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Abstract

The molecular mechanisms linking folate deficiency and neural tube defect (NTD) risk in
offspring remain unclear. Folate transporters (SLC19A1, SLC46A1, SLC25A32, and FOLH1) and
folate receptors (FOLR1, FOLR2, and FOLR3) are suggested to play essential roles in
transporting folate from maternal intestinal lumen to the developing embryo. Loss of function
variants in these genes may affect folate availability and contribute to NTD risk. This study
examines whether variants within the folate transporter and receptor genes are associated with an
increased risk for myelomeningocele (MM).

Exons and their flanking intron sequences of 348 MM subjects were sequenced using the Sanger
sequencing method and/or next generation sequencing to identify variants. Frequencies of alleles
of single nucleotide polymorphisms (SNPs) in MM subjects were compared to those from
ethnically-matched reference populations to evaluate alleles’ associated risk for MM. We
identified eight novel variants in SLCZ9A1 and twelve novel variants in FOLR1, FOLRZ, and
FOLR3. Pathogenic variants include ¢.1265delG in SLC19A1 resulting in an early stop codon,
four large insertion deletion variants in FOLR3, and a stop_gain variant in FOLR3. No new
variants were identified in SLC46A1, SLC25A32, or FOLHI. In SLC19A1, ¢.80A>G (rs1051266)
was not associated with our MM cohort; we did observe a variant allele G frequency of 61.7%,
higher than previously reported in other NTD populations. In conclusion, we discovered novel loss
of function variants in genes involved in folate transport in MM subjects. Our results support the
growing evidence of associations between genes involved in folate transport and susceptibility to
NTDs.
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INTRODUCTION

Neural tube defects (NTDs) are congenital anomalies that occur when the neural tube fails to
close completely early in fetal development. The worldwide prevalence of NTDs is 1 to 10
per 1,000 births, making it the second most common congenital birth defect after congenital
heart defects [Au et al., 2010]. Anencephaly, the most severe form of NTD, is the result of a
defect occurring at the rostral end of the neural tube, leading to incomplete formation of the
brain and skull and subsequently death soon after birth. In contrast, spina bifida arises when
the defect occurs at the level of the vertebral column, resulting in impaired neural function
caudal to the level of the defect. Myelomeningocele (MM), the most common type of spina
bifida, is characterized by an open defect with herniation of the spinal cord or nerves
[Detrait et al., 2005; Copp et al., 2010]. Exposure of the spinal nerves to amniotic fluid
during in-utero development leads to degeneration and loss of neural tissue, resulting in life-
long disabilities and reduced life expectancy [Bowman et al., 2001; Talamonti et al., 2007;
Oakeshott et al., 2010; Adzick 2012].

It is well established in the literature that both genetic and environmental factors contribute
to NTD risk [Cabrera et al., 2004; Agopian et al., 2013]. In the case of environmental
influences, folic acid (FA) fortification of cereal and grain products has been widely
successful in reducing the incidence of NTD associated with nutritional deficiency [Boulet
et al., 2008; Mosley et al., 2008]. After the FDA implementation of mandatory FA
fortification of grain products in 1998, the incidence of spina bifida in the United States
declined by 35.5% and anencephaly by 25.9%, further validating folate deficiency as a risk
factor for NTD formation [Williams et al., 2015]. Some animal models also demonstrate
reduction of genetic NTD risk with periconceptional folate supplementation [Gelineau-van
Waes et al., 2008; Copp et al., 2010]. However, the biologic relationship between folate and
NTDs is unclear. No single gene has been etiologically implicated as causative of NTDs,
thus association studies have targeted candidate genes in the folate metabolic pathway
[Martinez et al., 2009; Marini et al., 2011; Etheredge et al., 2012; Zhang et al., 2013].

We postulate that folate transporter and receptor genes have critical roles in supplying
folate/FA from the pregnant mother through the placenta to maintain normal development of
the neural tube during embryogenesis (Figure 1). Folate consumed by the mother is
absorbed in the small intestine, enters the maternal circulation, and is preferentially
distributed to the placenta to be delivered and taken up by the developing embryo through a
series of folate transporters and receptors [Yasuda et al., 2008; Solansky et al., 2010]. Our
group has previously demonstrated the association of folate transport genes with MM using
a family-based transmission disequilibrium test [O’Byrne et al., 2010]. The genes of interest
in our study are SLC19A1 (also known as reduced folate carrier or RFCI), SLC46A1 (also
known as proton-coupled folate transporter or PCFT), SLC25A32 (also known as
mitochondrial folate transporter or MFTC), FOLHI (also known as folate hydrolase), and
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folate receptor genes FOLRI, FOLRZ, and FOLR3. Once consumed by the pregnant mother,
maternal FOLH1 converts the dietary form of folate, polyglutamate-folate, into
monoglutamate-folate to be transported across the apical brush-border membrane of the
small intestine via folate transporters SLC46A1 and SLC19A1 [DeVos et al., 2008; O’Byrne
etal., 2010; Zhao et al., 2013]. Folate is stored in the liver in the form of 5-
methyltetrahydrofolate (5-MTHF) and released into the maternal circulation [Zhao et al.,
2011]. Circulating 5-MTHF binds to folate receptors (e.g. FOLR1) that lie on the maternal
side of the placenta. It has been theorized that FOLR1 and SLC46A1 are responsible for the
transport of 5-MTHF via acidified endosomes during receptor-mediated endocytosis into the
cytoplasm of the syncytiotrophoblast where it is then transported across the basement
membrane by SLC19A1 [Solanksy et al., 2010]. Once in the fetal circulation, 5-MTHF is
transported into cells via folate receptors. FOLR1 and FOLR?2 are
glycosylphosphatidylinositol (GPI)-anchored proteins with high affinity for folate and
transport folate via endocytosis [Verma et al., 1992; Sabharanjak et al., 2004; Solanky et al.,
2010]. FOLR3, in contrast, lacks a glycosylphosphatidylinositol (GPI) signal and is a
constitutively-secreted form of folate receptor [Shen et al., 1995]. Ubiquitous in cells and
tissues, SLC19A1 is also responsible for transporting reduced folate into the cytoplasm,
while the mitochondrial folate transporter, SLC25A32, transports cytoplasmic folate across
the inner mitochondrial membrane to take part in the mitochondrial folate metabolism cycle
[Titus et al., 2000].

Previous genetic epidemiology studies have investigated genes of folate one-carbon
metabolism and methionine cycle, but less attention has been paid to folate transport genes
with the exception of SLCI9A1[Au et al., 2016 AJMG same issue]. Knockout mouse
models of S/c19a1 rescued with folinic acid supplementation, a folic acid derivative, exhibit
NTDs, supporting the role of SLC19A1in NTD formation; however human NTD
populations have demonstrated variable degrees of association with the folate transporters
[Gelineau-van Waes et al., 2008; Wang et al., 2012]. Only one study recently investigated
SLC46A1in cases of NTD or cleft lip and palate and failed to show an association
[VanderMeer et al., 2016]. Clinical presentations of loss of function mutations of SLC46A1
have been reported in cases of hereditary folate malabsorption, consistent with nullizygous
mouse models of S/c46a1 [Salojin et al., 2011; Zhao et al., 2011; Shin et al., 2012; Diop-
Bove et al., 2013]. SLC25A32 nullizygous mouse embryos exhibited 100% penetrance of
neural tube defects, but it is unknown if the defects were compatible with life [Kim, 2016].
In the human population, a SNP in SLC25A32 was associated with lower plasma folate
levels in a Japanese population, but this gene has not been explicitly studied in human NTDs
[Urano et al., 2014]. Earlier association studies involving FOLHZI and NTDs have been
conflicting, but it has been suggested that maternal FOLH2 polymorphisms may increase
NTD risk by influencing folate and homocysteine levels [Guo et al., 2013]. Fo/hI™"~ mouse
model do not present with obvious birth defects but morphologically demonstrate
significantly reduced axon area of the sciatic nerve suggesting a possible role in myelination
of developing axons [Bacich et al., 2005].

In regards to folate receptors, FolrZ knockout mice rescued with folate present with anterior
NTDs along with cardiovascular anomalies [Zhu et al., 2007]. Human NTD cohorts have
shown indirect evidence of the function folate receptors play during pregnancy with reports
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of low serum folic acid receptor a levels and increased levels of folate receptor
autoantibodies found in mothers of NTD patients [Yang et al., 2016]. However, no
association of FOLR1 or FOLR2was discovered in earlier NTD cohorts until our group first
reported an association by family based transmission-disequilibrium test in 2010 by
O’Byrne et al. [Barber et al., 1998; Heil et al., 1999; O’Leary et al., 2003; Boyles et al.,
2006]. In the same article, we also were the first to investigate and report association
between FOLR3and MM, but the protein function of FOLR3in NTDs is unknown.

Thus it is our aim to examine SLC46A1, SLC19A1, S| C25A32, FOLHI1, FOLRI1, FOLR?2,
and FOLRS3, for genetic variants in a large cohort of MM subjects to establish a more
complete picture of the molecular mechanisms in folate deficiency and NTD risk. We
hypothesize that variants within the folate transporter and receptor genes are associated with
MM risk.

MATERIALS AND METHODS

Subjects were selected from a cohort of nonsyndromic MM subjects enrolled in ongoing
genetic studies in our laboratory [Au et al., 2008]. These subjects were enrolled after
obtaining informed consent between 1996 and 2006 from spina bifida clinics at three sites
(Houston, Texas; Los Angeles, California; and Toronto, Canada). The research was
approved by the Institutional Review Board at The University of Texas Health Science
Center at Houston. The study sample selected for Sanger sequencing comprised of 96 MM
affected subjects who were born before 1998, pre-FA fortification era, to include MM
phenotypes that may not present after FA fortification to improve our chances of identifying
genetic variations as previously described [Aneji et al., 2012; Tilley et al., 2012].
Additionally, another 252 MM subjects were sequenced by whole exome sequencing (WES)
from the same cohort of MM affected subjects previously described [Au et al., 2008]. These
subjects were born before and after 1998, up through 2008.

DNA extraction

Genomic DNA was extracted from blood lymphocytes using the Puregene DNA extraction
kid (Gentra Systems Inc, Minneapolis, MN). Parental saliva samples were collected in some
cases when blood samples were not available and the saliva DNA was prepped using the
Oragene DNA preparation kid (DNA Genotek; Kanata, Ontario, Canada) following
manufacturer’s protocols. Working DNA was prepared as previously described [Ruggiero et
al., 2015].

Polymerase Chain Reaction Amplification

Polymerase chain reaction (PCR) and nested-sequencing primers were designed for each
gene of interest based on the GRCh37 reference genomic sequences recorded in the
University of Santa Cruz Genome Browser (UCSC Genome Browser; http://
genome.uscs.edu/cgi-bin/hgGateway). The primers were designed containing approximately
100 bases flanking the exons to include splice donor and acceptor sites. In light of the
presence of pseudogenes, special attention was paid to selecting primers with the least
homology to the corresponding pseudogenes (i.e. FOLR1IPI and FOLR3PI). Primers were
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synthesized by Integrated DNA Technologies USA (Commercial Park, Coralville, |A). The
exons were amplified by hot-start-PCR with MyTag-HS DNA Polymerase (Bioline USA
Inc, Tuanton, MA) using the MJ Research PTC-100 Thermal Cycler (MJ Research,
Waltham, MA). Gel electrophoresis verified the expected sizes of PCR products. The
amplified products were treated with exonuclease | and rapid alkaline phosphatase (United
States Biochemicals, Affymetrix, Cleveland, OH) to remove excess primers and nucleotides
before sequencing.

Sanger sequencing was conducted using the BigDye Terminator Protocol (LifeTechnologies
Inc., Foster City, CA) with nested-sequencing primers. An alternative protocol was used
with GC enhancer buffer (LifeTechnologies Inc) to amplify high guanine-cytosine region.
The sequencing products were resolved on the ABI3130 Genetic Analyzer (Life
Technologies Inc., Grand Island, NY).

Whole exome sequencing (WES) using the lon Proton System was performed following the
standard workflow of the manufacturer (Thermo Fisher Scientific). Sequencing templates
between 100-400 bp were prepared from an aliquot of 1.0 ug of subject genomic DNAs
using lon Xpress™ Plus Fragment Library Kit with the AB Library Builder™ System. In
the process, probes consisting of enhanced-exome region were used to capture and enrich
subject genomic DNA templates matching the enhanced-exome region. The captured subject
DNA sequencing templates were applied to the lon P1 Chip v3 for sequencing using the lon
Proton Sequencer. Sequencing results were analyzed using the lon Torrent Suite Software
v4.4 and mapped to reference human genome sequence (GRCh37/hg19), and sequences that
differed from GRCh37/hg19 were called variants. Variants were annotated with reference to
the latest released version of variants recorded by Single Nucleotide Polymorphism
Database (dbSNP 144).

Analysis of Sequencing Data

For Sanger sequencing, we anticipated that a sample size of 96 subjects to examine 192
chromosomes would allow detection of rare variant allele with a frequency =0.52% (1/192).
Sanger sequencing results were manually compared with the reference sequence (RefSeq)
for each of the folate transporting genes to identify SNPs and novel variants. Each
sequencing result was examined by at least two different members of the research team.
Variants not previously reported in dbSNP 144 were considered novel and confirmed by
sequencing from both directions using PCR product from a fresh preparation of genomic
DNA. When available, parental genomic DNA of subjects with novel variants were
sequenced from both directions to determine if the variants were de novo or inherited.

Ethnically-matched reference populations were used for comparison against identified SNPs.
The Caucasian reference population is derived from (1) the 1IKGenomes project
(www.ncbi.nlm.nih.gov/variation/tools/1000genomes) and (2) the NHLBI Exome
Sequencing Project (evs.gs.washington.edu/EVS). The Mexican-American reference
population is from (1) the 1KGenomes Project and (2) collaborators at The University of
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Texas School of Public Health at Houston. There are no known reports of NTDs in the
reference populations.

RESULTS

Novel Variants Discovered in the Study

Solute Carrier Family—We identified a total of eight novel variants in SLC19A1 using
the Sanger sequencing method and WES (Table I). One notable novel pathogenic variant
involves a single base deletion (c.1268delG) in exon 5 of SLC19A1. The single base
deletion causes a shift of the translation reading frame (p.G423Afs*12) leading to a
premature stop codon 12 amino acids downstream resulting in loss of translation of the last
transmembrane domain and the cytoplasmic domain (Figure 2). This region is crucial for
stability of SLC19A1 as loss of the cytoplasmic domain is known to completely inactivate
the protein [Sharina et al., 2002]. Seven additional novel variants in introns across SLC19A1
were identified by WES in the 252 MM subjects (Table I). Functional significance of these
variants is not known. No novel missense variants, novel stop_gain/loss or novel variants
affecting splice sites were identified in SLC46A1 nor in SLC25A32in the 252 MM subjects
tested by WES.

Folate Receptor Family—Among the folate receptor genes, we discovered one novel
variant in FOLRI, four novel variants in FOLRZ2, and nine novel variants in FOLR3 (Table
I). Among them, five novel variants in FOLR3involving deletion/insertion/duplication are
predicted to be damaging which we will describe here. Two variants involve deletion of exon
2 and the splice donor that involves the translation initiation codon ATG and 55 amino acids
containing the signal peptide (amino acid 1-23) required for docking the ribosome to the
endoplasmic reticulum (ER) and translating the protein into the ER lumen. Two other
variants involve deletion of the majority of exon 5 together with the splice acceptor. Exon 5
of FOLR3codes for 81 amino acids and the translation stop codon TGA. One MM subject
had both an exon 2 (c.18_168+18del) and an exon 5 (¢.493+39_723del) deletion variant but
it is not known whether the two deletion variants were in cis or trans. Deficient or complete
loss of functional FOLR3 mRNA would be expected if both exon 2 and exon 5 deletion
variants are in cis-position. Only ¢.18_168+18del was found in the genome of the subject’s
mother, suggesting that variant was maternally inherited while ¢.493+39_723del was de
novo. The last novel pathogenic variant is a stop_gain ¢.579G>A (p.W193X) resulting in
loss of 50 amino acids in the C-terminus of FOLR3.

We discovered several variants in FOLRZand FOLR3that may impact splicing and
transcription, resulting in loss of protein function. One potentially important 173bp
duplication consisting of 63bp of the 5"-UTR region in exon 1 of FOLR2and 110bp of
intron 1 including the splice donor site. The duplicated splice donor site may lead to cryptic
splicing altering the optimal secondary structure of the 5'-UTR for the FOLR2mRNA and
likely affecting mRNA stability and/or translation. The exact functional significance for the
two variants needs to be validated. Three novel intronic variants in FOLRZand two in
FOLR3were discovered within 50 bases of the splice site motifs. Analysis using Human
Splicing Finder 3.0 (http://www.umd.be/HSF3/HSF.html) suggests the novel intronic
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variants alter the sequence motifs of branch point, exonic splicing enhancers, or exonic
splicing silencer at the locations and potentially affect splicing of the adjacent exons.

Two novel intronic variants in FOLR3 (c.-6-40t>c and c.41g>c) were found in seven MM
subjects and are located adjacent to each other at positions 71846952 and 71846953 of
chromosome 11, 40 and 41 bases upstream respectively from the splice acceptor junction of
exon 2 (Table I1). The c.-6-40c constitutes a Bsu361 restriction enzyme site. We digested the
PCR products of these subjects and sequenced the intact fragment to reveal the c.-6-40t and
c.41g are in cis. The two Bsu361 fragments were extracted and re-ligated for PCR
sequencing and the results demonstrated the digested fragment consisted of c¢.-6-40c and
c.-6-41c. The c.-6-40t>c and c.41g>c occurred de novo in one subject and was inherited
from a parent for the remaining six subjects. To examine the potential functional
significance of this gt>cc variant, we referred to the Human Splicing Finder online tool,
demonstrating a cryptic splice acceptors of almost equal strength upstream the splice
acceptor preceding exon 2 [Desmet et al., 2009]. With the gt>cc change, the cryptic splice
acceptor immediately following the double allele variants is predicted to increase preference
for splice factors binding and splicing. Splicing at the cryptic splice acceptor will add 34
bases to the 5'-UTR of the FOLR3mRNA and thus potentially affect ribosomal binding to
the mis-spliced mMRNA and the mRNA instability. Of further interest, multiple species have
the cc allele, however humans are the only species that have the intronic gt sequences allele.
From an evolutionary standpoint, cc are the ancestral alleles that can be found in less
evolved species than the human such as a chimp and gorilla. The human alleles gt are
generally considered to be evolved, and reversion of the human allele gt back to the less
evolved ancestral allele cc could be disadvantageous.

A fourth member of the folate receptor family, FOLR4 (also known as /ZUMO1R or
JUNO), shares phylogeny with the other folate receptors but lacks folate-binding capabilities
due to several amino acid differences. It plays an essential role in reproduction in mammals
as an egg receptor for Izumol, a sperm-egg fusion protein, and may modulate gene
expression in the uterus, but homozygous offspring in mice do not exhibit birth defects
[Salbaum JM et al., 2013; Bianchi et al., 2014]. We examined FOL R4 for completeness in
examining all genes in the folate receptor family, and as expected, no novel or vary rare
missense, stop_gain/loss or splice site variants were discovered by WES.

SNPs Discovered in the Study

Very Rare SNPs—A total of 21 very rare SNPs in SLC19A1 were discovered; nine in 96
MM patients by Sanger sequencing and 12 in 252 MM subjects by WES (Table I11). The
rare allele frequencies for these SNPs shown in dbSNP146 are between 0 and 0.03. No very
rare SNPs contributing to missense, stop_gain/loss or affecting splice sites were identified in
SLC46A1nor SLC25A32 of the 252 MM subjects.

Four of the 21 very rare SNPs found in SLC19A1 lead to missense changes including c.
941C>T (rs200236009), and ¢.971C>T (rs200647386) found by Sanger sequencing in
Caucasian MM subjects and ¢.532G>A (rs760930392) and ¢.584T>A (rs756426597) found
by WES in Hispanic MM subjects. Sequencing of parental genomic DNA determined the
father to be a carrier of mutation ¢.532G>A and the mother to be a carrier of mutation c.
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584T>A suggesting they were inherited allelic changes. The remaining SNPs were de novo
mutations. All four of the very rare missense variants identified were predicted to have some
damaging effect by one of the commonly used protein functional analyses algorithms
(PROVEAN, SIFT, PolyPhen2 and Mutation Taster). It has been shown that amino acids
localized in several transmembrane domains (TMD) including TMD4, TMD5, TMD7,
TMD8, TMD10, and TMD11 play important roles in forming the folic acid-binding pocket
[Hou et al., 2005, 2006]. For example, ¢.532G>A results in a replacement of neutral glycine
to hydrophilic serine at the end of TMD5 which may affect the stability of TMD5 within the
membrane lipid bilayer environment. Likewise, ¢.584T>A replaces phenylalanine with
tyrosine with the addition of a hydrophilic hydroxyl group, potentially destabilizing the
hydrophobic environment between TMDs of SLC19A1 needed for folate binding and
transportation. Lastly, c.941C>T changes a polar amino acid, threonine, to a nonpolar
methionine which may influence folate binding affinity of S313, an amino acid required for
the binding of folate [Hou et al., 2006].

Common SNPs—The allele frequencies of common SNPs found in folate transporter
genes are shown in Table IV. Two-tailed Fisher’s test was performed to compare allele
frequencies from MM subjects and the ethnically-matched reference populations. Two SNPs
in SLC19A1 (rs150492570, rs11284347) and two SNPs in FOLR3 (rs139130389,
rs1802608) were found to be associated with MM subjects with nominal significance
(p<0.05). Approximately six SNPs occurred in MM subjects that have not been seen among
European or Mexican populations in 1KGenomes project. Another seven SNPs found in
MM subjects were only observed in next generation sequencing combined cohorts EVA-
ExAc of 60,706 individuals (aggregated from multiple studies listed http://
exac.broadinstitute.org/faq).

DISCUSSION

Folate is necessary for synthesis of DNA and some amino acids as well as for regulation of
gene expression. During pregnancy folate demands increase by 5- to 10-fold to meet the
needs of the developing fetus [Antony et al., 2007]. As mammals cannot produce folate de
novo, the supply of folate to the developing embryo is dependent on the dietary intake of the
pregnant mother in conjunction with a series of maternal and placental folate transporter
proteins. Maintaining an adequate folate supply to the developing fetus relies on normal
function of folate transport proteins in the mother, placenta, and embryonic cells. It is
plausible that during gestation when folate demands are high, pathogenic variants in folate
transporter and receptor genes in the mother and/or fetus could exacerbate a folate-deficient
environment or even predispose a mother towards folate deficiency despite adequate folate
intake. In our study we evaluated the genetic roles of a series of folate transporters and
receptors in MM subjects.

The most studied SLC19A1 polymorphism in NTD research is A80G (rs1051266) and has
been shown to be associated with MM risk in sample populations from Italy, the United
States, and China, but not in the United Kingdom [Shaw et al., 2002; De Marco et al., 2003;
Relton et al., 2004; O’Leary et al., 2006; Pei et al., 2009]. A meta-analysis of these studies
suggests that the A80G polymorphism is not an independent risk factor for NTD [Wang et
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al., 2012]. However, it is important to note that folate supplementation was voluntary and
unregulated in most of the countries where these studies were conducted. When we
combined NTD studies in countries with voluntary food FA fortification policies in place
[De Marco, Relton, O’Leary] and compared them to NTD studies in countries pre-FA
fortification or without fortification policies [Shaw, Pei, our study] and performed a Chi-
square analysis, we found a statistically significant difference in the GG allele frequency
(0.301 and 0.365, respectively; p-value 0.0468) (Table V). We would expect a higher A80G
occurrence rate in populations without FA fortification. Our finding corroborates the report
of S/c19a1 animal models demonstrating the folate-sensitivity of the protein [Gelineau-van
Waes et al., 2008]. In our cohort of 96 MM patients representing a population born during
the pre-FA fortification era, the homozygous (GG) allele frequency was 37.5% among
Caucasians and 41.7% among Hispanics, among the highest when compared to the above-
mentioned studies. We did not show an association between A80G and our MM cohort,
however our control population of Mexican Americans derived from the 1K Genomes
Project exhibited a GG allele frequency higher than other control populations described in
prior association studies involving A80G, which could point towards a genetic risk factor
that may predispose U.S.-born Hispanics to myelomeningocele, an ethnic group with the
highest rate of NTDs in the U.S. [Canfield et al., 2009].

Folate receptor genes have not been as extensively studied in NTD populations compared to
other folate-related genes such as MTHFR and SLC19A1. While Folrknockout NTD animal
models exist, previous studies have failed to identify novel variants in FOLRI and FOLRZ2in
NTD patients but excluded examination of the UTRs and the promoter regions [Barber et al.,
1998; Heil et al., 1999]. The function of FOLR3in NTD is largely unknown, and knowledge
of the biological function of FOLRS3 is limited except expression has been correlated to
progression of carcinomas [Corrigan et al., 2014]. However, we discovered five novel
variants with deleterious consequences in the FOLR3 gene of four MM subjects strongly
supporting variation in FOLR31o be a risk factor for MM development. Consistent with our
findings in an earlier study, the current study identified multiple novel loss-of-function
variants in the folate receptor gene FOLR3and noncoding variants with potential functional
significance in FOLR1, FOLRZ2, and FOLR3 of MM subjects [O’Byrne et al, 2010]. We
propose folate receptors play a bigger role in NTD development than previously recognized.

We find it significant that no variants have been discovered in coding regions of FOLH,
SLC46A1, and SLC25A32in MM subjects. As neural tube closure occurs prior to
embryonic gut development, FOLHI and SLC46A1 expression may not be involved in
neural tube development. Further investigation is warranted examining these genes in the
mothers of MM subjects as impaired protein enzyme activity could inhibit intestinal
absorption during pregnancy further impacting in-utero neural tube development.

Strengths and Limitations

There are several strengths of our study. Our study cohort includes the two ethnicities
(Mexican American and Caucasian) that have the highest rates of NTDs in North America.
In addition, we were able to study a large sample population totaling 348 MM cases. Lastly,
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we used parental DNA of the MM subjects to determine heritability patterns of novel
variants.

Some limitations of our study include a lack of data on maternal dietary intake of folate or
folate levels. Also, our study used a retrospective design. Moreover, we had a small sample
size of subjects for whom we utilized Sanger sequencing and a low minor allele frequency
of SNPs thus restricting the power of the study to identify significant associations between
SNPs with low rare allele frequency and our study cohort affected with MM. Therefore, due
to our overall sample size, caution should be used when comparing the rare allele frequency
in our subject population with reported population frequencies. This study is limited to
examining the genetic variants effects on folate transportation in relation to the placental and
fetal tissues because we only tested affected subjects with full sequencing. Presence of un-
transmitted genetic variants in the pregnant mother were not detected as parental samples
were only studied to determine status (inherited vs. de novo) of variants found in affected
subjects. In addition, this study only examined the exomes and non-coding flanking
sequences that may affect splicing. Currently, our knowledge and techniques to determine
function of non-coding genetic variants remains limited. However, we cannot exclude the
possibility for the presence of functional non-coding variants in the folate transportation
genes contributing to risk of MM.

In summary, our results reinforce the growing evidence supporting genetic associations of
genes involved in folate metabolism pathway and the susceptibility to NTDs. In future
directions on research involving folate transporting proteins and NTDs, we are investigating
how folate deficiency may directly impact gene expression of folate transporters. We have
found expression of FOLRIand SLC19A1is down regulated along with several other folate
cycle related genes in human fibroblasts grown in folate-deficient conditions [Nolan et al.,
manuscript in prep]. This may have important implications on the gene-nutrient interactions
associated with NTD risk. Our current study highlights the function of various folate
transporters and receptors beginning at maternal dietary intake to ultimately meet the folate
demands of the developing embryo. The low occurrence of pathogenic variants among MM
subjects in the study suggests genetic variants in the folate transportation genes play a small
role in the development of MM. Further study is needed in mothers of MM subjects to
elucidate genetic risk factors in folate transportation genes to evaluate whether variants in of
these genes present in the maternal genome may contribute to folate deficiency and increase
risk of MM in the offspring. In addition, we need to pursue additional studies assessing the
potential impact these newly discovered variants have on the physiologic function of genes
in the folate metabolism pathway. Comparing these findings to unaffected controls will
further help to improve our understanding of the contribution that both genetic and
environmental factors have in the development of NTDs.
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Figure 1.

Folate transport pathway from mother to embryo. Folate refers to natural dietary folates and

synthetic folic acid used in fortification and supplements. Folate transporters (FOLH1,
SLC46A1, SLC19A1, and SLC25A32) and folate receptors (FOLR1 and FOLR2) are
responsible for maternal intestinal absorption and transport of folate into cells including

placental cells and the developing embryo to be utilized in metabolic pathways including the

methionine cycle, homocysteine metabolic pathway, and folate mediated one-carbon
metabolic pathway. Note: THF, tetrahydrofolate; FOLH, folate hydrolase; FOLR, folate
receptor; SLC, human solute carrier. Modified from Petri V et al.
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Deletion of one base (c.1268delG; p.G423Afs*12) in SLC19A1 identified in a MM subject.
Note: A, adenine; T, thymine; G, guanine; C, cytosine. Top panel represents normal
reference sequences and sequencing trace of reverse sequences of SLC19A1 exon 4. Bottom
panel shows the corresponding heterozygote sequencing traces consisting of the normal and
the variant allele with deletion of a “C” nucleotide. The deletion of “C” shown on the
reverse strand of SLC79A1 exon 4 will be transcribed into ¢.1268delG in cDNA, resulting in
shifting of translation reading frame by one base changing codon 423 from G to A. The
frame-shifting mutation in cDNA will lead to premature termination of translation of
SLC19A1 (p.G423Afs*12).
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