Skip to main content
. 2017 Oct 17;5:e3935. doi: 10.7717/peerj.3935

Table 3. Results of transmission disequilibrium test allowing for errors (TDTae).

Chromosome dbSNP Chromosomal location Gene aR2 cMinimum of corrected P value
Dominant model Recessive model Multiplicative model
bDSB GHLO DSB GHLO DSB GHLO
7 rs3807959 115853100 TES intron 4.4081 4.4081 12.5929 12.5929 0.008324
7 rs3807967 115863441 TES intron 0.1522 0.1522 0.0416597
7 rs3807986 116177825 CAV1 intron 2.0739 0.0471031
7 rs3801993 116190382 CAV1 intron 8.2562 8.2562 0.0378839
7 rs3801994 116190469 CAV1 intron 8.3368 8.3368 0.0366007
7 rs41735 116435416 MET intron 0.13 0.13 0.1164 0.1164 0.019151
7 rs2023748 116436022 MET intron 0.1482 0.1482 0.1228 0.1228 0.034239
7 rs41737 116436097 MET 0.2547 0.2547 0.0453541
7 rs2301649 116538634 CAPZA2 intron 0.3377 0.033912
7 rs2074025 116550456 CAPZA2 intron 0.0169 0.0169 0.016231
7 rs38861 116816284 ST7 intron 3.3527 3.3527 6.3843 6.3843 0.018479
7 rs3735646 116915684 3.3 3.3 0.0439441
7 rs2024233 116917427 WNT2 3′-UTR 6.8558 6.8558 6.8744 6.8744 0.009829
7 rs3779547 116930962 WNT2 intron 0.1892 0.1892 0.0491057
7 rs3779546 116934200 WNT2 intron 0.1779 0.1779 0.031462
7 rs2285544 116944283 WNT2 intron 3.698 3.698 0.023326
7 rs4148721 117267954 CFTR intron 19.973 19.973 0.0465618
4 rs3836607 140579303 0.1473 0.1473 0.0476 0.0476 0.019239

Notes.

a

R1 = R2 in dominant mode of inheritance; R1 = 1 in recessive mode of inheritance; R12  = R2 in multiplicative mode of inheritance.

b

Douglas Skol Boehnke (DSB) error model; Gordon Heath Liu Ott (GHLO) error model.

c

The minimum P value (corrected for multiple testing) of dominant, multiplicative, and recessive mode of inheritance.

The corrected P value is given by 1 –(1 –p)k−1 (Gordon et al., 2004).

R1 = Pr(aff | + d)/Pr(aff | +  +) and R2 = Pr(aff |dd)/Pr(aff | +  +) are genotypic relative risks for a di-allelic trait locus with low-risk (wild-type) allele + and high-risk (disease) allele d. If both R1 and R2 are less than 1, the genotypic relative risk value of the other allele would be calculated by R1′ = R1/R2 and R2′ = 1/R2. A few strange results are omitted from this table (e.g., R > 10,000, or R = 0).