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Effects of Retinoids on Augmentation of Club Cell
Secretory Protein

To the Editor:

Club cell secretory protein (CC16; encoding gene, SCGB1A1) is a
homodimeric pneumoprotein that is produced mainly by club
cells and other nonciliated epithelial cells in both proximal and
distal airways (1). Higher airway expression and circulating
levels of CC16 have been associated cross-sectionally with better
lung function and lower prevalence and severity of chronic
obstructive pulmonary disease (COPD) (2). Prospective studies
have also shown that increased serum levels of CC16 at baseline
are protective against subsequent development of COPD and
accelerated FEV1 decline (3). In explaining these protective effects,
growing evidence supports antiinflammatory and antioxidative
properties of CC16 in the lungs, although results from animal
models have been to some extent inconsistent. In line with direct
protective effects, recombinant human CC16 has been shown to
inhibit the cigarette smoke extract–induced release of IL-8 from
bronchial epithelial cells isolated from patients with COPD (4).
Thus, CC16 augmentation may be beneficial in the prevention and
treatment of COPD.

Retinoic acid (RA)—an active metabolite of vitamin A—is
known to play a key role in early lung development (5). These
effects are largely dose specific (6). Studies on RA-induced
alveolization in mice also indicate the importance of retinoic

acid receptor (RAR) subtypes in mediating these effects of
vitamin A, with decreased alveolar number selectively shown by
RARg null animals (7). In humans, despite conflicting results from
reports that used estimates of vitamin A intake, epidemiological
and clinical studies that actually measured circulating levels
of vitamin A found consistently lower circulating levels of
retinol and carotenoids in patients with COPD as compared
with control subjects. In line with this scenario, baseline
serum concentrations of b-carotene and retinol were inversely
associated with respiratory symptoms in smokers from the ATBC
(Alpha-Tocopherol, Beta-Carotene Cancer Prevention) Study (8),
and vitamin A serum levels correlated significantly with FEV1

values among NHANES (National Health and Nutrition
Examination Survey) III participants, particularly smokers (9).
Of note, mice that were fed a purified diet containing reduced levels
of vitamin A and were exposed to cigarette smoke for 3 months
had increased susceptibility to lung emphysema, suggesting a
potential causal link between vitamin A deficiency and smoking-
related COPD (10).

Because of the effects of vitamin A on lung epithelial
development, differentiation, and homeostasis, it is plausible that
CC16—a major airway epithelial marker—may mediate some of
the above associations. Yet, whether vitamin A affects CC16
production remains unknown. Here, we report that in vivo
circulating levels of CC16 are up-regulated by vitamin A
treatment and that in vitro CC16 expression in airway epithelial
cells is increased by all-trans-retinoic acid (t-RA) acting mainly
via RARa and RARg.

In Vivo Studies
CC16 levels were measured with a commercially available ELISA kit
(BioVendor, Asheville, NC) in serum samples collected from 71
subjects who participated in a placebo-controlled vitamin A trial
for severely sun-damaged skin at baseline and at 3, 6, and 12
months of treatment (11). All participants had sun-damaged
skin on their forearms, but they were otherwise required to be
in general good health. Subjects were randomized to receive
placebo or vitamin A (retinyl palmitate) at 25,000, 50,000, or
75,000 IU/d for 12 months. Overall, 65% of participants were
male and 44% were never-smokers. Their mean (SD) age was
62 (7) years. Figure 1 shows the geometric means of circulating
CC16 across the four treatment groups at baseline and at 3, 6,
and 12 months of treatment. We found significant vitamin A
treatment effects on serum CC16 as early as 3 months after
initiation of treatment. By the completion of the trial all
treatment groups had higher CC16 levels than the placebo
group, with the 50,000-IU/d treatment having the highest levels.
In addition, circulating CC16 levels increased significantly
between baseline and the completion of the trial in both
the 50,000- and 75,000-IU/d groups (P = 0.002 and 0.005,
respectively). Similar trends for effects of vitamin A on CC16
levels were found in analyses stratified by smoking
(data not shown), with CC16 levels at the end of the trial being
significantly higher in the 50,000-IU/d group compared with
the placebo group, both among the 31 never-smokers (P = 0.02)
and among the 40 ever-smokers (P = 0.02). Thus, in these
studies vitamin A treatment increased significantly the
circulating levels of CC16 in vivo.
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In Vitro Studies
Because lung epithelium is the major contributor of serum CC16, we
tested whether the effects of vitamin A on CC16 augmentation can
be replicated in vitro in primary epithelial cell cultures. Because
CC16 is expressed by epithelial cells from the bronchi to the
bronchioles (1) and because of the technical barrier to isolate
bronchiolar cells, we tested only bronchial epithelial cells in this
study. Briefly, we cultured primary human bronchial epithelial cells

from nine individuals with no lung disease (normal) and four patients
with COPD (Global Initiative for Chronic Obstructive Lung Disease
stage IV, receiving lung transplant). These cells were treated with
various doses of t-RA, a stable metabolite that mediates physiological
functions of vitamin A. As shown in Figure 2, we found that t-RA
increased CC16 secretion in both normal and COPD cells by 72 hours
after treatment with various doses, according to a bell-shaped curve.
In addition, because t-RA binds with equal affinity to each retinoic
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Figure 2. Dose-dependent club cell secretory protein (CC16) production in primary human bronchial epithelial cell cultures from normal individuals with no respiratory
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acid receptor subtype (RARa, RARb, and RARg) (12), we tested
whether any of the three subtypes was preferentially involved in the
regulation of CC16. As also shown in Figure 2, by using agonists
that are specific to RAR subtypes we found that both RARa-
specific (AM580) and RARg-specific (CD1530) agonists induced
CC16 expression in a dose-dependent manner with comparable
potency as t-RA, and that these responses were largely similar
between normal and COPD cells. In contrast, the RARb-specific
agonist CD2314 induced CC16 expression with much less potency,
although COPD cells tended to have stronger RARb-specific
responses than normal cells.

In summary, our studies indicate that retinoids increase CC16
secretion in human bronchial epithelial cells from both normal
individuals and patients with COPD; that these effects are mediated
mainly through RARa and RARg; and that, in vivo, vitamin A
treatment results in a significant increase in circulating CC16 levels in
individuals with no COPD. Whether these results simply support the
importance of vitamin A dietary intake or may also have
pharmacological implications in the early and preclinical stages of
COPD remains to be determined. In this context, two considerations
are noteworthy. First, previous large randomized cancer prevention
trials (13, 14) have reported an increased risk for lung cancer among
participants receiving b-carotene supplementation. Thus, any
intervention aimed at using carotenoids to increase CC16 production
would first need to address and minimize the potential effects of these
agents on lung cancer risk, particularly among smokers. Second, two
previous clinical trials (15, 16) that tested oral g-selective retinoid
agonists in patients with moderate to severe COPD did not find
significant effects in the advanced stages of disease. The rationale for
these trials was largely based on the postulated effects of retinoids on
alveologenesis. However, if the main mechanism of action of retinoids is
related to up-regulation of CC16 production, their effects would be
expected to be strongest at the early and preclinical stages of COPD,
when the irreversible airway remodeling and parenchymal destruction
have not been established and a sufficient number of CC16-producing
cells are still present in the airways of patients. Further studies are
warranted to evaluate these scenarios. n
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Exosomal MicroRNA for Detection of
Cardiac Sarcoidosis

To the Editor:

Sarcoidosis is a multisystem, granulomatous disease of unknown
cause that most commonly affects adults 25–50 years of age, causing
significant morbidity and mortality. Studies indicate that
sarcoidosis-related mortality is on the rise, perhaps relating to
improved disease detection (1). Cardiac sarcoidosis (CS) is the
second leading cause of sarcoidosis-related death, and young
adults are particularly at risk (2). A contributing factor is failure
to detect CS during routine clinical screening, including patient
history, physical examination, and electrocardiography (1).
As a result, many cases are detected for the first time after a
cardiovascular complication, ranging from frequent premature
ventricular contractions and atrial arrhythmias to sudden
cardiac death (1). Whereas high-resolution cardiac imaging
techniques, such as cardiac magnetic resonance or

fludeoxyglucose F 18–positron emission tomography/computed
tomography ([18F]FDG-PET/CT), greatly improve CS detection
(1), these modalities are expensive and present certain patient
risks (e.g., radiation exposure with [18F]FDG-PET/CT [3]),
making them impractical for routine screening for CS. To
our knowledge, no circulating biomarker has been shown to
reliably detect CS.

Noncoding RNAs are readily detected in human blood
and are reported to serve as biomarkers of diseases including
acute myocardial damage (4). A fraction of the microRNAs
(miRNAs) in blood are encapsulated within lipid bilayer vesicles,
referred to as exosomes, where they are shielded from
enzymatic degradation (5). Exosomes originate from multivesicle
bodies within cells containing proteins, nucleic acids, and lipids,
and as such, exosomal molecular content reflects its cellular
origin (6). Thus, we hypothesized that exosome-derived miRNA
could serve as an informative source of biomarkers for cardiac
sarcoidosis.

With institutional review board approval, we conducted a
retrospective study of 21 subjects with histologically proven
sarcoidosis who had clinical and radiographic evidence of CS,
based on established criteria (7, 8), compared with 21 subjects with
sarcoidosis with no evidence of CS (non-CS), and 11 healthy
human volunteers. We randomly divided the plasma samples
obtained into two groups: discovery (10 CS, 10 non-CS, and
5 control) and validation (11 CS, 11 non-CS, and 6 control)
cohorts. The demographic and clinical characteristics are presented
in Table 1, with no significant differences found between the
groups in any of the demographic characteristics. The plasma
samples were collected within the scope of the National Institutes

Table 1. Patient Demographics and Clinical Manifestations

Group
Age (yr)

(Mean 6 SE)
Race

(W/B/O)
Sex
(M/F)

Smoking Status
(N/C/F) MRI* PET† Heart Block‡ V-tachx HFjj

First cohort (NGS analysis)
Control (n = 5) 50.06 3.4 4/1/0 2/3 3/0/2
Cardiac sarcoidosis (n = 10) 51.86 3.1 9/0/1 5/5 8/0/2 50% 30% 60% 50% 40%
Noncardiac sarcoidosis (n = 10) 52.96 3.8 8/1/1 2/8 5/0/5

Second cohort (qRT-PCR analysis)
Control (n = 6) 44.06 5.2 5/1/0 3/3 3/0/3
Cardiac sarcoidosis (n = 11) 54.16 4.1 4/7/0 4/7 10/0/1 27% 55% 64% 27% 36%
Noncardiac sarcoidosis (n = 11) 51.26 3.7 8/3/0 5/6 8/0/3

Definition of abbreviations: HF = heart failure; M/F =male/female; MRI =magnetic resonance imaging; N/C/F = never/current/former; NGS =
next-generation sequencing; PET = positron emission tomography; qRT-PCR = real-time quantitative reverse transcription–polymerase chain reaction;
V-tach = ventricular tachycardia; W/B/O =white/black/other.
*Late gadolinium enhancement on cardiac MRI.
†Patchy left ventricular and/or septal uptake by PET with fludeoxyglucose F 18.
‡Second- or third-degree heart block or bifascicular block.
xNonsustained or sustained spontaneous or inducible V-tach.
jjEvidence of systolic (left ventricular ejection fraction, 50%) or diastolic left ventricular dysfunction by echocardiogram or MRI.
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