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Abstract

Purpose—This study intends to investigate the feasibility of using hyperspectral imaging (HSI) 

to detect and delineate cancers in fresh, surgical specimens of patients with head and neck cancers.

Experimental Design—A clinical study was conducted in order to collect and image fresh, 

surgical specimens from patients (N = 36) with head and neck cancers undergoing surgical 

resection. A set of machine-learning tools were developed to quantify hyperspectral images of the 

resected tissue in order to detect and delineate cancerous regions which were validated by 

histopathologic diagnosis. More than two million reflectance spectral signatures were obtained by 

HSI and analyzed using machine-learning methods. The detection results of HSI were compared 

with autofluorescence imaging and fluorescence imaging of two vital-dyes of the same specimens.
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Results—Quantitative HSI differentiated cancerous tissue from normal tissue in ex vivo surgical 

specimens with a sensitivity and specificity of 91% and 91%, respectively, and which was more 

accurate than autofluorescence imaging (P < 0.05) or fluorescence imaging of 2-NBDG (P < 0.05) 

and proflavine (P < 0.05). The proposed quantification tools also generated cancer probability 

maps with the tumor border demarcated and which could provide real-time guidance for surgeons 

regarding optimal tumor resection.

Conclusions—This study highlights the feasibility of using quantitative HSI as a diagnostic tool 

to delineate the cancer boundaries in surgical specimens, and which could be translated into the 

clinic application with the hope of improving clinical outcomes in the future.

Introduction

Worldwide, more than 500,000 patients are diagnosed with head and neck squamous cell 

carcinoma (HNSCC) each year, and thus posing substantial economic burdens (1, 2). Head 

and neck cancers comprise a heterogeneous group of tumors arising from the oral cavity, 

pharynx, larynx, paranasal sinuses, and salivary and thyroid glands (3). Surgery remains one 

of the major treatment options for this disease, and with the primary objectives of 

maximizing tumor removal while minimizing the damage to healthy tissue. Extensive 

resection with unnecessary removal of normal tissue can leave patients with serious 

functional and aesthetic deficits, and thus compromising their ability to perform vital daily 

functions, such as chewing, swallowing, or speaking. However, if the tumor margins are not 

accurately defined and the diseased tissue is not completely removed, cancer is likely to 

persist or recur. A positive surgical margin is associated with a poor prognosis in terms of 

increased local recurrence and decreased overall patient survival (4). Therefore, the ability to 

define the tumor margins with a high degree of accuracy is critical for maximizing the 

efficacy of surgical treatment and the patient’s subsequent quality of life, both of which 

might produce significant cost savings.

Achieving resection margin adequacy is highly “operator dependent” with respect to 

surgeons and pathologists (5). Visual inspection and palpation are routinely used by a 

surgeon to differentiate between tumor and normal tissue during surgery (6), and which is 

known to be subjective and not easily quantifiable. Intraoperative frozen section assessment 

of surgical margins is widely used to assist in complete tumor extirpation in head and neck 

surgery. However, frozen section histopathology requires multiple, well-trained 

professionals, increases the cost and the duration of procedures, extends anesthesia-related 

risks, and provides diagnostic information at only a few discrete locations of the resection 

margins (7). Freezing artifacts, such as distortion of tissue architecture, uneven sectioning or 

poor staining, increases the likelihood of interpretive errors of histologic diagnosis. The 

overall frozen section accuracy has been reported to be only 71.3% and 77.9% in the 

evaluation of close (<5 mm) or positive final margins in two comprehensive studies (7, 8). 

Therefore, intraoperative imaging techniques that can help the surgeon to visualize and 

guide the tumor excision could improve complete surgical resection while preserving vital 

anatomic structures and functions of patients with head and neck cancer.
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To address the issue, a variety of optical imaging approaches utilizing intrinsic contrast, such 

as autofluorescence imaging (9, 10) and narrow band imaging (11), or extrinsic contrast, 

such as near-infrared (NIR) fluorescence imaging (12, 13), have been studied to guide 

surgical resection in head and neck cancers (14). Despite the great potential of these optical 

modalities, objective and quantitative delineation of the surgical margin is still lacking and 

surgical resections were subjected to the qualitative observations of the optical images by the 

surgeons. Here, we propose to investigate the utility of hyperspectral imaging (HSI) in 

conjunction with quantitative machine-learning techniques as a diagnostic tool to demarcate 

tumor from the normal tissue during surgery. The advantage of HSI is that it is a hybrid 

optical modality that combines wide-field imaging and spectroscopy to simultaneously attain 

both spatial and spectral information, and which makes it possible to spatially demarcate the 

tumor boundaries without using an exogenous contrast agent (15). Our group has previously 

reported the use of quantitative HSI for the detection and delineation of head and neck 

cancer in several preclinical animal studies (16–19).

To this end, we conducted a proof-of-concept study in order to determine the feasibility of 

using quantitative HSI to distinguish tumor from normal tissue in fresh, surgical specimens 

from patients with head and neck cancers obtained from a variety of anatomic sites, 

including the oral cavity, larynx, pharynx, thyroid gland, paranasal sinus, and nasal cavity. 

To obtain relevant diagnostic information from hypercubes, we developed two, machine-

learning frameworks to quantify hyperspectral images, and taking into the account the intra-

and interpatient spectral variabilities. Pseudo-color maps were generated to indicate cancer 

probabilities and demarcate tumor borders, and which could be valuable for assisting the 

surgeon to accurately pinpoint the tumor margins and thus facilitate radical resection. The 

proposed quantification methods were validated by the pathology diagnosis. Furthermore, 

the diagnostic performance of label-free HSI was compared with other optical imaging 

methods, including autofluorescence imaging and fluorescence imaging of two topical dyes, 

that is, 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) and 

proflavine, that were previously used for the detection of head and neck cancers (20–22) as 

well as breast cancer (23, 24). To the best of our knowledge, this is the first time that HSI 

and machine learning–based quantification tools were tested and validated in a wide variety 

of head and neck cancer tissue from human patients.

Materials and Methods

Hyperspectral imaging instrumentation

A description of the HSI instrument is given in ref. 19. Briefly, an HSI system called 

Maestro (Perkin Elmer Inc.) was used for acquiring the hyperspectral dataset. This system 

mainly consists of a flexible, fiber-optic lighting system, a solid-state liquid crystal tunable 

filter (LCTF, bandwidth 20 nm), a spectrally optimized lens, and a 12-bit, high-resolution, 

charge-coupled device (CCD). A Cermax-type, 300 W, Xenon light source is used as white 

light excitation. The reflected light from the surface is split into a series of narrow spectral 

bands by the LCTF and then collected by the CCD camera. This instrument is capable of 

acquiring images from 450 to 900 nm with 5-nm increments.
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Patient recruitment and specimen collection

Patients with head and neck cancers scheduled to undergo surgical resection with curative 

intent at Emory University Midtown Hospital were consented for our study. All tissue was 

collected under the Head and Neck Satellite Tissue Bank (HNSB, IRB00003208) protocol 

approved by the Emory University Institutional Review Board. The samples were de-

identified and coded by a Clinical Research Coordinator before being released to our 

laboratory. During the surgery, resected specimens were sent to the pathology room for 

margin assessment. Selected surgical margins were processed for frozen-section, 

histopathologic evaluation, as routinely performed independently of our research. When 

specimen handling related to direct patient care was complete, three, fresh, tissue samples, 

including clinically visible tumor, clinically normal tissue, and tumor–normal interface 

(tumor with adjacent normal tissue), were procured from the main specimen of each 

consented patient. Tissue regions with pathology ink were excluded. Specimen collection 

and imaging did not affect the procedure time in the operating room (OR) or the content and 

verification of the final pathology report.

Fresh surgical specimen imaging

Figure 1 shows an overview of the clinical study design. Briefly, fresh surgical specimens 

collected in the hospital were kept in cold PBS and were immediately transported to our 

imaging center. The resected specimen was washed carefully with PBS in order to eliminate 

the blood contamination on the tissue surface. A series of imaging steps were performed as 

follows:

Step 1: White and dark reference hypercubes were acquired before tissue imaging. 

White reference image cubes are acquired by placing a standard white reference 

board in the field of view. The dark reference cubes are acquired by keeping the 

camera shutter closed in absence of light (25, 26).

Step 2: The specimens were placed on a nonreflective blackboard on the imaging 

stage. Reflectance hyperspectral images of the specimen were obtained from 450–

900 nm with 5-nm intervals.

Step 3: Autofluorescence images were acquired with blue light excitation at 455- and 

a 490-nm long-pass emission filter.

Step 4: Fluorescence images of 2-NBDG and proflavine were acquired. By topically 

apply 2-NBDG and proflavine to the surgical specimen, we may identify cancerous 

regions from fluorescence images and compare the fluorescence imaging with label-

free, wide-field HSI. Detailed procedures for vital dye fluorescence imaging methods 

were previously described in ref. 27. Here is a brief summary of the imaging 

procedures:

2-NBDG imaging: tissue specimens were first incubated in a 160 μmol/L solution of 

2-NBDG (Cayman Chemical) in 1 × PBS for 20 minutes at 37°C The specimens 

were then washed once with PBS, after which fluorescence images of the tissue were 

obtained using the blue excitation and 490-nm long-pass emission.
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Proflavine imaging: tissue samples were first incubated in a 0.01% (w/v) solution of 

proflavine (Sigma Aldrich) in 1 × PBS for 2 minutes at room temperature. Next the 

specimens were washed once with PBS, after which fluorescence images were 

obtained using blue excitation and 490 nm emission. The fluorescence signal from 

proflavine staining is much brighter than that of 2-NBDG, and thus allowing for 

imaging of proflavine-stained tissue after 2-NBDG staining.

Histologic processing and annotation

After all the imaging procedures were finished, we stained three tissue samples with red, 

blue, and yellow color ink in order to preserve its orientation during histologic processing. 

The inked specimens were fixed in 10% buffered formalin overnight and then sent to the 

Pathology Department for standard histologic processing. Two to three serial sections with 5 

μm thickness from the imaging surface were cut and stained with hematoxylin and eosin 

(H&E) staining. These tissue sections were then digitally scanned for the pathology 

diagnosis. A clinically experienced pathologist examined the histology slides and outlined 

the tumor boundary on the digitized slides as the gold standard to validate the quantification 

method.

Pre-processing of hypercube

The method for data preprocessing consists of reflectance calibration and glare removal:

Reflectance normalization: The purpose of this step is to remove the spectral non-

uniformity of the illumination device and the influence of the dark current. The raw 

radiance data can be converted into normalized reflectance using the following 

equation:

(1)

where Iref(x, y, λ) is the normalized reflectance value at the pixel location (x,y) and 

the wavelength band λ. Iraw(x, y, λ) is the raw intensity value of a sample pixel (x,y). 

Iwhite(x,y, λ) and Idark(x,y, λ) are the corresponding pixels from the white and dark 

reference images at the same wavelength as the sample image.

Glare removal: Glare spots are frequently observed in optical images, and which are 

attributed to the specular reflection from the moist tissue surface. Glare pixels do not 

contain diagnostic information from under the tissue surface and can introduce 

artifacts in feature extraction and deteriorate classification results. Therefore, we 

propose to detect and remove glare pixels from the normalized hypercube as 

described in ref. 19.

Feature extraction

Hyperspectral imaging—To reduce the computational time without reducing the 

accuracy, spectral curves were averaged in nonoverlapping blocks of m × m in order to yield 

a spectral signature per block. All of the spectral information available in the hyperspectral 
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data was utilized. Blocks containing glare pixels were excluded from the classification 

process. Each block was assigned a label as tumor or normal.

Multispectral imaging—For comparison, we evaluated the multi-spectral imaging (MSI) 

features utilizing the spectral peak bands of oxygenated hemoglobin (540 nm, 575 nm) and 

deoxygenated hemoglobin (555 nm), and which have been shown to aid in visualization 

increased vasculature in the oral cavity during malignant transformation (28). The average 

multispectral intensities were used as features for MSI classification.

Conventional RGB imaging—We simulated the conventional RGB imaging by 

converting the illumination wavelength for each band in the range of 450 to 900 nm into the 

constituent RGB values as perceived by humans, and then averaging the contribution to R, 

G, and B for each band. The average RGB intensity values of each block were used as 

features for the RGB imaging classification.

Autofluorescence imaging—Average fluorescence intensity from 500 to 650 nm with 

10 nm increments within each block was extracted as features for classification.

Fluorescence imaging—The mean fluorescence intensity of 2-NBDG or proflavine 

images from 500 to 650 nm with 10-nm increments within each block was extracted as 

features for classification.

Classification

Pathological validation and ROI selection—The gold standard for cancer detection is 

pathological diagnosis. As the tumor profile was outlined in the digitized H&E stained 

histologic images by a pathologist, we need to register the pathological image with the 

hypercube of the tissue specimen in order to delineate the tumor region in hyperspectral 

images, and which would be the gold standard for validating our quantification method. To 

do this, we first synthesized an RGB color image from each hypercube, and then manually 

registered the histologic image with the synthesized RGB image using affine registration 

with software Analyze 10.0 (Mayo Clinic). Region of interests (ROI) that were 

pathologically confirmed to be tumor or normal were chosen for quantitative analysis.

Predictive modeling—A total of 36 research subjects were included in this study (Table 

1) for quantitative analysis. To determine the optimal classifier for hypercube analysis, we 

evaluated and compared a variety of machine learning classifiers in order to analyze the 

spectra and determine the classification criteria, allowing samples from all cancer tissue 

categories to be separated from samples corresponding to normal tissue. Classifiers 

including linear discriminant analysis (LDA; ref. 29), quadratic discriminant analysis 

(QDA), ensemble LDA (30), linear support vector machine (SVM), and kernel SVM with 

radial basis function (RBF) function (31), as well as random forest (RF; ref. 32) were used 

for supervised learning. All of the data were processed and analyzed with software 

developed in-house that operates in a MATLAB environment (MATLAB 2015b, 

MathWorks). The LIBSVM software package (31) was used for both linear and kernel 

SVMs. To account for intra- and interpatient spectral variations, two predictive analysis 
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frameworks were developed and validated in this study. Details of the methods were 

described below.

Intrapatient classification—For each of the enrolled research subjects, tissue samples 

were taken at the clinically visible tumor center without necrosis, surrounding normal tissue, 

and at the tumor–normal tissue interface when available. So we proposed to conduct 

intrapatient classification, which used the tumor and normal sample of each patient, as 

training data to build a predictive model and then evaluated the model performance on the 

tumor–normal interface tissue sample of the same patient. The sensitivity and specificity of 

the classifier for each patient was calculated based on how many tumor pixels or blocks 

were correctly classified and how many normal pixels were correctly classified within the 

selected ROIs on the tumor– normal interface tissue. The advantage of this method is to 

detect and delineate the tumor regions in the tumor–normal interface sample quickly and to 

eliminate the influence of interpatient heterogeneity by utilizing spectra from patient-self. 

As listed in Table 1, 25 patients with all three pieces of tissue available were selected for 

intrapatient classification, including cancers from the oral cavity (N= 12), larynx and 

pharynx (N = 3), maxillary sinus (N = 2), nasal cavity (N = 1), thyroid (N = 6), and parotid 

(N = 1). The number in the brackets refers to the number of patients.

Interpatient classification—To account for interpatient heterogeneity, we proposed 

another framework called interpatient classification. Tissue samples from 31 research 

subjects, as listed in Table 1, were analyzed using this method. Each patient included in this 

analysis had at least two tissue samples (tumor and normal) available. Leave-one-patient out 

cross-validation was performed to account for variability in classification performance. We 

separated 31 patients into two cohorts, that is, nonthyroid and thyroid cancer, in order to 

reduce spectral variability due to the cancer site. In the first cohort, 20 patients with 

squamous cell carcinoma (SCC), spindle cell squamous carcinoma (SCSC) or 

adenosquamous carcinoma (ASC), including cancers from the oral cavity (N = 13), larynx 

and pharynx (N = 4), and paranasal and nasal cavity (N = 3) were grouped together for 

leave-one-out analysis. During each run, 19 out of 20 were randomly selected and all of their 

tissue specimens were used as training data, while all of the tissue specimens from the 

remaining patient were used as testing data. This process was repeated 20 times for the first 

cohort.

Similarly, 11 patients with thyroid cancers, including nine papillary thyroid carcinomas 

(PTC), one follicular thyroid carcinoma (FTC), and one medullary thyroid carcinoma 

(MTC), were considered as the second cohort for this analysis. During each run, 10 out of 11 

patients were randomly chosen for training and the remaining patient for testing. This 

procedure was repeated 11 times for this cohort.

For each patient, we calculated how many normal pixels/blocks were correctly classified for 

a normal specimen, how many tumor pixels/blocks were correctly classified for a tumor 

specimen, as well as the sensitivity and specificity on a tumor-normal interface specimen.
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Performance metric

We evaluated the performance of classifiers with receiver operating characteristic (ROC) 

curves, the areas under the curve (AUC), accuracy, sensitivity, specificity, positive predictive 

value (PPV), and negative predictive value (NPV). Classification accuracy, sensitivity, 

specificity, PPV, and NPV were determined using the following equations (TN, true 

negative; TP, true positive; FP, false positive; FN, false negative):

Results

Reflectance spectrum of head and neck tissue

Figure 2 shows the spectra of tumor and normal tissue samples from a variety of head and 

neck cancer sites in human patients. We found that the measured average spectra for all 

cancerous tissue differ significantly (P < 0.0001) from that of normal tissue in all the cancer 

sites (33). However, the spectra also showed large within-class variations, and which may be 

primarily attributed to the heterogeneity of head and neck tissue. The characteristic dip of 

hemoglobin can be observed in the reflectance spectra of all cancer sites. In general, the 

mean reflectance intensity of tumor tissue is higher than that of normal tissue in most of 

these anatomical sites.

Cancer prediction with intrapatient classification

Tissue from different anatomic sites may have a different structure and composition, so the 

optimal block size for averaging spectra could differ in order to best characterize the tissue. 

As shown in Fig. 3A, the diagnostic performances of spectral features extracted from block 

sizes of 1 × 1, 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11 were compared with specimens from 

the oral cavity, thyroid, larynx, and paranasal sinus. The optimal block size for the oral 

cavity is 7 × 7, for the thyroid and larynx is 5 × 5, and for the paranasal sinus is 1 × 1. 

Among all the classifiers tested for intrapatient classification, ensemble LDA was chosen as 

the optimal classifier due to its superior overall performance (Fig. 3B). To use HSI toward 

real-time guidance of surgical resection, we generated a cancer probability map with the 

tumor border outlined in green, as shown in Fig. 3C–F. This color-coded map may assist a 

surgeon to better visualize and assess tumor borders during surgery.

Diagnostic performance of HSI, autofluorescence imaging and fluoresecence imaging

As shown in Table 2, using reflectance spectra from HSI, we were able to distinguish 

between tumor and normal tissue with an average accuracy, sensitivity, and specificity of 

89%, 90%, and 90% from the oral cavity, 91%, 91%, and 93% from glandular tissue (thyroid 

and parotid), 94%, 95%, and 90% from the larynx and pharynx, and 90%, 90% and 90% 

from paranasal and nasal tissue, respectively. Overall, HSI outperformed autofluorescence 

imaging and 2-NBDG and proflavine fluorescence imaging for tumor detection in all of 

these anatomical sites.
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Figure 4 shows an example of tongue cancer detection using label-free HSI, autofluorscence 

imaging, and fluorescence imaging of 2-NBDG and proflavine. A predictive model was 

trained on the cancer and normal tongue tissue, as shown in the first column, and was tested 

on the cancer interface tissue of the same patient, as shown in the second column. The 

tongue cancer prediction maps by HSI and autofluorescence imaging were highly accurate, 

whereas 2-NBDG and proflavine was not able to correctly classify the normal tissue in the 

cancer interface specimen. This is likely due to the nonspecific uptake of the dye by the 

normal head and neck tissue.

Cancer prediction with interpatient classification

Figure 5 plotted the ROC curves of individual cancer patients with intrapatient classification 

(A) and interpatient classification (B). With reflectance spectra from HSI, we obtained an 

average AUC of 0.88 and 0.91 for the two cohorts of patients previously described. The 

diagnostic performance of HSI for cancer detection was slightly lower than the results of the 

intrapatient classification, probably due to the influence of interpatient heterogeneity. 

Supplementary Figure S1 shows an example of thyroid cancer detection from hyperspectral 

images with interpatient classification. We noticed a much lower reflectance spectrum from 

normal thyroid tissue than from thyroid cancer tissue. We also discovered that cancer and 

normal tissue were accurately detected in all three tissue samples (cancer, normal, cancer 

interface).

Diagnostic performances of HSI, MSI, and RGB

To evaluate the diagnostic value of different wavelength regions, we grouped the 

wavelengths from 450 to 900 nm into different subregions, including 450 to 600 nm, 605 to 

850 nm, and 855 to 900 nm and compared their classification performances. As shown in 

Table 3, we found that oral cavity cancer, the whole spectrum including both visible and 

NIR light, was able to distinguish cancer from normal tissue from the oral cavity with a 

higher sensitivity and specificity than the visible wavelength region alone. Although for 

thyroid cancer, the visible wavelength region from 450 to 600 nm yielded the highest 

average classification accuracy for thyroid cancers. Furthermore, we found that HSI was 

superior to MSI and conventional RGB imaging in the detection of oral cavity cancer 

(Supplementary Table S1).

Next, we looked at the cancer prediction accuracy for individual surgical specimens, 

including purely normal, purely cancer, and cancer–normal interface. As shown in 

Supplementary Table S2, for patient within the first cohort (oral cavity, larynx, paranasal, 

and nasal), HSI achieved an accuracy of 82% for classifying cancerous regions in cancer 

tissue and an accuracy of 88% in classifying normal regions in normal tissue and. In 

addition, HSI was able to distinguish cancer from normal tissue with an average accuracy, 

sensitivity, and specificity of 82%, 66%, and 76% in tumor–normal interface tissue. For 

patients with thyroid carcinoma, HSI was able to accurately detect 86% of the cancerous 

tissue from cancer specimens and 87% of the normal tissue from normal specimens 

(Supplementary Table S3). For cancer interface tissue, HSI achieved an accuracy, sensitivity, 

and specificity of 85%, 86%, and 87%, respectively, for the detection of thyroid carcinoma. 
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As the specimen from only one patient of the thyroid cohort was MTC, the classification 

results for this patient (P35) were relatively poor.

Discussion

HSI is a wide-field modality able to sense tumors in varying depth using VIS and NIR light 

illumination (at clinically relevant sensing depths). The scanning time is on the order of 

seconds. It is an objective, fast, and cost-effective tool that may provide real-time assessment 

of complete resection margins. This technique is able to quantify not only surface mucosa 

but also different faces of the resection margins. This study for the first time evaluated the 

diagnostic potential of HSI for the detection and delineation of head and neck cancer in fresh 

surgical specimens from a variety of anatomic sites, including the oral cavity, thyroid, 

larynx, pharynx, parotid, paranasal sinus, and nasal cavity. We demonstrated that HSI 

combined with machine-learning techniques enabled accurate discrimination between 

normal and cancerous tissue from fresh surgical specimens of a variety of head and neck 

cancer sites. Although this study was designed only for imaging the ex vivo surgical 

specimen, label-free HSI could be used for rapid and objective assessment of head and neck 

cancer margins during surgery and in turn, improve clinical decision-making and patient 

outcomes.

To facilitate the clinical application of HSI, it is of paramount importance to develop fast and 

accurate quantification tools for the large amounts of hyperspectral data. HSI is able to 

acquire a stack of two-dimensional images over a wide range of spectral bands, and thus 

generates a three-dimensional hypercube containing rich spectral-spatial information. 

Intensities over all of the spectral bands form a spectral signature for each pixel of the 

hypercube, and these spectral signatures are associated with the biochemical and 

morphological changes in tissue. Therefore, hyperspectral images which contain a spectral 

signature at each image pixel, can be analyzed to potentially identify various pathologic 

conditions. The challenges of hypercube analysis lie in the large size of the spectra-spatial 

dataset and the intra- and interpatient spectral variability.

To efficiently analyze hyperspectral data for intraoperative applications, two quantification 

tools were developed using intra- and interpatient classification. In this feasibility study, the 

quantification results were validated by the pathologic diagnosis in formalin-fixed paraffin-

embedded tissue, which was reported to be more accurate than the frozen pathology (7, 8). 

In the future, we would like to further assess the value of HIS by comparing its performance 

with surgeons’ assessment in the OR, and also with frozen sections diagnosis in the 

pathology room. Both intra- and interpatient classification methods are very promising for 

evaluating the surgical margins of an ex vivo specimen and for intraoperative surgical 

guidance. In the intrapatient analysis, a series of images of the surgical bed could be 

collected before, during, and after tumor resection of the same patient based on preoperative 

imaging and surgeons’ assessment. Clinically visible tumor and normal tissue spectra may 

be used to build predictive models, and residual tumors in images of the surgical bed after 

resection may be detected with the model in ~0.3 s. This method is not affected by 

interpatient spectral heterogeneities, even with much smaller training dataset. As for the 

interpatient analysis, it would be desirable to establish a spectral database of cancer and 
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normal tissue from a large number of patients and a variety of tissue types and anatomic 

sites. A predictive model could be built and optimized in advance based on these datasets. 

The model could be directly utilized to predict the presence of cancerous tissue during the 

surgical resection. Furthermore, the model could be utilized to predict the margin status of 

the resected, fresh surgical specimen in the pathology room, which could save the time and 

cost associated with frozen-section diagnosis. Because the large heterogeneity of cancer 

patients, in our study interpatient classification was not as accurate as intrapatient 

classification for the detection of cancerous tissue. Future work will continue to improve the 

diagnostic performance for interpatient classification from two aspects: (1) enlarge the 

training database by incorporating more hyperspectral dataset of a wide variety of surgical 

tissue samples; and (2) try deep learning-based algorithm to further boost the classification 

accuracy.

We also demonstrated that for oral cancer detection, it would be preferable to use the whole 

spectrum of 450 to 900 nm containing both visible and NIR light in order to provide a more 

accurate diagnostic measure, and which indicated that visible and NIR light contained 

complementary information for diagnosis. Furthermore, HSI was also more accurate than 

HSI, MSI, and RGB imaging for oral cancer detection. Because the reflectance spectra 

captured the alteration of absorption and scattering properties of tissue associated with 

malignant transformations, molecular fingerprinting based on inverse modeling of 

reflectance spectra obtained by HSI may shed new light on our understanding of human 

head and neck cancer biology.

We previously demonstrated the utility of HSI for head and neck cancer detection in a 

subcutaneous cancer animal model (17, 19, 34) and a chemically induced, oral cancer model 

(35). Uptake of the 2-NBDG fluorescent deoxyglucose derivative was associated with 

increased metabolic activity. A recent study also reported that wide-field optical imaging 

with 2-NBDG could accurately distinguish the pathologically normal and abnormal biopsies 

of patients with head and neck cancers (20). Furthermore, proflavine was also applied for 

distinguishing between benign and neoplastic mucosa in the head and neck (22). Here, we 

showed that label-free HSI was superior to autofluorescence imaging and fluorescence 

imaging of two dyes, that is, 2-NBDG and proflavine, in the detection of head and neck 

cancers in fresh surgical specimens. The fact that HSI does not require the use of an 

exogenous contrast agent to provide optical contrast favors its clinical translation.

As proof of the concept, this study included a limited number of patients in each anatomic 

site at the head and neck region. We are attempting to include more patients and build a large 

spectral database with various type of tissue components including mucosa, connective 

tissue, muscle, gland, etc. from different anatomic sites. Such a database would be helpful to 

predict cancer presence in the surgical margin in the future. Although larynx and thyroid 

lesions may be taken out as whole organs in many cases, there are also partial resections 

depending on the extent of the tumors and it is not unusual to take margins from the main 

specimen or surgical bed for intraoperative pathology assessment.

As HSI is relatively new to the field of cancer imaging, there has not been an intraoperative 

HSI commercially available. In this feasibility study, the closed field imaging system 
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represents the first study of using HSI to identify head and neck cancers in surgical 

specimens of human patients. Interference from exogenous light is a common problem for 

intraoperative optical imaging techniques. To address these problems, we may either turn off 

the OR light as adopted by the NIR fluorescence imaging (12), or use spatially modulated 

illumination as used in spatial frequency domain imaging (36). In the future, a system 

combining the HSI instrument with the quantification tools needs to be designed to produce 

high-quality images. We will further evaluate this system on the mucosal and deep surgical 

margins as well as more challenging cases like highly invasive/cohesive patterns of invasion 

in both the OR and the pathology laboratory. HSI could be utilized to quickly scan a large 

field of view and then highlight those highly suspicious pixels or regions after quantitative 

image classification. These suspicious tumor foci could be taken out for pathology validation 

to determine the sensitivity of the technology and to correlate with the local recurrence rate. 

Furthermore, HSI could also be integrated with a microscope to provide more detailed 

information for microscopic tumor detection. The long-term goal of this work is to provide 

an adjunct tool for real-time margin assessment during surgery, and thus potentially 

improving cancer resection while preserving vital anatomic structures and functions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Surgical resection is the backbone of the treatment options for head and neck cancers. 

The complex anatomy and vital physiologic role of the tumor-involved structures dictate 

that the treatment goals are not only to improve survival outcomes but also to preserve 

organ function. Here we present for the first time the application of quantitative 

hyperspectral imaging as a sensitive and specific diagnostic tool for the detection and 

delineation of head and neck cancers in a wide variety of anatomic sites. Hyperspectral 

imaging combined with machine learning-based quantification methods provides an 

objective, fast, and cost-effective tool that may allow real-time assessment of complete 

resection margins.

Lu et al. Page 15

Clin Cancer Res. Author manuscript; available in PMC 2017 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Overview of the clinical study design for fresh surgical specimen imaging.
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Figure 2. 
Average spectral curve of tumor and normal tissue samples from various head and neck 

cancer sites, including the oral cavity, thyroid, larynx, pharynx, parotid, paranasal sinus, and 

nasal cavity of human patients. The solid line and dash line represent the mean spectra of 

cancer and normal tissue, and the shaded area centered on the two lines represents the 

standard deviation.
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Figure 3. 
Diagnostic performance of HSI with the intrapatient classification method. A, Different 

block sizes and classifiers for the distinction of tumor from normal tissue in multiple, 

anatomic sites in head and neck cancer patients. C–F, Shows an example of a thyroid cancer 

detection result. C, Training hypercube with a tumor specimen and a normal specimen. D, 

Testing a hypercube with tumor and normal interface tissue. E, Cancer probability map 

generated by the ensemble LDA classifier. The green line is the tumor border generated by 

thresholding on the probability map. The color bar shows the likelihood of it being 

cancerous tissue. F, Pathology gold standard with the tumor region outlined within the green 

region by a clinically experienced pathologist.
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Figure 4. 
Tongue cancer detection using the intrapatient classification method. A, D, G, and J are the 

RGB composite image from hypercube, autofluorecence imaging, 2-NBDG, and proflavine 

fluorescence imaging, with the green and yellow solid lines outlining the cancer and normal 

tissue regions for training predictive models. B, E, H, and K are the corresponding RGB 

composite image of cancer–normal interface tissue for testing model performance, with the 

green and yellow dashed line outlining the region that we are certain to be tumor and normal 

for quantitative evaluation. C, F, I, and L are the predicted cancer map for HSI, 

autofluorescence, 2-NBDG, and proflavine imaging, with magenta and blue color denoting 

predicted malignant and normal tissue. Only regions within the green and yellow curve are 

used for quantitative evaluation. Glare pixels identified from hyperspectral images were 

excluded from classification, and, therefore, not labeled in the prediction map. M is the 

registered histology gold standard image, with the cancerous region outlined inside the green 

line by an clinically experienced pathologist. N and O are the enlarged cancer and normal 

histology image from the selected region of the image in M.
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Figure 5. 
ROC curves of intrapatient classification (A) and interpatient classification (B) with HSI for 

individual patients.

Lu et al. Page 20

Clin Cancer Res. Author manuscript; available in PMC 2017 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 21

Ta
b

le
 1

Su
m

m
ar

y 
of

 th
e 

su
rg

ic
al

 s
pe

ci
m

en
s 

an
d 

pa
tie

nt
 in

fo
rm

at
io

n 
fo

r 
qu

an
tit

at
iv

e 
an

al
ys

is

P
ri

m
ar

y 
tu

m
or

 s
it

e
Sp

ec
im

en
 o

ri
gi

n
ID

A
ge

G
en

de
ra

R
ac

ea
H

is
to

lo
gi

c 
ty

pe
a

O
ra

l c
av

ity
To

ng
ue

1
55

F
W

SC
C

To
ng

ue
2

43
M

W
SC

C

To
ng

ue
3

67
F

W
SC

C

To
ng

ue
4

75
F

W
SC

C

To
ng

ue
5

60
M

I
SC

C

To
ng

ue
6

86
F

W
SC

C

To
ng

ue
7

58
F

W
SC

C

FO
M

8
50

M
W

SC
C

FO
M

9
51

F
W

SC
C

FO
M

10
57

M
W

SC
C

FO
M

11
62

M
W

SC
SC

So
ft

 p
al

at
e

12
61

F
A

A
SC

C

M
an

di
bu

le
13

53
M

W
SC

C

M
an

di
bu

le
14

44
M

W
SC

C

G
in

gi
va

15
76

M
I

SC
C

A
lv

eo
la

r 
ri

dg
e

16
81

F
A

A
SC

C

L
ar

yn
x

Su
pr

ag
lo

tti
s

17
44

M
A

A
SC

C

Su
pr

ag
lo

tti
s

18
54

F
W

SC
C

G
lo

tti
s

19
57

M
A

A
SC

C

G
lo

tti
s

20
69

M
A

A
SC

C

Ph
ar

yn
x

H
yp

op
ha

ry
nx

21
66

M
W

SC
C

Pa
ra

na
sa

l a
nd

 n
as

al
M

ax
ill

ar
y 

si
nu

s
22

73
F

W
SC

C

M
ax

ill
ar

y 
si

nu
s

23
65

M
W

SC
C

N
os

e
24

74
M

W
A

SC

G
la

nd
T

hy
ro

id
25

69
M

A
A

PT
C

T
hy

ro
id

26
59

M
A

PT
C

T
hy

ro
id

27
24

F
I

PT
C

T
hy

ro
id

28
37

M
I

PT
C

Clin Cancer Res. Author manuscript; available in PMC 2017 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 22

P
ri

m
ar

y 
tu

m
or

 s
it

e
Sp

ec
im

en
 o

ri
gi

n
ID

A
ge

G
en

de
ra

R
ac

ea
H

is
to

lo
gi

c 
ty

pe
a

T
hy

ro
id

29
22

M
H

PT
C

T
hy

ro
id

30
30

F
A

A
PT

C

T
hy

ro
id

31
18

M
W

FT
C

T
hy

ro
id

32
37

F
A

A
PT

C

T
hy

ro
id

33
35

M
W

PT
C

T
hy

ro
id

34
71

M
W

PT
C

T
hy

ro
id

35
35

F
W

M
T

C

Pa
ro

tid
36

39
M

A
A

PA

a G
en

de
r:

 F
, F

em
al

e;
 M

, M
al

e.

a R
ac

e:
 A

, A
si

an
; A

A
, A

fr
ic

an
 A

m
er

ic
an

; H
, H

is
pa

ni
c;

 I
, I

nd
ia

n;
 W

, W
hi

te
.

a H
is

to
lo

gi
c 

ty
pe

: P
A

, p
le

om
or

ph
ic

 a
de

no
m

a.

Clin Cancer Res. Author manuscript; available in PMC 2017 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 23

Ta
b

le
 2

D
ia

gn
os

tic
 p

er
fo

rm
an

ce
 o

f 
H

SI
, a

ut
of

lu
or

es
ce

nc
e 

im
ag

in
g,

 2
-N

B
D

G
 f

lu
or

es
ce

nc
e 

im
ag

in
g,

 a
nd

 p
ro

fl
av

in
e 

fl
uo

re
sc

en
ce

 im
ag

in
g 

us
in

g 
th

e 
in

tr
a-

pa
tie

nt
 

cl
as

si
fi

ca
tio

n 
m

et
ho

d

C
an

ce
r 

si
te

Im
ag

in
g 

m
et

ho
d

A
U

C
A

cc
ur

ac
y

Se
ns

it
iv

it
y

Sp
ec

if
ic

it
y

O
ra

l c
av

ity
 (

n 
=

 1
2)

H
SI

0.
95

 ±
 0

.0
5

89
%

 ±
 8

%
90

%
 ±

 7
%

90
%

 ±
 8

%

A
ut

of
lu

or
es

ce
nc

e
0.

82
 ±

 0
.2

0
81

%
 ±

 1
6%

80
%

 ±
 1

6%
80

%
 ±

 1
9%

2-
N

B
D

G
0.

83
 ±

 0
.1

4
79

%
 ±

 1
4%

79
%

 ±
 1

5%
79

%
 ±

 1
4%

Pr
of

la
vi

ne
0.

68
 ±

 0
.1

8
66

%
 ±

 1
4%

64
%

 ±
 1

6%
69

%
 ±

 1
5%

G
la

nd
 (

6 
th

yr
oi

d,
 1

 p
ar

ot
id

)
H

SI
0.

96
 ±

 0
.0

4
91

%
 ±

 7
%

91
%

 ±
 8

%
93

%
 ±

 6
%

A
ut

of
lu

or
es

ce
nc

e
0.

72
 ±

 0
.3

1
67

%
 ±

 3
3%

80
%

 ±
 2

0%
71

%
 ±

 3
5%

2-
N

B
D

G
0.

84
 ±

 0
.1

8
80

%
 ±

 1
7%

78
%

 ±
 1

9%
82

%
 ±

 1
6%

Pr
of

la
vi

ne
0.

80
 ±

 0
.2

3
78

%
 ±

 2
1%

73
%

 ±
 2

6%
82

%
 ±

 1
5%

L
ar

yn
x 

an
d 

ph
ar

yn
x 

(n
 =

 3
)

H
SI

0.
97

 ±
 0

.0
3

94
%

 ±
 4

%
95

%
 ±

 4
%

90
%

 ±
 7

%

A
ut

of
lu

or
es

ce
nc

e
0.

74
 ±

 0
.2

6
74

%
 ±

 2
1%

74
%

 ±
 2

8%
79

%
 ±

 2
2%

2-
N

B
D

G
0.

97
 ±

 0
.0

4
92

%
 ±

 7
%

92
%

 ±
 8

%
92

%
 ±

 5
%

Pr
of

la
vi

ne
0.

79
 ±

 0
.2

3
77

%
 ±

 2
0%

77
%

 ±
 2

0%
74

%
 ±

 2
3%

Pa
ra

na
sa

l a
nd

 n
as

al
 (

n 
=

 3
)

H
SI

0.
96

 ±
 0

.0
2

90
%

 ±
 5

%
90

%
 ±

 5
%

90
%

 ±
 4

%

A
ut

of
lu

or
es

ce
nc

e
0.

81
 ±

 0
.1

1
76

%
 ±

 1
0%

79
%

 ±
 8

%
72

%
 ±

 1
4%

2-
N

B
D

G
0.

76
 ±

 0
.1

8
68

%
 ±

 1
9%

64
%

 ±
 2

0%
79

%
 ±

 7
%

Pr
of

la
vi

ne
0.

80
 ±

 0
.0

8
73

%
 ±

 6
%

69
%

 ±
 1

1%
79

%
 ±

 2
%

Clin Cancer Res. Author manuscript; available in PMC 2017 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 24

Ta
b

le
 3

C
la

ss
if

ic
at

io
n 

pe
rf

or
m

an
ce

 o
f 

w
av

el
en

gt
h 

su
br

eg
io

ns
 o

f 
H

SI
 f

or
 th

e 
de

te
ct

io
n 

of
 h

ea
d 

an
d 

ne
ck

 c
an

ce
r 

w
ith

 in
tr

ap
at

ie
nt

 c
la

ss
if

ic
at

io
n 

an
d 

in
te

rp
at

ie
nt

 

cl
as

si
fi

ca
tio

n

P
ri

m
ar

y 
si

te
C

la
ss

if
ic

at
io

n 
m

et
ho

d
W

av
el

en
gt

h 
ra

ng
e 

(n
m

)
A

U
C

A
cc

ur
ac

y
Se

ns
it

iv
it

y
Sp

ec
if

ic
it

y

O
ra

l c
av

ity
In

tr
ap

at
ie

nt
 c

la
ss

if
ic

at
io

n
45

0–
60

0
0.

87
 ±

 0
.1

1
82

%
 ±

 1
1%

81
%

 ±
 1

3%
82

%
 ±

 1
0%

60
5–

85
0

0.
89

 ±
 0

.1
2

84
%

 ±
 1

2%
83

%
 ±

 1
2%

85
%

 ±
 1

2%

85
5–

90
0

0.
76

 ±
 0

.1
4

72
%

 ±
 1

1%
73

%
 ±

 1
1%

71
%

 ±
 1

2%

45
0–

90
0

0.
95

 ±
 0

.0
5

89
%

 ±
 8

%
90

%
 ±

 7
%

90
%

 ±
 8

%

In
te

rp
at

ie
nt

 c
la

ss
if

ic
at

io
n

45
0–

60
0

0.
88

 ±
 0

.1
2

82
%

 ±
 1

1%
82

%
 ±

 1
1%

81
%

 ±
 1

2%

60
5–

85
0

0.
82

 ±
 0

.1
1

77
%

 ±
 1

1%
78

%
 ±

 1
0%

76
%

 ±
 1

2%

85
5–

90
0

0.
71

 ±
 0

.1
1

67
%

 ±
 9

%
67

%
 ±

 9
%

66
%

 ±
 1

1%

45
0–

90
0

0.
91

 ±
 0

.1
0

85
%

 ±
 1

0%
85

%
 ±

 9
%

84
%

 ±
 1

2%

T
hy

ro
id

In
tr

ap
at

ie
nt

 c
la

ss
if

ic
at

io
n

45
0–

60
0

0.
97

 ±
 0

.0
6

93
%

 ±
 8

%
93

%
 ±

 9
%

95
%

 ±
 6

%

60
5–

85
0

0.
95

 ±
 0

.0
6

91
%

 ±
 9

%
90

%
 ±

 1
0%

92
%

 ±
 7

%

85
5–

90
0

0.
93

 ±
 0

.0
9

89
%

 ±
 1

0%
88

%
 ±

 1
2%

90
%

 ±
 8

%

45
0–

90
0

0.
96

 ±
 0

.0
5

92
%

 ±
 7

%
92

%
 ±

 9
%

94
%

 ±
 6

%

In
te

rp
at

ie
nt

 c
la

ss
if

ic
at

io
n

45
0–

60
0

0.
92

 ±
 0

.0
7

87
%

 ±
 9

%
86

%
 ±

 9
%

88
%

 ±
 9

%

60
5–

85
0

0.
94

 ±
 0

.0
5

88
%

 ±
 6

%
88

%
 ±

 6
%

88
%

 ±
 6

%

85
5–

90
0

0.
84

 ±
 0

.1
1

78
%

 ±
 1

1%
77

%
 ±

 1
0%

79
%

 ±
 1

0%

45
0–

90
0

0.
91

 ±
 0

.0
9

86
%

 ±
 1

0%
85

%
 ±

 1
1%

87
%

 ±
 9

%

Clin Cancer Res. Author manuscript; available in PMC 2017 October 20.


	Abstract
	Introduction
	Materials and Methods
	Hyperspectral imaging instrumentation
	Patient recruitment and specimen collection
	Fresh surgical specimen imaging
	Histologic processing and annotation
	Pre-processing of hypercube
	Feature extraction
	Hyperspectral imaging
	Multispectral imaging
	Conventional RGB imaging
	Autofluorescence imaging
	Fluorescence imaging

	Classification
	Pathological validation and ROI selection
	Predictive modeling
	Intrapatient classification
	Interpatient classification

	Performance metric

	Results
	Reflectance spectrum of head and neck tissue
	Cancer prediction with intrapatient classification
	Diagnostic performance of HSI, autofluorescence imaging and fluoresecence imaging
	Cancer prediction with interpatient classification
	Diagnostic performances of HSI, MSI, and RGB

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2
	Table 3

