43 features are predicted from the summed counts from organisms with the
same scaling shift. An example of a feature that shows a dominating single organism is
shown in Fig. 12.

DISCUSSION

The simulations allowed us to highlight the effects of the two normalization approaches
that can lead to results with a varying degree of divergence between taxon-specific and
global scaling. Here, we could show that organism-specific transcript abundance and its
variation between and within conditions is the key factor for the divergent results.

Other important factors are the accuracy of the functional and taxonomic annotation
and the number of observed features with sufficient counts to estimate the scaling factors.
In this regard, the simulations correspond to idealized conditions which cannot reflect the
difficulties of a real data analysis. The number of organisms was chosen with respect to a
clear visualization of results. In principle, an increase of the organism number does not
add any effects that could not be observed with a lower complexity.

All simulations were designed to demonstrate the very different nature of the two
normalization approaches. Taxon-specific scaling is closely related to the transcriptomic
approach to differential expression analysis and can be viewed as a possible generalization
of the single-organism setup to a multi-organism analysis. It equalizes all variations of
the taxonomic composition of transcripts across samples to identify functional effects
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that are consistent across different organisms. If the functional profiles do not show

systematic variation between conditions, no meaningful differences will be found with

taxon-specific scaling.

In contrast, global scaling assumes that variations of the taxonomic composition are

meaningful and important for differential analysis. Depending on the data, this assumption

may be correct and then many of the false positives for global scaling in Simulation III

may actually correspond to true positives. The objective of the simulations was to compare

the two normalization approaches under the assumption that the relevant information is

in the variation of the organism-specific functional profiles, similar to the transcriptomic

approach. In contrast, the taxonomic variations were not assumed to be indicative of the
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experimental conditions and might for instance result from sample preparation. We chose
this setup because it reveals a potential complication of the global scaling approach. As
the main problem, the effects of taxonomic and functional variations will always be mixed
up in the results when applying global scaling. Without further analysis, it is impossible
to determine whether a predicted DEF results from a taxonomic or from a functional
variation. Another problem with global scaling has been shown in Simulation IV, where
the underlying model assumptions for the normalization tend to be violated. With an
increasing number of DEF it becomes increasingly unclear which features should be used
as a reference for estimation of the scaling factors. Therefore, if taxonomic variation is
informative it might be a better strategy to estimate the species composition for each sample
and then compare the taxonomic profiles for the identification of significant differences.
In fact a differential composition analysis as used in metagenomics (McMurdie ¢ Holmes,
20145 Weiss et al., 2017) will well complement a differential expression analysis based on
taxon-specific scaling.

It is important to realize that while taxon-specific scaling negates library size variation
of the organisms between samples, it retains the overall taxonomic composition of the
observed transcripts. Therefore, the feature counts of rare organisms will have less impact
on the combined metatranscriptome data than feature counts from highly abundant
organisms. The minimum required coverage of an organism for reliable estimation of
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the scaling factors highly depends on the data. For rare species it is possible that only a
few highly expressed features are observed. As a special case, organisms only observed in
one condition cannot be included in the differential expression analysis of the combined
counts for taxon-specific scaling. Therefore, the user has to check what fraction of the
features can actually be used in the analysis and if identified DEF could be the result of
the exclusion of features from organisms not observed in both conditions. With global
scaling such single-condition organisms can be included but without taxonomic separation
it can become difficult to explain a possibly large number of differences from a change of
experimental conditions.

For taxon-specific scaling our approach relies on techniques implemented in tools
that have been developed for differential expression analysis in transcriptomics. As a
consequence, our method also inherits the assumptions and requirements of these tools
for the normalization of transcriptomic count data. In general, both DESeq2 and edgeR
require a sufficient number of NDE features to reliably perform the normalization. In
particular, both methods expect the number of DEF to be lower than the number of NDE
features. Also the proportion of up- and down-regulated features may have an influence
on the detection of DEF. When the ratio is shifted towards one regulation direction,
the detection performance may decrease. Other normalization methods might provide
better results under these conditions (Soneson ¢ Delorenzi, 2013). The applicability of
taxon-specific scaling inherently depends on the accuracy of the methods that are used for
taxonomic binning and feature annotation. Among the factors that impact the accuracy
are the complexity of the analyzed metatranscriptome and the evolutionary distance
between the observed organisms and organisms in reference databases. For highly complex
communities and for communities with only distantly related organisms in the reference
databases, additional sequencing of the metagenome will be highly beneficial to improve
the results.

The optimal situation for taxon-specific scaling would enable the separation of all feature
profiles from different organisms. This organism-specific separation can be viewed as the
most conservative approach, as in principle it would be sufficient to separate all differing
expression profiles. Therefore, if organisms show the same transcriptional activities, the
normalization of their combined count data is possible without problems. For example,
the metatranscriptome might include multiple strains of the same species occurring
simultaneously but showing the same activities.

The choice of features is also an important factor to consider before the experiments are
performed. The transformation of the organism-specific genes to a common feature space,
such as the Pfam protein domain categories, allows us to first normalize and then sum up
the features of different organisms to obtain a superimposed count matrix. The mapping
can also include the assignment of multiple genes from the same organism to a single feature
representation. As a consequence, it is no longer possible to identify differential expression
with respect to a single gene. This limitation is inherent to many metatranscriptome studies
and does not depend on the chosen normalization approach. Again, parallel sequencing
of the metagenome might be considered, to obtain a higher resolution. Then, a combined
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assembly and binning strategy can yvield the required draft genomes as reference to realize
the highest taxonomic and functional resolution for differential expression analysis.

CONCLUSIONS

Differential expression analysis in metatranscriptomics is challenging. Metatranscriptomic
count data from RNA-Seq experiments show two main modes of biological variation.
The functional composition of transcripts reflects the activity of organisms and systematic
changes might indicate a metabolic response to experimental conditions. The taxonomic
composition of transcripts can change as well and a change may not necessarily be
explainable in terms of controlled experimental conditions. In contrast to metagenomics,
in metatranscriptomics the questions “who is there?” and “what are they doing” are
not necessarily connected and should be answered separately for a clear interpretation
of results. If the two questions are not separated, just from a significant difference it is
not possible to decide whether this difference goes back to a variation of taxonomic or
functional profiles or if it reflects both kinds of variation. Our approach to normalization of
metatranscriptomic data eliminates the influence of taxonomic variations from functional
analysis. For realization of this approach, the metatranscriptome needs to be decomposed
to normalize the organism profiles independently. Then the metatranscriptomic count
data can be recombined from the normalized profiles to look for any general tendencies
in the superimposed count data. If differential expression tools are directly applied to
the metatranscriptomic count matrix, the interpretation of results can be difficult. Our
simulations indicate that it is easily possible to obtain a large number of putative functional
differences which just arise from taxonomic abundance variations across samples. We
would like to point out that our findings do not affect metatranscriptome studies that just
aim to analyze the functional repertoire from RNA-Seq data. The question which functions
or genes are expressed is much easier to answer than the question what is the functional
response to a change of experimental conditions. However, it is important to note that
our results do not only apply to the classic two conditions setup that we used throughout
our study. Also for multiple conditions and time series our normalization approach will be
beneficial to separate functional from taxonomic trends in metatranscriptomic count data.
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