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Multiomics Approach to Asthma: Navigating the Network

With the advent of massive efforts such as the National Heart, Lung,
and Blood Institute’s Trans-Omics for Precision Medicine
(TOPMed) (1) and the UK Biobank (2) aimed at generating omics
data for thousands to millions of individuals, it is easy to imagine a
day when biomedical scientists will no longer be limited by
available sample sizes to gain insight into the etiology of human
disease. However, omics data refer to more than genetic variation
at the nucleotide level whose seemingly elusive sequence fueled the
race for the first draft of the human genome over 15 years ago
(3, 4). Omics data encompass multiple omes, including the
genome, transcriptome, proteome, metabolome, epigenome, and
microbiome. The challenge will soon be primarily focused on whether
methodological approaches are available to make sense of omics data
in order to advance our understanding of health and disease. In
this issue of the Journal, Forno and colleagues (pp. 439–447) describe
their approach to the daunting task of integrating findings from
multiple omics approaches using a “vertical” analysis strategy to
decipher the etiology of childhood asthma (5).

The authors analyzed multiomics data (including genotype,
methylation, gene expression, and cytokine data) collected as part of
a case-control study of 1,127 Puerto Rican children to gain insight
into the etiology of childhood asthma. They began their vertical
analysis by identifying 1,645 genes whose expression was associated
(P , 0.01) with several cytokines (IL-10, IL-17A, IL-17F, IL-22,
and IL-23). This list of genes was reduced to 269 genes involved in
cytokine signaling based on gene-set enrichment analysis. The
authors further screened the list of 269 genes down to one gene,
IL5RA, using seven additional vertical-analysis steps incorporating
omics data and clinical phenotypes. As the final step, they
measured plasma levels of IL5-Ra in a subset of the children with
asthma (n = 130) and found associations with age of onset and
acute exacerbations of asthma.

The authors employed a vertical approach (which has also been
called sequential analysis) to analyze omics data (6, 7). A challenge
with using this form of sequential analysis is that the results
become dependent on the order of the analytical steps. Replication
of the findings of Forno and colleagues with IL5-Ra in an
independent cohort would provide greater confidence in their
validity. Further, the authors acknowledge a lack of correction for
multiple testing in their analytical approach. However, permutation
can be used to address this limitation of sequential analysis.
Permutation in genomics analyses typically involves swapping
case-control labels randomly many times, and calculating test
statistics at each permutation to observe how often under the null
hypothesis an observation as significant as the top findings occurs
(8). The approach is computationally intensive but is parallelizable
and thus can be facilitated by analyses on local and/or cloud-based

computational clusters. Permutation can also be used to compare
the findings from multiomics approaches with those obtained using
a single omics approach. For example, a permutation approach was
used to assess whether findings associated with chemotherapeutic
sensitivity from a sequential analysis of multiomics data had a
lower false-discovery rate than those from a genome-wide
association study (9). Thus, one should consider using permutation
when addressing analytical concerns in a sequential analysis of
multiomics data.

In general, parallel or simultaneous analyses flag significant
biomarkers in each set of omics data and short-list the intersection
of top findings. Other methods have been developed to integrate
omics data (reviewed in References 6, 7). One review (7) grouped
integrative omics methods based on whether they were network
based and/or used a Bayesian approach. Network-based methods
typically apply approaches, such as integration of data from
genotypes, gene expression levels and protein-protein interactions,
to understand how perturbations in the system may lead
to complex diseases (10, 11). Network-based methods offer a
departure from reductionism by incorporating models that mirror
biological systems. Investigators have used networks to gain insight
into the disease properties of genes by examining the association
of hub and peripheral node genes with disease (12). However,
metrics other than node degree (the number of connections a node
has to other nodes in the network) have also been used to gain
insight into the important role that nodes in a biological network
(which could be genes, metabolites, or proteins) can play in disease
(reviewed in Reference 13). In a recent publication, a network-
based Bayesian approach was used to generate a Conditional
Gaussian Bayesian Network (CGBN) integrating metabolomics
data with genome-wide genotype, gene expression and
methylation data (N =z20 children with asthma) (14). They first
performed a parallel analysis to identify the top expression, SNP,
and methylation probes associated with a panel of metabolites as
input for the conditional Gaussian Bayesian network, and then
performed a pathway overrepresentation analysis on the metabolite
data alone. Both approaches implicated sphingolipid metabolism in
asthma control; however, the analysis did not include replication
of the findings in an independent population.

Overall, the field of integrative omics is still in a nascent stage.
Approaches such as the one Forno and colleagues (5) employed in
their current study provide a tangible starting point for researchers
interested in analyzing multiomics data. Sequential or “vertical”
analysis methods can be relatively easy to implement. When
employing such methods, one should consider the importance of
the order of the analytical steps, replication in an independent
population, and adjustment by permutation. n
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