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Fault-tolerant quantum error detection
Norbert M. Linke,1* Mauricio Gutierrez,2† Kevin A. Landsman,1 Caroline Figgatt,1

Shantanu Debnath,1‡ Kenneth R. Brown,2 Christopher Monroe1,3

Quantum computers will eventually reach a size at which quantum error correction becomes imperative. Quantum
information can be protected fromqubit imperfections and flawed control operations by encoding a single logical
qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent
detection or correction of errors without destroying the logical state itself through direct measurement. We show the
encoding and syndromemeasurement of a fault-tolerantly prepared logical qubit via an error detection protocol on
four physical qubits, represented by trapped atomic ions. This demonstrates the robustness of a logical qubit to
imperfections in the very operations used to encode it. The advantage persists in the face of large added error rates
and experimental calibration errors.
INTRODUCTION
Thediscoveryofquantumerror correction codes gave credibility to the idea
of scaling up physical quantum systems to arbitrary sizes (1–3). Showing
that all elements of error correction can be realized in a fault-tolerantway is
therefore of fundamental interest. Fault tolerance removes the assump-
tion of perfect encoding and decoding of logical qubits (4), because the
logical error probability scales as a convex function of the physical error
probability for small errors (5). Although several experiments have
shown a reduction of high intrinsic or artificially introduced errors in
logical qubits (6–14), fault-tolerant encoding of a logical qubit has never
been demonstrated. We note that there are subtle issues with respect to
the definition of fault tolerance that are beyond the scope of this paper.

Here, we implement a four-qubit error detection code with two stabili-
zers (seeFig. 1).This leaves twopossible encodedqubits,La andLb, forwhich
errors canbedetected: a [[4, 2, 2]] code (15,16).The preparation and error
detection procedures considered here are fault-tolerant on only a single
encoded qubit. From a fault tolerance perspective, this is a [[4, 1, 2]] sub-
system code where the logical qubit La is protected and the gauge qubit Lb
is not. As such, the code was used in experiments with photonic qubits
(17, 18). By instead considering errors on both encoded qubits, we
highlight the importance of fault tolerance for reducing intrinsic errors
and managing error propagation. The non–fault-tolerant procedures
that generate Lb still succeed in reducing added errors.

The code implements La and Lb on only four physical qubits and
hence violates the quantum Hamming bound (5), which means that
detected errors cannot be uniquely identified and corrected. We
must therefore rely on postselection to find and discard cases where
an error occurred. The code does have the advantage of requiring
only five physical qubits for the fault-tolerant encoding of La: four
data qubits and one ancilla qubit.

The logical codewords |LaLb〉L in the computational or Z-basis are

00j iL ¼ ðj0000i þ j1111〉Þ=
ffiffiffi

2
p

ð1AÞ
1

01j iL ¼ ðj0011i þ j1100〉Þ=
ffiffiffi

2
p

ð1BÞ

10j iL ¼ ðj0101i þ j1010〉Þ=
ffiffiffi

2
p

ð1CÞ

11j iL ¼ ðj0110i þ j1001〉Þ=
ffiffiffi

2
p

ð1DÞ

and with ±j i ¼ ðj0i±j1〉Þ= ffiffiffi

2
p

, we can write them down along X as
follows

þþj iL ¼ ðj þ þ þþi þ j � � ��〉Þ=
ffiffiffi

2
p

ð2AÞ

þ�j iL ¼ ðj þ � þ�i þ j � þ �þ〉Þ=
ffiffiffi

2
p

ð2BÞ

�þj iL ¼ ðj þ þ ��i þ j � � þþ〉Þ=
ffiffiffi

2
p

ð2CÞ

��j iL ¼ ðj þ � �þi þ j � þ þ�〉Þ=
ffiffiffi

2
p

ð2DÞ

The encoding of different initial states is shown in Fig. 2 (A to D).
The fault tolerance arises because the circuits for encoding and syn-
drome extraction are carefully constructed such that a single physical
qubit error occurring anywhere cannot lead to an undetectable error
on logical qubit La. It comes at the cost of the logical gauge qubit Lb,
for which there is such an undetectable error channel. An example of
this is shown in Fig. 2G.

With the Pauli operators X, Y, and Z and the identity I, the logical
operators are

Za ¼ Z⊗Z⊗I⊗I ð3AÞ

Zb ¼ Z⊗I⊗Z⊗I ð3BÞ

Xa ¼ X⊗I⊗X⊗I ð3CÞ

Xb ¼ X⊗X⊗I⊗I ð3DÞ
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With these operators and the circuits given in Fig. 2 (A to D), any
state |LaLb〉L can be generated maintaining the fault tolerance of La.

The [[4, 2, 2]] code has the additional advantage that, in contrast to
other codes (19), fault-tolerant syndrome extraction for the logical qubit
La can be achieved using a bare ancilla, that is, an ancilla qubit that is
not itself a logical qubit. The stabilizers to extract logical phase-flip (Z)
and bit-flip (X) errors are Sx and Sz, respectively

Sx ¼ X⊗X⊗X⊗X ð4AÞ

Sz ¼ Z⊗Z⊗Z⊗Z ð4BÞ

As in a Bacon-Shor code block (20, 21), the code space together with
the logical operators and stabilizers form a subsystem that allows local
syndrome extraction similar to that of Napp and Preskill (22), as de-
picted in Fig. 1. The difference is that the stabilizers have weight 4
because we simultaneously extract information about the gauge qubit
Lb. Applying these stabilizers conditional on the state of an ancilla qubit
extracts the parity of the data qubits along X or Z (see Fig. 2, E and F).
Measuring the ancilla yields either |0〉, indicating no error, or |1〉,
meaning an error has occurred and the run is to be discarded.With only
one ancilla qubit available, we measure the two stabilizers in separate
experiments. Because we prepare eigenstates of logical Pauli operators,
only logical Pauli operations that change the ideal state result in errors.
Both stabilizer measurements serve to determine the overall yield, that
is, the fraction of runs for which no error was indicated. In addition to
the error checks provided by stabilizer measurements, only even-parity
outcomes are accepted when the data qubits are measured at the end of
the circuit. Note that similar weight 4 stabilizers have recently been im-
plemented in superconducting qubits (23).

We implement the [[4, 2, 2]] code on a fully connected quantum
computer comprising a chain of five single 171Yb+ ions confined in
a Paul trap (see Materials and Methods). The state-detection fidelity
for a single qubit is 99.7(1)% for state |0〉 and 99.1(1)% for state |1〉. A
general five-qubit state is detected with 95.7(1)% fidelity. Single- and
two-qubit gate fidelities are typically 99.1(5) and 97(1)%, respectively.
Typical gate times are 20 and 250 ms for single- and two-qubit gates,
respectively. The computational gates H and CNOT are generated by
combining several physical-level single- and two-qubit gates in a
modular fashion (24).
RESULTS
We start by preparing state |00〉L using the circuit shown in Fig. 2A.
The results of measuring this state directly after preparation are
shown in Fig. 3A. The target states 0 (|00000〉) and 30 (|11110〉) show
that we succeed in preparing and measuring this state with ≃90%
Linke et al., Sci. Adv. 2017;3 : e1701074 20 October 2017
probability. The data yield 91.1(4)% even-parity outcomes from the
four data qubits. Breaking these results down by logical state gives
98.0(2)% population in the target state |00〉L. The error falls almost
entirely on |01〉L, which corresponds to a 1.7(2)% error on the non–fault-
tolerantly prepared gauge qubit Lb. The 0.11(6)% error exclusively on
La is an order of magnitude lower than this, and at a similar level to
the 0.18(7)% logical two-qubit error resulting in |11〉L. For the logical
state preparation step, both of these small erroneous state populations
are dominated by physical readout errors.

With |00〉L thus prepared, we apply in turn the two stabilizers Sz
and Sx, shown in Fig. 2 (E and F), for nondemolition syndrome extrac-
tion. The results are shown in Fig. 3B. Populations in the odd-numbered
states reflect events where an error is detected by a stabilizer. The results
of the logical states are similar, with |00〉L populations of 97.8(2) and
97.1(3)%, respectively, and the errors occur predominantly in the
non–fault-tolerantly prepared gauge qubit Lb. The errors on La are
0.2(1)%, similar to the error floor given by the |11〉L population, which is
slightly higher than after mere state preparation due to the additional
gates introduced by the stabilizers. Sx introduces X-type errors in the
system, which can be seen from a higher Lb error. Sz introducesZ-type
errors, which do not affect |00〉L. The opposite is true when applying
2
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Za

ZbXa

Xb2
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1 2

3 4
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Fig. 1. Graphical representation of the logical operators and stabilizers de-
fining the [[4, 2, 2]] code on physical qubits 1 to 4. The structure of the logical
operators X and Z for the two encoded qubits La and Lb, and for the two stabi-
lizers Sx and Sz, is defined in Eqs. 3 and 4.
A B

C D

E

G

F

Fig. 2. Circuit diagrams. (A to D) Circuits for the encoding of four different logical
states constructed such that logical qubit La is prepared fault-tolerantly. Any logical
state can be achieved by applying single logical qubit operators to states en-
coded as shown here. (E and F) Circuits for the two stabilizers Sx and Sz, which
project Z- and X-type errors, respectively, onto an ancilla qubit a. Note that a
controlled Z-gate is realized by an inverted CNOT with the ancilla in the Z-basis
as the target. (G) Example of fault-tolerant construction of circuits for logical qubit
La: The encoding circuit for |00〉L has a single nondetectable error channel. A bit-flip
error E occurring as shown can change the state to |01〉L, which is an error on the
logical gauge qubit Lb. Logical qubit La is prepared fault-tolerantly. This property
holds for all circuits (A to F).
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Fig. 3. Results achieved with logical state |00〉L. (A) Results from the preparation of state |00〉L. The abscissa represents the five-qubit states in decimal. We succeed in
preparing (prep) and measuring the state with ~90% probability. The inset shows the result after postselection on the state being in the logical basis, that is, even
parity. It is broken down by the logical state of the fault-tolerantly (FT) prepared qubit La and the non–fault-tolerantly (NFT) prepared qubit Lb. (B) Results of the
stabilizer measurements after preparation of |00〉L. The yields are 77.8(6) and 65.2(7)% for Sz and Sx, respectively. The insets show that the error probability on the
fault-tolerantly prepared and stabilized logical qubit La is an order of magnitude below the non–fault-tolerantly prepared and stabilized qubit Lb.
Table 1. Probability distributions (in percentage) of measured logical states |LaLb〉 for various prepared logical states in each row, with and without
stabilizers Sx or Sz applied. The measurement basis is shown in the last column. The logical states are |00 > L … |11 > L, measured in the Z-basis, and | ++ 〉L …
| −− 〉L, measured in the X-basis. The very low error probability on the first logical qubit La compared to Lb shows the action of its fault-tolerant construction. We
run every circuit 5000 to 6000 times. The results without stabilizer show the number of rejected runs from the parity check on the data qubits (typically ~8%)
whereas the additional discard on the results with stabilizer (typically ~20%) is due to the ancilla result. The physical errors for state preparation and mea-
surement are 0.3(1)% for states |0〉 and | + 〉, and 1.2(1)% for states |1〉 and | − 〉.
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Measured logical state |LaLb〉
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Measurement basis
|00〉
 |01〉
 |10〉
 |11〉
 Z
| + + 〉
 | + − 〉
 | − + 〉
 | − − 〉
 X
|00〉L
 91.1(4)
 98.0(2)
 1.7(2)
 0.11(6)
 0.18(7)
 Z
|00〉LSz
 77.8(6)
 97.8(2)
 1.7(2)
 0.18(8)
 0.3(1)
 Z
|00〉LSx
 65.2(7)
 97.1(3)
 2.4(3)
 0.2(1)
 0.3(1)
 Z
| + + 〉L
 91.1(4)
 95.7(3)
 3.9(3)
 0.24(8)
 0.22(8)
 X
| + + 〉LSz
 68.2(7)
 93.0(5)
 4.2(4)
 1.3(2)
 1.5(2)
 X
| + + 〉LSx
 72.1(6)
 94.3(4)
 4.5(4)
 0.5(1)
 0.7(2)
 X
| − 1〉L
 90.1(4)
 0.22(8)
 50.5(8)
 0.09(6)
 49.2(8)
 Z
| − 1〉L
 87.0(5)
 0.3(1)
 0.3(1)
 50.4(8)
 48.9(8)
 X
| − 1〉LSz
 79.9(6)
 0.15(7)
 50.0(8)
 0.10(6)
 49.8(8)
 Z
| − 1〉LSz
 75.5(6)
 0.4(1)
 0.3(1)
 50.1(8)
 49.2(8)
 X
| − 1〉LSx
 72.1(6)
 0.6(1)
 50.2(8)
 0.5(1)
 48.7(8)
 Z
| − 1〉LSx
 76.2(5)
 0.4(1)
 0.4(1)
 50.0(7)
 49.2(7)
 X
|0 + 〉L
 93.2(3)
 47.4(5)
 52.5(5)
 0.06(3)
 0.05(3)
 Z
|0 + 〉L
 92.4(4)
 50.0(8)
 0.04(4)
 49.8(8)
 0.09(5)
 X
|0 + 〉LSz
 81.6(6)
 48.3(8)
 51.4(8)
 0.17(8)
 0.17(8)
 Z
|0 + 〉LSz
 68.5(7)
 47.1(9)
 2.4(3)
 47.4(9)
 3.1(3)
 X
|0 + 〉LSx
 72.0(6)
 48.3(8)
 51.5(8)
 0.16(7)
 0.12(7)
 Z
|0 + 〉LSx
 70.9(7)
 49.4(9)
 0.4(1)
 49.7(9)
 0.5(1)
 X
|11〉LSz
 73.3(6)
 0.4(1)
 0.3(1)
 2.8(3)
 96.5(3)
 Z
3 of 6



SC I ENCE ADVANCES | R E S EARCH ART I C L E
the stabilizers to |++〉 instead. Table 1 (see Materials and Methods)
summarizes results for different logical states prepared with the circuits
shown in Fig. 2 (A to D). The circuit elements that dominate the intrin-
sic errors in our system are the two-qubit gates. Note that after a circuit
with seven CNOT gates, each of which introduces 3 to 4% infidelity, we
obtain the correct answer |00〉L with 97 to 98% probability. The gauge
qubit Lb circuit failures occur at approximately the error rate of one
two-qubit gate, whereas La errors are suppressed substantially below
that level to <1%. These results show the power of fault-tolerant
preparation and stabilizer measurement. The circuits succeed in dis-
carding nearly all errors, but we pay a price because the yield is in the
65 to 75% range. We must expect to discard around half of the runs
when measuring both stabilizers. The yield is higher for preparation
of logical states without syndrome measurements because there are
fewer gates to introduce error and there is only a single selection step.

The [[4, 2, 2]] code allows transversal operations, that is, single-qubit
logical gates that are generated by applying single-qubit physical gates.
To show an example of this, we prepare |00〉L followed by the logical
XaXb operation consisting of X-gates on physical qubits 2 and 3. This
gives |11〉L, on which we apply the Sx stabilizer followed by readout.
The yield is 77.3(6)%, and the logical state populations are as follows:
|00〉L, 0.4(1)%; |01〉L, 0.3(1)%; |10〉L, 2.8(3)%; and |11〉L, 96.5(3)%.
Apart from surpassing Lb as before, the La error of 0.7% also outper-
forms the physical qubit. We find that after an X-gate, the correct state
Linke et al., Sci. Adv. 2017;3 : e1701074 20 October 2017
of a physical qubit is measured with 98.8(2)% fidelity, nearly a factor
of 2 worse than La. The infidelity in this case is dominated by the single-
qubit detection error of 0.9(1)% for |1〉, which the code successfully
suppresses in La.

To further investigate the robustness of the code, we add two kinds
of error to the system. First, we deliberately introduce single- and two-
qubit Pauli errors and study how errors onLa andLb scalewith increasing
physical qubit errors. Instead of trying to reproduce a stochastic error
channel, which can be tedious for low error rates (25), we sample the
various error configurations and thenmultiply them by their respective
statistical importance to obtain a logical error probability (seeMaterials
andMethods).We further compare our experimental results to an exact
simulationwith optimized error parameters (seeMaterials andMethods).
The results are shown in Fig. 4A. The clear separation between the two
logical qubits is persistent until they converge above 20% introduced
error and approach the curve for the theoretical case without intrinsic
errors. In this example, a physical qubit prepared in state |0〉 is outper-
formed by logical qubit La over the entire range, although our measure-
ment uncertainty limits the significance of this to above p ~ 0.07%. Lb
outperforms the physical qubit above 4%added error (solid black line in
Fig. 4A). For state preparations |−〉 and |1〉, La also outperforms the
physical error based on circuits of preparation and measurement,
whereas for |+〉, the errors are consistent within statistical uncertainty
(see Table 1).
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Fig. 4. Performance of the code under different kinds of artificial errors. (A) Logical error probability under artificially introduced stochastic Pauli errors. Uncertainties
shown in gray with dashed outlines. We prepare state |00〉L, introduce a specific error, and apply Sz before readout. The parameter values for the curves (see Materials and
Methods) corresponding to the two logical qubits are determined either experimentally (solid lines) or from simulation (dashed lines). The black curve shows the limiting
theoretical case without intrinsic errors (see Materials and Methods). At low added error rates, the intrinsic errors dominate, and the fault-tolerantly constructed qubit La starts
about an order of magnitude below the non–fault-tolerantly constructed qubit Lb. With increasing inserted error probability, the added Pauli errors become dominant, and the
La/b curves converge and approach the theory curve without intrinsic error. The solid black line shows the error rate for a single physical qubit. La results in a lower error across
the entire range relative to the physical qubit, although our measurement uncertainty means that this is no longer significant below p ~ 0.07%. The Lb error is lower than the
physical qubit for added errors >4%. (B and C) Preparing |00〉L and measuring Sx/z with purposefully miscalibrated two-qubit gates, known as XX-gates. A miscalibration of a
means that the Bell state produced by the gate is imbalanced:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5� a
p

00j i þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5þ a
p j11i. The yields diminishing with miscalibration for the stabilizer measurements are

shown in (B), whereas the errors on the logical qubits presented in (C) remain similar, with La errors about an order of magnitude lower than Lb errors.
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Second, we run the |00〉L data with purposefully miscalibrated two-
qubit gates. The results for the logical errors are shown in Fig. 4C. The
error gap of nearly an order of magnitude between La and Lb persists
over a wide range of calibration errors, which are absorbed into a
reduced yield as shown in Fig. 4B. This proves that the code succeeds
in protecting qubit La against intrinsic systematic errors.
DISCUSSION
Note that the [[4, 2, 2]] code is relevant beyond its limited immediate
application as an error detection code. It forms the base encoding layer
of the high-threshold Knill C4/C6 code (26) and of a recent proposal for
a topological code (27), and it is equivalent to one face of the distance
3 color code (28) or the Steane code (2). The code is robust to the high
levels of intrinsic errors present in current realizations of quantumcom-
puters. We find no evidence of unexpected two-qubit correlated errors,
which are always assumed absent when constructing error correction
procedures. Therefore, our results both serve as a demonstration that
this underlyingmodel is correct and pave theway toward error-corrected
quantum computations on a larger scale.
MATERIALS AND METHODS
Experimental system
The experiment was performed on a quantum computer consisting of
a chain of five single 171Yb+ ions confined in a Paul trap and laser-cooled
near the motional ground state. Each ion provided one physical qubit
in the form of a pair of states in the hyperfine-split 2S1/2 ground level
with an energy difference of 12.642821 GHz, which is magnetic field–
independent to first order. This so-called “atomic clock” qubit has a
typical coherence timeof 0.5 s,which couldbe straightforwardly extended
by suppressing magnetic field noise. All qubits were collectively initia-
lized by optical pumping and measured via state-dependent fluores-
cence detection (29). Each ion was mapped to a distinct channel of a
photomultiplier tube array. Its state could be detected with 99.4(1)%
average fidelity, although a five-qubit state was read out with 95.7(1)%
average fidelity, limited by channel-to-channel cross-talk. Qubit ma-
nipulation was achieved by applying two Raman beams from a single
355-nm mode-locked laser, which formed beat notes near the qubit
frequency. The first Raman beamwas a global beamapplied to the entire
chain, whereas the second was split into individual addressing beams,
each of which could be switched independently to target any single qubit
(24). Single qubit gates were generated by driving resonant Rabi rota-
tions of defined phase, amplitude, and duration. Two-qubit gates (so-
called XX-gates) were realized by illuminating two ions with beat-note
frequencies near the motional sidebands and creating an effective spin-
spin (Ising) interaction via transient entanglement between the state of
two ions and all modes of motion (30–32). To ensure that the motion
was left disentangled from the qubit states at the end of the interaction,
we used a pulse shaping scheme by modulating the amplitude of the
global beam (33, 34).

Artificial stochastic errors
To analyze how the code copes with artificially introduced stochastic
errors, we prepared logical state |00〉L and added a specific Pauli error,
for example, I ⊗ X ⊗ Y ⊗ I. We then applied the Sz stabilizer and
measured the state. We repeated this for different error configurations
e. The error probability p on a physical qubit corresponds to anX, Y, or
Z error, each occurring with probability p/3. The number of errors that
Linke et al., Sci. Adv. 2017;3 : e1701074 20 October 2017
appear in a particular error configuration is given by its weight w,
and its probability of occurrence or statistical importance is po =
(p/3)w(1 − p)4−w. The probability of a logical error is given by

pL ¼ ∑epoðeÞ⋅paðeÞ⋅pf ðeÞ
∑epoðeÞ⋅paðeÞ

ð5Þ

The sum runs over all error configurations. pa is the yield, that is, the
probability that a run is accepted, and pf is the probability of failure after
postselection, that is, the probability that an accepted run suffers a log-
ical error. The dividend is the number of accepted runs with a logical
error, whereas the divisor is the number of accepted runs (both divided
by the total number of runs). The parameters pa and pf were found from
either experiment or simulation (see Fig. 4A).Out of the total number of
error configurations,nðwÞ ¼ w3ð 4

w
Þ. We covered the error configura-

tions of weight 0 and 1 exhaustively. For the w = 2 subset, we only
sampled 27 representative configurations out of the total 54 and doubled
their weight. The weight 3 and weight 4 subsets were not sampled,
and their logical error rates were set to zero, because their statistical
importance is significant only at very high added error rates. In the
limit of no intrinsic errors, that is, perfect gates, preparation, and mea-
surement, both logical qubits had the same error rate under this model
(dash-dotted line in Fig. 4A). We found this error rate from Eq. 5 by
counting accepted error configurations with w ≤ 2 (denominator)
and checking which of those caused an error (numerator).

p*L ¼
16ð1� pÞ2ðp=3Þ2

ð1� pÞ4 þ 4ð1� pÞ3p=3þ 30ð1� pÞ2ðp=3Þ2 ð6Þ

The dashed curves in Fig. 4A were obtained by performing a full
densitymatrix simulation of the five-qubit circuits.Weused a simplified
error model to emulate experimental errors. The model had three
independent parameters corresponding to errors associated with over-
or underrotations after (i) single-qubit and (ii) two-qubit gates and (iii)
phase errors caused by Stark shifts. An experimentally found state-
transfer matrix was used to take state preparation and detection errors,
including cross-talk, into account. We then optimized the model over
the parameter space to minimize the difference between the final state
populations of the experimental and simulated circuits. The resulting
values for the error rates were 0.50, 1.0, and 1.4%, respectively.

The physical error curve in Fig. 4A is the straight line pp = r +
(2/3 Fx)p, where r = 0.003 is the readout error for a physical qubit in
state |0〉. The slope is 2/3 Fx because one in three added errors is a
Z-type error, which does not affect |0〉, and Fx = 0.997 is the success
probability of a physical spin flip operation.
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