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Abstract

Cancer is one of the leading causes of death worldwide. Radiotherapy is a standard treatment for 

this condition and the first step of the radiotherapy process is to identify the target volumes to be 

targeted and the healthy organs at risk (OAR) to be protected. Unlike previous methods for 

automatic segmentation of OAR that typically use local information and individually segment each 

OAR, in this paper, we propose a deep learning framework for the joint segmentation of OAR in 

CT images of the thorax, specifically the heart, esophagus, trachea and the aorta. Making use of 

Fully Convolutional Networks (FCN), we present several extensions that improve the 

performance, including a new architecture that allows to use low level features with high level 

information, effectively combining local and global information for improving the localization 

accuracy. Finally, by using Conditional Random Fields (specifically the CRF as Recurrent Neural 

Network model), we are able to account for relationships between the organs to further improve 

the segmentation results. Experiments demonstrate competitive performance on a dataset of 30 CT 

scans.
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1. INTRODUCTION

Cancer is one of the leading causes of death worldwide. Radiation therapy is an essential 

element of treatment for tumors such as in lung and esophageal cancer. Planning an 

irradiation begins with the delineation of the target tumor and healthy organs located near 

the target tumor, called Organs at Risk (OAR). Routinely, the delineation is largely manual 

which is tedious and source of anatomical errors. In the case of the esophagus, the shape and 

position vary greatly between patients, and its boundaries in CT images have low contrast 

and can be absent (Fig. 1).

Several works have addressed the automatic segmentation of OAR problem, showing 

particular interest in the pelvic area [1, 2]. In [1] a framework is proposed for the 

segmentation of 17 organs at risk throughout the whole body, including brain, lungs, trachea, 

heart, liver, kidneys, prostate and rectum. The authors use 3 different techniques for different 
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organs: thresholding, Generalized Hough Transform (GHT) and an atlas-registration based 

method. Another recent work was presented in [3] where the authors proposed to combine 

multi-atlas deformable registration with a level set-based local search to segment several 

organs, i.e., aorta, esophagus, trachea, heart. The results for the esophagus were not good 

enough for clinical usage with Dice ratio (DR) as low as 0.01; however, the results for the 

trachea were remarkably good with a DR between 0.82 and 0.95. For the heart and aorta, the 

mean DR values were around 0.80. These works rely heavily on preprocessing steps like 

edge preserving filtering for the case of GHT and registration results which can be very 

expensive computationally. More importantly, these works perform the segmentation of each 

organ individually, which ignores important information about the spatial relationships 

between them.

Recently, deep learning architectures have outperformed traditional methods and have 

achieved the state of the art in different imaging tasks like classification [4] and semantic 

segmentation, using the FCN [5]. Several extensions of the FCN [6, 7] have underlined that 

this architecture ignores the structured output required, producing very coarse results.

To overcome the mentioned difficulties, we propose to use a deep learning framework to 

address the joint segmentation of four thoracic organs at risk (esophagus, heart, trachea and 

aorta, in Fig. 2) with the assumption that, since these are neighboring organs, they can 

provide complementary information that can help the architecture to learn spatial 

relationships for boosting the performance. Specifically we use the SharpMask architecture 

inspired by the refinement frame-work presented in [8]. We experimentally show the 

superiority of this architecture in comparison with regular one path FCN. This is due to the 

ability of the network to combine low level features (from early layers) with high level 

features (from deep layers), reducing some of the issues that arise due to loss of resolution 

given by the use of pooling layers in semantic segmentation. Additionally, with the aim of 

overcoming the implicit coarseness given by FCN architecture, and to further enforce spatial 

relationships between the organs, we used Conditional Random Fields (CRF) as refinement 

step where different from other works [9], we used the CRFas- RNN [7] architecture since it 

allows the operation to be part of the network making the full system trainable end to end. 

Extensive experiments demonstrated that our method outperforms regular FCN 

architectures, their combination with CRF, and atlas methods like patch-based label fusion. 

We believe that the presented work is a step towards automated delineation in thoracic CT 

images, establishing a baseline system in joint thoracic OAR segmentation.

2. METHOD

2.1. FCN and SharpMask feature fusion architecture

We use an FCN architecture with 10 layers where the first five are composed by 

convolutions, ReLU and max pooling operations. The last five layers are composed by 

transposed convolutions with ReLU operations and we use a voxel wise cross entropy loss. 

Note that the last layer contains 5 channels representing the probability maps for each organ 

plus background. This architecture is similar to the one presented in [10], but we do not use 

unpooling operations.
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On the other hand, several works have shown that while in classification tasks deep networks 

that use pooling operations can have good results, the performance in semantic segmentation 

tasks can be affected due to loss of resolution. A common strategy is to use features from 

early layers along with high level features from deep layers, which has two big advantages: 

first it can improve the localization accuracy in the segmentation task, and second, it can 

help to alleviate the vanishing gradient problem since the errors from deep layers will be 

inserted in early layers. This has been exploited in the original FCN work [5], the U-Net 

[11], and more recently in SharpMask’s (SM) Facebook work [8]. In our work we used a 

SM architecture (Fig. 3) with the difference that instead of using bilinear upsampling in the 

refinement module, we used transposed convolutions which gives more parameters and 

hence more capacity to the network; additionally, we added a CRF module on top of the 

network which will be detailed in the next section. Different from [11], instead of copying 

the whole feature maps, convolution+ReLU operations are used to have the same number of 

channels as the deep level, avoiding the network to be biased due to big difference in the 

number of channels from early and deep layers.

2.2. Conditional Random Fields as RNN

A commonly used refinement step in semantic segmentation tasks is the CRF which has 

been used on top of classifiers with the aim of improving the consistency of the labels in a 

structured fashion. In the case of deep learning architectures, the output is coarse, and fully 

connected CRF have proved to refine the segmentation results providing fine edge details 

while allowing very efficient implementations [6, 12]. To perform inference, a mean field 

approximation is used [12] which involves an iterative algorithm. Given the label assignment 

x, a pairwise Gibbs energy is used as in [6]:

(1)

where ψu(xi) is the unary term, and typically is assigned as –logP(xi), that is, the negative 

log-likelihood at voxel i. The pairwise term ψp(xi, xj) = μ(xi, xj)κ(fi, fj) measures the cost of 

assigning labels xi, xj simultaneously to voxels i, j, and . 

Function μ is a compatibility function and each κm(fi, fj) is a Gaussian kernel between two 

feature vectors. We adopt the contrast-sensitive two-kernel potentials, as is widely done, 

defined in terms of intensities Ii and Ij and positions pi and pj : 

. Recently, the authors [7] presented 

an approximation for doing inference in CRF by using backpropagable operations, allowing 

it to be used as part of the network and trainable end to end. This approach is no longer a 

separated postprocessing step, but a layer that can even learn some of its parameters. The 

module is shown in Fig. 3 (in orange), and its detailed architecture is presented in Fig. 4, 

where U represents the unary term and is defined as the unnormalized output (log 

likelihood) of the FCN. The I represents the input image, and it is used in the bilateral filter 

operation. Last, the dotted line is a feedback loop, implemented as a Recurrent Neural 

Network (RNN), which allows to backpropagate the errors by the backpropagation through 
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time (BPTT) algorithm. This architecture allows the network to learn the ωm parameters and 

the compatibility function μ. Typically the Potts model is used [9]; however, it has the 

limitation of giving a fixed penalty to similar voxels with different label assignments. 

Learning the compatibility function gives the flexibility of penalizing differently the organ 

assignments to voxel pairs according to their appearance and position, effectively accounting 

for relationships between them [7].

3. EXPERIMENTS

We perform experiments on the standard FCN architecture and its extension with CRF as 

baseline methods, and then compare the results with our proposed architecture. We use 

rather large kernel size (7×7), in accordance with other works in CT images [9]. Regarding 

the CRF refinement, the training must be done in two steps; first we train a model without 

the CRF module, and then we train a new system where we fine-tune the weights of the 

learned model including the CRF module. This is a necessary step because, as shown in Eq. 

(1) and Fig. 4, we need a unary term that represents an (unnormalized) probability 

distribution of the labels for performing approximate inference.

3.1. Dataset and pre-processing

We evaluate our method on a dataset of 30 thoracic CT scans where the patients have either 

lung cancer or Hodgkin lymphoma, along with the manual delineations of the esophagus, 

heart, trachea, aorta and body contour. The latter is used in the network to avoid using 

background information during training. Scans have a resolution of 0.98×0.98×2.5 for a size 

of 512×512× (150×284) voxels. As pre-processing, each scan is normalized to have zero 

mean and unit variance. We perform 6-fold cross validation, resulting in 25 subjects for 

training and 5 for testing. The dataset is augmented applying a random affine transform and 

a randomly deformed version of each scan by using a deformation field obtained through a 

2×2×2 grid of control-points and B-spline interpolation [13].

3.2. Training

The classes are imbalanced, i.e., the number of voxels for one organ are very different from 

another. We thus use a weighted cross entropy loss function. Specifically, we propose to 

fine-tune the learned weights, using the regular cross entropy loss without class weighting. 

Stochastic gradient descent (SGD) is then used with a learning rate of 0.1 which was 

decreased by a factor of ten every 20 epochs and initialized by Xavier initialization [14] for 

all the weights in the networks.

3.3. Results

In Fig. 5 we show the segmentation result of the aorta and the esophagus for a slice of a 

testing CT scan. We can see that the FCN+CRF eliminated the false positive region on the 

right of the image. In the same figure, we show how the proposed architecture outperforms 

other methods in segmenting the esophagus, which is the most difficult organ. We can see 

that the localization is much better than that by the regular FCN. This is due to the fusion of 

high resolution features to alleviate the loss of precision due to pooling operations, which 

are still necessary to create highly semantic representations. Finally, in Fig. 6 we show the 
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segmentation results for the four organs and their 3D rendering for one of the testing 

subjects.

In Table 1 we present the DR obtained using each of the computer models, in addition to the 

results obtained by a patch based label fusion method called Optimized PatchMatch for Near 

Real Time and Accurate Label Fusion (OPAL) [15]. The most simple approach (OPAL) 

outperformed FCN-based architecture for the trachea. The trachea has a distinguishable dark 

intensity in CT images, and is surrounded by a lot of non-dark voxels; this makes an 

algorithm like OPAL work well since it will try to find similar patches in close areas. 

However, it requires images to be registered to a common space. This situation is different 

for organs with large intensity variation, and becomes even worse for the low contrast organs 

like the esophagus as can be seen from Table 1. Highest performance for each of the organs 

is obtained by SM-based architectures, and the difference with FCN is statistically 

significant (assessed by a paired t-test): p < 0.05 for all organs – except the aorta. 

Interestingly, the CRF refinement module is shown to be not that significant, when switching 

from one base architecture to a CRF based one, for both FCN and SM (as can be seen from 

the p-value for the latter case).

4. CONCLUSIONS

We have presented a framework for joint segmentation of the esophagus, heart, trachea and 

aorta in CT images. The method uses data augmentation and a SharpMask architecture 

allowing an effective combination of low-level features with high-level semantic features. 

Additionally, the CRFasRNN enforces spatial relationships between organs improving the 

results. We are currently engaged in investigating new ways to incorporate context, such as 

in auto-context models.
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Fig. 1. 
CT scan with its manual delineation of the esophagus. Note how the esophagus is hardly 

distinguishable.
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Fig. 2. 
Typical CT scan with manual segmentation. Green represents the esophagus, yellow the 

heart, brown the trachea and blue the aorta.
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Fig. 3. 
Proposed architecture for multi-organ segmentation. The numbers indicate the number of 

channels at each layer.
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Fig. 4. 
CRF as RNN architecture
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Fig. 5. 
Example of segmentation results in the aorta [a,b] (top) and esophagus [c,d] (bottom). Green 

is the ground truth and red the output of the system.
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Fig. 6. 
Segmentation results showing the four organs. The ground truth is green, and the output of 

the network is red for the esophagus, magenta for the heart, blue for the trachea and yellow 

for the aorta. The 3D rendering of the segmentation results is also shown on the bottom.
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