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Abstract

The therapeutic effects of drugs are well known to result from their interaction with multiple 

intracellular targets. Accordingly, the pharma industry is currently moving from a reductionist 

approach based on a ‘ one-target fixation ’ to a holistic multitarget approach. However, many drug 

discovery practices are still procedural abstractions resulting from the attempt to understand and 

address the action of biologically active compounds while preventing adverse effects. Here, we 

discuss how drug discovery can benefit from the principles of evolutionary biology and report two 

real-life case studies. We do so by focusing on the desirability principle, and its many features and 

applications, such as machine learning-based multicriteria virtual screening.
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Introduction

For years, the drug discovery pipeline has been outlined by a well-established series of 

rationally connected steps aimed at (i) defining a biological target; (ii) screening large 

collections of compounds to identify hits; (iii) hit-to-lead generation implying chemical 

modifications; (iv) lead optimization for developing drug candidates; and (v) performing 

preclinical trials validating a new potential drug, among others. The success rate along the 

drug discovery pipeline depends on the chance of crossing filters that are used to discard 

compounds whose features do not match those typical of drugs [1]. However, approaching 

drug discovery in such an ‘inverted cone-shaped’ fashion constitutes a simplified procedural 

abstraction often detached from the intimate nature of drug biology encompassing the 

occurrence of simultaneous and multilevel complex interactions, that is, the mode of action 

of the drug.

It is now widely accepted that drugs are inherently poly-pharmacological because they can 

act on multiple targets or disease pathways [2]. Even drugs with relatively high target 

specificity are known to engage a multitude of proteins via a structured network of 

hydrogen, hydrophobic, and ionic interactions, thus inducing their 3D structures and 

modulating their functioning [3]. In this complex scenario, we should reconsider the way we 

search for new drugs and move beyond the reductionist ‘one-target fixation’ paradigm [4].

To bridge drug discovery and biology, we should first acknowledge the multifaceted nature 

of drugs and then readdress the drug discovery approach [5]. Instead of analyzing thousands 

of candidate compounds by using sequential filters, each accounting for one property at a 

time, we should attempt to optimize more properties simultaneously. Such an approach 

would also be more akin to that which occurs in nature. In fact, most known natural drugs 

are likely to have been molded by the process of evolution indirectly via the enzymatic 

systems responsible for their synthesis [6], thus optimizing all the possible ‘facets’ to 

balance their on/off-target profile [7,8].

Thus, we suggest that the concept of evolution should be applied to drug discovery. The 

process of drug discovery can be directly paralleled to that of evolution, whose success 

depends on natural selection, among other driving forces. In nature, evolutionary 

improvement occurs via the continuous selection of well-established features enabling 
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organisms to adapt, survive, and reproduce. In drug discovery, scientists are committed to 

adjusting several physicochemical and biological properties in the search for drugs. 

However, potent ligands against a therapeutic target are abandoned along the drug discovery 

pathway [1] if they do not show an acceptable spectrum of physicochemical, absorption, 

distribution, metabolism, and elimination (ADME) properties along with a minimal risk of 

toxic effects.

The parallelism between this new way of approaching drug discovery and the courtship 

rituals of the flamingo is exemplified in Figure 1. When flamingos are approximately 6 years 

of age, they are ready to start mating. To find a partner, flamingos engage in a variety of 

courtship rituals, mostly initiated by the males. If these are impressive enough, the female 

will likely pair up. By studying hundreds of mating couples, it was realized that females 

judge dancing males by several key factors: color intensity of the feathers; movement 

coordination; height of the neck; and curvature of the beak. Similar to an experienced 

chemist looking for an appropriate drug candidate, a female flamingo will choose the partner 

that has the most suitable features for mating [9,10].

Therefore, we argue that evolution and drug discovery are both meaningful examples of an 

optimization process. Thus, if we wanted to approach drug discovery by mimicking 

evolution, which strategy should we use? We suggest that multicriteria optimization (MCO) 

methods are well suited to guide the simultaneous optimization of multiple factors. Many 

recent developments have focused on methods to aid the simultaneous optimization of 

multiple factors required in a successful drug, targeting compounds with the highest chance 

of downstream success early during the discovery process [1]. However, formalized MCO 

approaches are not widely used in drug design [11]. Thus, here provide the ‘anatomy’ and 

potential scope of methods for MCO in drug discovery. In particular, we focus on MCO 

methods based on desirability functions.

Digging in the brain of a female flamingo: MCO

Similar to the female flamingo in our parallel story, a chemist at the start of a drug discovery 

project already has in mind the type of compound(s) that is being looked for. In both cases, 

the aim is to reach an objective (being that a male to mate with, or a drug candidate) by 

walking a viable route. In this scenario, a potential solution is a multidimensional search 

space (i.e., a complete combinatorial library or all the males in the flamingo colony) that is 

highly scored across all dimensions. The idea of scoring compounds based on multicriteria 

functions is not new in drug discovery: the Rule of Five (Ro5) for the design of oral drugs 

initially proposed by Lipinski et al. [12] was one of the earliest and perhaps the most popular 

example of such an approach. The Ro5 inspired many others and encouraged the 

implementation of other rules for assessing the ‘drug-likeness’ of compounds [13].

Despite their applicability, the Lipinski Ro5 as well as other related approaches reflect a 

static view of drug discovery [11] that is based on a compound-centric perspective typical of 

lead optimization projects [14]. However, to quantify the progression of lead optimization 

projects through process-centric analysis, statistical frameworks are needed. Such process-

centric statistical frameworks operate as compound prioritization systems that are flexible 
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and easily adaptable to issues, such as druggability and safety concerns, binding potency, 

and even conflicting properties, that emerge from the early stages of the drug discovery 

process. In this context, MCO methods are useful because they accelerate the identification 

of candidates at each stage of the drug discovery process.

There are numerous examples of MCO methods applied to drug discovery: to derive 

multiobjective quantitative structure-activity relationship (QSAR) models [15,16]; to trade-

off scoring and posing in molecular docking [17,18]; to build maximally diverse and drug-

like molecular libraries; and to carry out de novo design programs [19,20]. In this respect, 

the variety of mathematical implementations of MCO methods is vast, including the simple 

application of multiple property filters and complex data integration and classification 

schemes (e.g., support vector machines), all with arguable pros and cons. However, it can be 

difficult for inexperienced chemists to navigate this rainbow of possible MCO approaches. 

The lack of a specific knowledge background and the intrinsic complexity of such methods 

are the main reasons why these approach have gained little practical use and are not 

appealing to nonstatistician practitioners. Here, we highlight the ‘real-life’ potential of MCO 

methods and introduce these concepts to nonexperts. Emphasis is given to the 

implementation of the desirability functions that, just as in evolution, exert a kind of natural 

selection process to address the choice of the best possible option.

For the sake of clarity, we exemplify this concept once more. If we are to perform a MCO on 

a compound series based in a standard (less natural) fashion, we would apply several serial 

filters, each one stepwise, controlling a given property, such as molecular weight, solubility, 

and so on. However, the optimization of a property at a given stage can sometimes be to the 

detriment of another one at a different level. In our proposed strategy, the optimization 

process aims to find an optimal balance between all the properties so that deviations in even 

one property will affect the overall solution [21]. Coming back to our flamingo example, 

even when the female looks for the best demonstration of male attributes, such as feather 

color intensity and curvature of the beak, natural selection imposes boundaries along which 

such characters might manifest. For instance, intense feather color is disadvantageous 

because it makes the male an easy target for predators, whereas a beak that is too curved 

beak its ability to find food [9,10]. Applied to drug discovery, the desirability function aims 

to achieve the optimal trade-off between different compound properties.

First introduced by Harrington in 1965 [22], the desirability function approach is one of the 

most widely used methods in industry for the optimization of multiple response processes. It 

is based on the idea that the quality of a product or process that has multiple quality 

characteristics but where one is outside some desired limit is completely unacceptable. The 

method finds operating conditions (i.e., the properties) that provide the most desirable 

response values (i.e., the endpoints). The desirability principle is especially useful for 

solving problems that involve incommensurate and conflicting responses that require 

simultaneous optimization to some extent, because separate analyses can result in 

incompatible solutions [23].

In this respect, a widely pursued MCO strategy comprises combining multiple individual 

endpoints into a single composite optimization function: the desirability function. It offers 
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some advantages over other MCO approaches, including: (i) desirability-based methods are 

easy to understand, easy to use, and highly flexible when incorporating decision-maker 

preferences (weights or priorities assigned to responses); and (ii) the most popular 

desirability-based method, the Derringer and Suich’s method [24] or its modifications [25], 

are available in many data analysis software packages.

Most reviews on MCO, including surveys of desirability-based approaches, focus on 

examples of successful applications of MCO to drug discovery. However, this can be hard to 

follow for unfamiliar readers, in particular nonstatisticians. Here, we take an anatomical tour 

through the desirability principle because we believe that drug discovery will benefit from 

four advantages to its use: (i) avoiding hard filters; (ii) its adaptability; (iii) its ability to deal 

with missing values and data uncertainty; and (iv) solution ranking and virtual screening 

(VS). Therefore, here we review those studies that best describe each of these features (Table 

1).

Seeing through the eyes of a female flamingo: what is desired?

A desirability function is a mathematically simplified description of a decision-maker 

preference. It transforms an objective function to a scale-free desirability value, which 

measures the decision-maker satisfaction against the objective value [11]. In the context of 

drug design, the decision maker is the chemist and the objective functions, as shown in Table 

1, refer to the endpoint values, which can be experimentally measured or theoretically 

predicted. Here, we highlight four features that make desirability functions appropriate for 

drug discovery projects.

Feature 1: avoiding hard filters

By using a desirability function, one can avoid the artificial harshness of using dichotomic 

filters. The desirability function enables the translation of the value of an endpoint into a 

number ranging from 0 to 1, where a desirability equal to 1 indicates an ideal endpoint 

value, whereas a desirability equal to 0 indicates a completely unacceptable outcome. In 

contrast to the binary pass/fail outcome of hard filters, this approach provides a continuous 

desirability scale accounting for even slight changes in the value of the endpoint. This 

enables in-depth and more informative compound analysis and quality assessment [11].

Desirability functions can take many forms (see [1,26] for graphical representations), which 

mostly depend on the so-called ‘shape factors’ flagged by the user. For instance, the 

desirability function can take a single input (an assay response that is a potency measure in 

nM units) and transform it according to the linear decay between given thresholds for 

modeling. This approach can be easily extrapolated to the usual practice in medicinal 

chemistry, where a drug designer intuitively works with thresholds and acceptable ranges for 

endpoint values [26]. Suppose an acceptable potency ranges from 500 nM to 50 nM, the 

desirability function will return a score of 1 for compounds with potency <50 nM and a 

score of 0 for compounds with potency >500 nM. A score in the interval [0,1] is given to all 

the other compounds completing the piecewise linear desirability function. Irrespective of 

whether the piecewise desirability function is linear, sigmoidal, or of another form, the use 

of the desirability function has the benefit of smoothing endpoint values compared with to 
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hard filters [11]. Once each endpoint has been assigned a [0, 1] desirability score, all the 

endpoints can be combined into an overall weighted desirability.

There are still two open questions. First, how can we assign weights to the desirability 

scores of individual endpoints? Second, how can we choose the aggregation scheme to 

integrate information relative to all endpoints being optimized to provide a unique 

desirability score per compound? Regarding the first question, weights should reflect the 

current priorities in a project ,which can change from the very early stages. This means that 

equally weighted desirabilities can be set, whereas priorities are not well established, and 

that the weights can change if some issues become critically important to solve during the 

course of the project. For the second question, there are several possible ways to convert the 

multiple individual endpoint desirability values into a single comprehensive measure of 

overall desirability. This includes the simple summation of all individual desirability scores, 

the weighted geometric mean, among others (reviewed in [26,27]).

At the end, the overall desirability value is always maximized so that the optimal settings of 

the ingredient amounts can ensure the best balance among the multiple characteristics of 

interest. By doing so, drug design becomes a more natural process that is comparable with 

human nature in the sense that one is not able to grasp a complex set of values until the 

impact of them is seen in a concrete way.

Feature 2: adaptability

Unlike those based on sequential hard filters, modern drug design projects need to be 

flexible and easily adaptable to unforeseen changes. The desirability principle implements 

such flexibility into drug design projects by enabling us to optimize what is needed at any 

stage. By applying the steps described in ‘Feature 1’ of the desirability principle, a designer 

can automatically create custom functions to optimize any number of endpoints (or 

properties) at any point during the process. For instance, we have mentioned that weights 

assigned to the desirability scores of individual endpoints can change from one stage to 

another, when the project goals change, or when our understanding of the chemical and 

biological systems sharpens.

Work by Le Bailly de Tilleghem et al. [28] is an excellent example of how we can 

maximally benefit from the adaptability and flexibility of the desirability principle. In this 

research, the authors aimed to generate new potential drugs by using combinatorial 

chemistry, implying the selection and combination of R-groups and reagents for decorating a 

lead compound to generate novel candidates. Such an approach leads to the creation of 

chemical libraries usually containing a very large number of virtual compounds, far too large 

to permit their chemical synthesis. Here is where the desirability principle comes in handy to 

select a smaller subset of ‘good’ reagents for each R-group and synthesize all their possible 

combinations. However, the number of possible sublibraries is huge, making the task 

unfeasible in a reasonable time. Le Bailly de Tilleghem et al. found a way to explore each 

possible sublibrary in a parallel fashion by applying custom desirability functions, each one 

tailored to the specificity of the sublibrary in question [28]. The tailoring process is guided 

by a weighting of the endpoints that is recursively adapted as the solution space is explored.
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Another striking example of adaptability is reported in the case of the optimization of a 

pharmaceutical formulation [27]. When applying the weighted overall desirability value 

(calculated as mentioned above) for the optimization of a pharmaceutical formulation, the 

results are not always those expected. Instead, they are sensitive to the weights, whose 

values are highly subjective. Moreover, traditional desirability function-based methods only 

take into account the means of the compound characteristics. To overcome these limitations, 

Li et al. [27] implemented additional parameters accounting for the response variance and 

covariance into the desirability function, thus obtaining more reliable outcomes.

Feature 3: ability to deal with missing values and data uncertainty

The ability of desirability functions to deal with missing values (and with data uncertainty) 

is perhaps their most important feature. When experimental data are used in the framework 

of a MCO project, often there are molecules devoid of experimental values. At this point, 

any MCO approach that applies ties between optimization and data completeness will leave 

us stranded midway. Once more, the desirability principle comes in handy. In this respect, 

the designer can take two possible decisions: (i) to implement a mathematical expression for 

the overall desirability score (aggregation scheme) that explicitly accounts for gaps in the 

data; or (ii) to make use of an imputation system to fill in those missing values. There are 

several examples in the literature for both strategies (refer to Table 1 for selected examples).

Nissink et al. [26] transparently dealt with missing values by adopting the approach of so-

called ‘dimensionality reduction’. Depending on the number of available data points 

(properties with experimentally measured values), the dimension of the property space for 

each compound is defined. Thus, it is possible that, for compound A, the overall desirability 

score is calculated on the basis of four values, whereas that for compound B is done on the 

basis of only three values. By contrast, Segall et al. [29] took advantage of in silico models, 

such as SAR models, specifically of their ability to predict properties of virtual structures. In 
silico tools have the potential to derive a meaningful properties space in terms of both the 

number of processed molecules and the property spectrum.

However, when choosing the path for data imputation, we acknowledge that not all the 

predicted values have the same reliability. Even for experimentally determined values, their 

reliability could vary substantially. An experimental value from an assay with a high 

signal:noise ratio has higher reliability than a measure from a different assay with a low 

signal:noise ratio [11]. Greater attention is now paid to assessing the uncertainty of the data 

used for the selection and optimization of compounds [1]. Unless the selected MCO 

approach explicitly reflects the impact of combining multiple uncertain data points into an 

overall assessment of compound quality, there is a high risk of incorrectly rejecting good 

compounds because of uncertain predictions. The probabilistic nature of the desirability 

functions makes them suitable for explicitly approaching data uncertainty. Nissink et al. [26] 

considered the potential for errors in the overall desirability of a compound resulting from 

the uncertainty in the underlying predicted or experimental compound data. They examined 

the probability that the desirability of each compound property is greater or less than the 

value assigned and combined these into an overall confidence parameter for the compound 

score. This strategy provides an indication of cases where a compound score should be 
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treated with caution. In general terms, the weighting of various measures (i.e., desirability 

functions) can reflect their importance with respect to not only the goals of the project, but 

also the reliability of the measures.

Feature 4: solution ranking and virtual screening

The ultimate goal of a MCO approach is to end up with a narrowed-down pool of optimal 

compounds that will survive for further applications (i.e,, a male to pair with in our parallel 

flamingo story). As in the flamingo courtship ritual, where the female has to rank all the 

male candidates, a chemist can find the optimal compound by ranking a plethora of 

compounds based on an objective function. However, a question arises here: should we 

prefer to perform simple ranking based on the overall combined desirability score or should 

we prefer to explicitly model compound optimality among our solutions space? The latter 

can be addressed by the Pareto optimization. This optimization scheme is based on the 

assumption that there might not be a single optimal solution to an optimization problem, but 

a family of possible equivalent trade-off solutions [30]. A Pareto optimal solution (a 

compound in the context of drug discovery) is one for which there is no other solution that is 

better in all other properties. In other words, a compound is Pareto optimal if, when 

examining the aspects being considered (i.e., endpoints), further improvement to one 

property would come at the detriment of one or more other properties of that molecule.

Pareto optimization is best applied in situations where an ideal compound cannot be found 

and the acceptable trade-offs between properties are not known a priori [1]. The Pareto 

algorithm samples different properties combinations, which can be studied further to 

determine the best compromise (i.e., trade-off). However, a limitation of Pareto optimization 

is that the number of optimal compounds increases exponentially with the number of 

properties being optimized. In practice, the number of optimal compounds becomes too 

large to be useful when considering more than approximately four properties [1]. A further 

limitation is that data uncertainty cannot be explicitly incorporated into the Pareto 

optimization scheme. This becomes an important drawback when the MCO approach is used 

as a strategy to fill in missing data, such as by using in silico SAR models. The uncertainty 

associated with in silico predictions are traditionally captured in what is called the 

‘applicability domain’ [31,32], an especially important concept in QSAR that allows 

researchers to estimate the reliability in the prediction of a target molecule based on the 

information used to build that model [33].

Desirability-based optimization can overcome all the limitations above described for Pareto 

optimization when it is combined with the appropriate classification schemes. As anticipated 

in the previous paragraph, it is possible to explicitly incorporate data uncertainty during 

desirability function calculations. Therefore, the desirability functions can, in various ways, 

account for the domain of applicability when used side-by-side with QSAR studies (which 

can act as a classification schemes). As shown by Cruz-Monteagudo et al. [34–36], 

desirability-based MCO strategies enable researchers to conduct global QSAR studies to 

detect predictor variables that produce the best possible compromise among considered 

properties (endpoints). The resultant QSAR model can be easily used for downstream 

applications, such as VS, as discussed below.
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To wrap up the discussion on whether it is better to pick the best compound from a ranking 

list or to perform an optimality search from desirability scores, let us consider the flamingo 

parallel story once again. At the end of the courtship ritual, the female is compelled to pick a 

male to reproduce. As selfish as our instinct is, the ultimate goal of the female decision is to 

pass her genes to the progeny, so she expects the selected male to be as good as possible 

during the nesting season for their progeny to survive. In the absence of previous experience 

with this particular male, selection by the female is full of uncertainty but she perceives the 

male as a plausible best choice, having no evidence this male is an optimum one. In essence: 

when dealing with data uncertainty (which commonly happens in drug discovery), 

compound ranking will work better than searching for an overall optimal compound.

The flamingo dancing courtship in action

To show the potential of the desirability principle, we herein first describe how to construct 

tailored ensembles-derived desirability functions for multicriteria VS. Such a method was 

challenged on two real-life case studies. The proposed approach incorporates the 

aforementioned advantages of the desirability functions when applied to multicriteria 

research programs for drug discovery. In essence, this methodology: (i) avoids the use of 

hard filters; (ii) is easily adaptable to the current requirements; (iii) can deal with endpoint 

missing values; and (iv) provides a continuous score to prioritize chemical compounds after 

screening large databases. In addition, our approach based on ensemble modeling ensures 

better coverage of the chemical space through the definition of a dynamic applicability 

domain [37].

To use desirability functions in MCO, it is mandatory to have measurements of all endpoints 

for every sample in the data set. Unfortunately, this is not usual in most drug discovery 

problems. The most common scenario in a drug discovery campaign where different 

properties are to be simultaneously optimized is that data for each endpoint were not always 

measured for all the compounds. Even worse, these pools of compounds for which the 

properties under investigation have been measured are often of limited size and, thus, cover 

only a small region of the chemical space. To address these issues, we propose the use of 

accurate, robust, and predictive classification ensemble models as predictors for each 

endpoint. These ensemble models are built from base QSAR models according to good 

practices for QSAR modeling [38]. In this respect, it is important to define the applicability 

domain of the model to be able to confidently predict samples not used to train the model. In 

our proposal, the applicability domain of the base models, as well as of the ensembles, is 

explicitly considered throughout the modeling process, from the training of the base models 

to the prediction of the final aggregated multicriteria desirability.

Unlike using regression models, we use desirability functions derived from classification 

models to minimize the risk of noise in the modeling process [39,40]. This usually happens 

because endpoint data come from different labs and measurements can significantly deviate 

from one experiment to other even when the same protocols have been used. As a result, the 

uncertainty related to the determination of accurate endpoint data is the main reason to 

develop classification models.
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The choice of one ensemble of QSAR models as the predictor for each property is justified 

by the success of this type of modeling strategy in previous studies [41,42]. QSAR modeling 

bases on the similarity principle: that is, compounds with similar structures should have 

similar bioactivities. In brief, QSAR modeling correlates the structure of chemical 

compounds with their bioactivities [43]. This is done by codifying the chemical structures 

through molecular descriptors, which results in their transformation into vectors of features 

containing relevant structural information. This information is then used as input for 

statistical and machine-learning algorithms leading to models (which can be seen as black 

boxes) capable of predicting the bioactivity of new compounds.

To ensure a proper QSAR modeling workflow, it is necessary to perform a curation of the 

data (compounds and bioactivities) used in the modeling process and the thorough validation 

of the proposed models, and to define the applicability domain of the models [38,44]. The 

data curation process includes steps such as: ring aromatization; normalization of specific 

chemotypes, such as nitro, to one unique representation; the curation of tautomeric forms; 

the removal of duplicate structures; the unambiguous assignment of each compound to a 

group; and the identification of activity cliffs [45]. In addition, QSAR models need to be 

properly validated. Besides measuring the accuracy of a model, cross-validation experiments 

have to be performed to estimate its potential generalization capabilities. Ultimately, a set of 

compounds with known bioactivities (external test set) has to be reserved to evaluate the real 

predictive power of a model once it has been trained and validated.

A critical step when using a QSAR model for the prediction of the bioactivity of new 

chemical compounds is to establish whether the model is suitable for this task. This 

evaluation is performed based on the definition of an applicability domain for the model 

[31,38]. This can be established based on the similarity of the compound to be predicted to 

the compounds used to train it. Also, the range of the values of the descriptors the model is 

trained from can be used to define the applicability domain of a model. If a chemical 

compound is within the applicability domain of a model, then the bioactivity prediction it 

makes for the compound can be considered reliable.

It is a fact well accepted by QSAR practitioners that no model can capture all information 

related to the SARs. Ensemble modeling has emerged as an effective approach to obtain a 

more complete description of this relationship [41,42]. The rationale behind ensemble 

modeling is to develop a set of local models, that is, models that are accurate and predictive 

in different regions of the chemical space. These models are then aggregated, for example 

through the averaging of their outputs, to produce a prediction that considers different 

sources of information. Given that ensemble models comprise the aggregation of a set of 

diverse models, the applicability domain of this ensemble increases relative to that of the 

individual models.

Tailored ensemble-derived desirability functions for multicriteria VS

The approach proposed herein is based on three steps. In the first, a predictive ensemble 

model for each individual endpoint is derived from a pool of base QSAR models. In the 

second, these ensemble models are used to return the predicted classification scores of a 

given data set. Afterward, these scores are transformed into individual endpoint desirability 
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values, which are finally combined to obtain a desirability-based multicriteria prioritization 

VS tool. The overall workflow of our methodology is depicted in Figure 2. The complete 

methodology was implemented in MATLAB [46].

The steps involved in this modeling workflow are summarized below. A complete detailed 

description of all these steps is provided in the supplemental information online.

(i) Data preparation—As routinely done in chemoinformatics programs, the first step of 

our approach is to compile, curate, and codify through molecular descriptors a data set of 

chemical compounds per endpoint. All compounds included in an endpoint data set should 

have a known reference bioactivity value defining its membership to either the active or 

inactive group. Molecular descriptors were calculated with the ISIDA Fragmentor software 

(freely available at http://infochim.u-strasbg.fr/spip.php?rubrique49). The top-250 more 

informative (i.e., those with higher relevance and lower redundancy) descriptors were 

selected by using the mRMR algorithm [47].

(ii) Training a pool of base models per endpoint—The next step involves the 

training of a pool of diverse base classification models per endpoint. To ensure diversity, a 

random features subset selection strategy was used. Each base model can contain several 

descriptors ranging from 5 to 25. To be acceptable, a base model should return an accuracy 

value in predicting the training and test sets, as well as in fivefold cross-validation 

experiments, no lower than 0.65. Test set compounds are predicted only if they are inside the 

applicability domain of the model. For the generation of the base QSAR models, the Least 

Squares Support Vector Machines (LSSVM) classification algorithm was used [48].

The applicability domain of the base models is defined according to the molecular 

descriptors range method [31]. In this case, each feature included in the model is used to 

build a hyper-rectangle defined by the maximum and minimum values of the features on the 

training data. A sample is considered to be inside the model applicability domain if it is 

included in the defined hyper-rectangle.

(iii) Aggregation of the base models into an ensemble model—Base models were 

aggregated into ensembles following three different data fusion strategies: Major vote (MV), 

Borda vote (BV), and Scores vote (SV). For MV aggregation, given a pool of base models, 

the class of each compound is predicted by each base model. The sample is assigned to the 

class having the higher number of votes [49]. In BV [37] aggregation, each classifier ranks 

the candidates. To this end, the base classifiers have to provide a continuous estimator 

accounting for the support a given to a class prediction. The scores produced by the base 

LSSVM models were used as ranking criterion. For BV, if there are N candidates, the first-

place candidate receives N - 1 votes, the second-place candidate receives N - 2, and so on, 

with the candidate in last place receiving 0 votes. The last aggregation strategy is based on 

the combination of the classifier output scores [37]. For this aggregation strategy, the 

LSSVM scores produced by the base models are first averaged. A given compound is 

assigned to the active class if its aggregated score is positive, whereas it is assigned to the 

inactive class if its aggregated score is negative. Irrespective of the aggregation strategies, 

only those models including a sample within their applicability domains are considered as 
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valid decision makers, thus conferring a dynamic nature to the ensemble-based decision-

making process.

One of the factors influencing the performance of ensemble models is the diversity of the 

base models being aggregated [37]. To ensure a good level of diversity, two different 

strategies were used for the selection of base models. The first was based on a clustering 

approach, whereas the second used Genetic Algorithms (GA). In particular, two different 

distance metrics were considered for clustering and six different fitness functions were 

challenged for the GA optimization.

For each endpoint, the best ensemble is selected as the one having the highest value of the 

Balanced Classification Rate (BCR) metric among all modeling methods. The BCR metric is 

defined by Equation 1:

[1],

where Se and Sp indicate the sensitivity and specificity of a model, respectively. This metric 

is a modification of the well-established Correct Classification Rate [50] and gives the 

highest scores to models with the best balance between Se and Sp.

The applicability domain of the ensemble models was defined as the union of the 

applicability domain of the members of the ensemble. This approach increases the 

applicability domain of the ensemble model relative to that of the individual models. When 

predicting a new sample using an ensemble model, only the models having that sample 

within their applicability domain are allowed to contribute to the aggregated decision.

(iv) Transformation of classification scores to desirability values—Once one 

ensemble has been selected as the final classifier for each endpoint, it can be used to predict 

the classification scores of new compounds considering the applicability domain of the 

ensemble. A given sample is predicted by considering the arithmetic mean of the scores 

produced by the base models including it inside their applicability domain.

These scores are transformed into desirability values as reported in the supplemental 

information online. This transformation is based on the aggregated scores across training, 

test, and external data sets. For a new sample, its aggregated score has to be predicted by the 

endpoint ensemble. Then, this score can be translated into a specific desirability value.

As shown in Figure 3, compounds provided with positive/negative LSSVM scores will be 

predicted as actives/inactives. The higher the scores are, the larger the distances from the 

classification boundary and, as consequence, the higher the desirability values. Compounds 

close to the classification border will have score values close to 0.

For a pool of compounds with a measured endpoint, the classification scores can be 

translated to desirability values following a simple rule: the highest scored compound 

receives a desirability value equal to 1, while the lowest scored compound receives a 
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desirability value equal to 0. In addition, a scale factor is defined (see supplemental 

information online) so that a score value of 0 is transformed into a desirability value of 0.5. 

Once the transformation from scores to desirability values is defined, any new predicted 

sample can be represented in terms of desirability. If the score of the new sample is greater 

than the highest score for the reference data, it gets a desirability value equals to 1. By 

contrast, if its score is lower than the lowest score in the reference data, it is assigned a value 

of desirability equal to 0. A new sample will get a value of desirability in the interval [0, 1] 

when its score lies between the highest and lowest scores with respect to the reference data.

(v) Aggregation of the desirability values into the final desirability-based 
multicriteria prioritization VS tool—The last step is needed to aggregate the individual 

desirability values into one multicriteria decision-making VS tool. This aggregation step 

involves computing the weighted geometric mean of the desirability values corresponding to 

the individual endpoints. Two different scenarios were investigated. In the first, all endpoints 

were assigned the same weight, which, for convenience, was set to one. As a second variant, 

all the weights were enabled to vary in the interval [0.5, 1] by using a GA engine to find the 

optimal weights maximizing the enrichment of active compounds in the first 1% of a ranked 

ad hoc built validation set.

Proof of concept

Two multicriteria drug discovery problems were challenged in our proof of concept. The 

first involved the identification of nontoxic antimalarial hit compounds requiring the 

optimization of three separate endpoints: activity against a drug-sensitive Plasmodium 
falciparum strain (3D7); activity against a multidrug-resistant P. falciparum strain (W2); and 

compounds toxicity (Huh7). The second problem aimed to identify dual-target compounds 

acting as A2A adenosine receptor (A2AAR) antagonists as well as monoamine oxidase B 

(MAO-B) inhibitors. In the case of antimalarial hit modeling, there was a large overlap 

among the compounds assayed for the three different endpoints. Instead, a minimal overlap 

existed between the data sets used for identifying dual-target compounds, thus making the 

modeling process more difficult.

The structural overlapping among compounds measured for each property defining the 

multicriteria problem is a critical factor that can affect both the classification and VS 

performance of consensus classifiers used for multicriteria VS. For problems where 

structural overlapping is high, the reliability of predictions is favored because all cases 

involved in each property to predict share a large chemical space. Consequently, base models 

will be based on similar structural patterns. Accordingly, when the structural overlapping is 

low, the reliability of predictions can be affected if the applicability domain is not considered 

during the selection of the base models constituting the final consensus classifier.

Taking into consideration the above-mentioned issues, we challenged our approach in these 

extreme scenarios to gain insights into the influence of such a critical factor on the reliability 

and performance of the proposed multicriteria VS approach. These data sets were subject to 

a thorough preparation and curation treatment as described in the supplemental information 

online. For assessing VS performance, two panels of 50 hit compounds each were used in 
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the case the malaria data set and two groups of eight dual-target A2AAR/MAO-B 

compounds were used for the dual-target case study.

The SD files, including compound structures and biological annotations of the training, test, 

external, and VS validation sets, as well as lists of the final subset of 250 ISIDA Fragments 

per endpoint, are provided in the supplemental information online. Table S1 in supplemental 

information online also summarizes the composition of all these sets.

A total of 1001 base models satisfying the previously defined acceptability criteria were 

trained for each endpoint for each data set. The performance metrics of the base classifiers 

are summarized in Table S2 in the supplemental information online.

In the case of the antimalarial compounds, the models for the toxicity endpoint (Huh7) 

returned better average performances than those for antimalarial endpoints (3D7 and W2). In 

the case of the dual A2AAR/MAO-B ligands, the best performance was obtained for the 

MAO-B inhibitors. In addition, the performance of the base models was higher in the 

modeling of the dual A2AAR/MAO-B ligands. This can be explained based on the diversity 

of the modeling data sets. In the case of the dual A2AAR/MAO-B ligands, the data set was 

less structurally diverse was the antimalarial one. This different structural diversity means 

that there are fewer rules guiding the bioactivity of dual A2AAR/MAO-B ligands, making 

the discovery of these rules easier throughout the machine learning-based modeling process. 

The drawback of this lower structural diversity is that the applicability domain of the dual 

A2AAR/MAO-B ligands ensemble covers a narrower region of the whole chemical space 

compared with the antimalarial model.

The selection of the best model, not only in the case of the base models but throughout the 

classification modeling workflow, is based on the maximum value of BCR achieved for the 

test set. In addition, the external data set is only used for the verification of the predictive 

capability of the selected models and its prediction does not affect the decision regarding the 

selection of the best models.

As described above, different strategies were adopted for combining base models into 

ensembles for each endpoint. Not surprisingly, the best-performing ensemble was obtained 

by using a GA to select its base models. In addition, for the two endpoints related to 

antimalarial activity (3D7 and W2), the best-performing ensemble was found when the base 

models were combined using the SV aggregation strategy and the GA maximized the value 

of BCR. By contrast, the best ensemble for the toxicity endpoint (Huh7) was found using 

MV for the aggregation of the base models and the Akaike Index Criterion (AIC) was 

minimized.

In the case of the dual A2AAR/MAO-B ligands, the best ensembles were obtained when BV 

and MV were used for the maximization of BCR during model aggregation for A2AAR and 

MAO-B, respectively. The statistics for the best ensemble per endpoint are summarized in 

Figure 4 and presented in more detail in Table S3 in the supplemental information online.

The obtained ensembles improved the average performance of the base models for the five 

endpoints. From Figure 4, it can be seen that the ensemble models (solid bars) showed better 
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performance than the average of the base models they were composed from (dotted bars) for 

all endpoints. More importantly, these ensembles also improved the performance of the best 

base model for all endpoints (see Tables S2 and S3 in the supplemental information online). 

Although the quality of the ensemble models is granted by optimizing performances on the 

test set, the improvements are not obtained at the expense of the statistics in predicting the 

training set. The obtained ensembles also showed a better balance between sensitivity and 

specificity compared with the base models.

We found that the less complex ensemble comprised five base models, whereas 14 base 

models were encompassed in the more sophisticated ensemble. These numbers of model 

represent approximately 1% of the total number of base models. If the performance of the 

selected ensembles was compared to that obtained when all base models were aggregated, 

the overall classification accuracy increased by approximately 10% (data not shown). This 

highlights the importance of combining a tailored subset of base models comprising a 

certain level of diversity rather than large numbers of base models.

Given that the external data set is used only to assess the predictive potential, we can be 

confident that the obtained ensembles can generate trustworthy score values in the case of 

compounds within their applicability domain.

The next step of our approach is the conversion of the ensemble classification scores into 

endpoint desirability values. This was guided by the highest and lowest scores predicted by 

the ensemble across all the training, test, and external sets. All these processes were carried 

out as previously described.

To evaluate the VS performance of our approach, three different VS Validation Sets (VSVS) 

were designed. The first VSVS (VSVS-1) comprises, in the case of the antimalarial data set, 

50 known antimalarial hits and a pool of decoys selected using the DUD-E server [33]. For 

the dual A2AAR/MAO-B ligands, the DUD-E decoys were generated for eight known dual-

target ligands to form the VSVS-1. These VSVS-1 were used for the optimization of the 

individual desirability weights used to aggregate them into the final multicriteria VS tool.

Given that VSVS-1 was used for the optimization of the weights, two more VSVS, namely 

VSVS-2 and VSVS-3, were built for each data set. These sets were built from a second 

subset of 50 antimalarial hits and eight dual A2AAR/MAO-B ligands. The decoy molecules 

for these second sets of positive compounds were generated with the DUD-E server for 

VSVS-2 and with the DecoyFinder [34] application for VSVS-3. The classification scores 

were computed for the VSVS and were transformed into desirability values according to the 

previously established transformations. The SD files with the VSVS structures are provided 

in the supplemental information online.

The final ensembles for all endpoints, except for MAO-B inhibitors, contained all 

compounds of the VSVS within their applicability domains. By contrast, no single model in 

any of the ensembles had all samples in the VSVS within its applicability domain. To 

illustrate the benefits of using the ensemble modeling strategy over individual models from 

the applicability domain point of view, the worst-case scenario corresponding to the 

modeling of MAO-B inhibitors can be analyzed. In this case, the individual models covered, 
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on average, 87% of the samples included in the VSVS. However, the applicability domain of 

the ensemble covered 99.94% of all samples included in the VSVS. That is, in the worst-

case scenario, the applicability domain of the ensemble model can increase the coverage of 

the chemical space by 13% relative to the individual model average. This fact clearly 

highlights one of the advantages, in terms of coverage of the chemical space, of using 

ensemble models instead of individual models.

Going back to our flamingo analogy and having all decision makers properly described 

(endpoint desirability values), the female flamingo (chemist) is ready to take her decision on 

which place each candidate (compound) should have in an ordered list. In this final step, the 

individual endpoint desirability values are combined into the final multicriteria VS model. 

As previously mentioned, we examined two scenarios: all the endpoints received the same 

unitary weight for aggregation and the weights were optimized to maximize the initial 

enrichment of actives in the first 1% of screened data.

These experiments were performed using the three VSVS previously built. In the worst-case 

scenario, the VSVS comprised 55 decoys per active ligand. Such an active ratio is well over 

the minimum of 36 proposed in [51] for an unbiased estimation of the performance of VS 

methods [52]. The results relative to these two cases are shown in the accumulative curves of 

Figure 5, whereas other details are provided in Table S4 in the supplemental information 

online. The values of BEDROC at 1% of screened data for the unweighted aggregation are 

presented as bars for both modeling problems in Figure 5.

For comparison purposes, we also studied the VS performance of the aggregation of the 

classification scores without transforming them to desirabilities. For this comparison, the 

classification scores of each sample were aggregated across all problem-related endpoints 

using the arithmetic mean. These aggregated scores were then used as the multicriteria VS 

ranking criterion. The accumulation curves obtained for these experiments are shown in 

Figure 5.

The results obtained showed the robustness of the proposed methodology and its suitability 

for VS campaigns. More importantly, all the experiments showed a significant initial 

enrichment of active compounds even at very low fractions of screened data. This 

observation holds true even in the case of the worst-performing VS validation experiments. 

Furthermore, the optimization of the weights for the aggregation of the individual 

desirability functions can only provide a slight improvement in the initial enrichment of 

active compounds. This means that weights optimization is not necessarily mandatory for 

obtaining effective VS tools. In addition, neither the actives nor the decoys included in the 

VSVS had ever been previously used at any modeling stage.

In the case of VSVS-2 for the antimalarial compounds, in addition to the ligands and the 

decoys, the six confirmed inactive compounds, common to the three endpoint external sets, 

were also present in this set. These inactive compounds had never been used in the modeling 

process of any of the individual endpoints. None of these confirmed inactive compounds are 

ranked in the first 1% fraction of screened data. Also, five of these compounds were ranked 

beyond the 15% of screened data, occupying ranking positions that would make them 
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ineligible for any experimental validation in a real VS campaign. In addition, because four 

of these compounds were ranked in positions beyond the 20% of screened data, they would 

be ineligible for experimental validation even when a small database of chemical compounds 

is screened. When the composition of the first 1% of screened data is analyzed, 59% of the 

compounds in this data subset correspond to confirmed hits, which represent an outstanding 

active rate even for a retrospective VS validation [40].

As far as the dual A2AAR/MAO-B ligand VS validation experiments were concerned, four 

out of the eight known dual ligands were retrieved at early fractions of screened data in most 

experiments, whereas the others were ranked at the end of the list. A detailed analysis of the 

position that the known dual A2AAR/MAO-B ligands have in these ranked lists shows that 

the compounds retrieved at the start of the list had potencies around or below 100 nM toward 

both targets. By contrast, the compounds ranked at the end of the lists were far from this 

potency cutoff value for both targets. This means that our approach is capable of ranking 

compounds with an outstanding dual-binding profile at the beginning of the ranked list, 

whereas those with lower affinity for the targets are positioned far away from the top of the 

list.

To test the worth of the desirability-based methodology proposed herein, we compared its 

VS performance to that obtained from the aggregation of the classification scores as 

described above. The obtained results in Figure 5 might indicate an overall similar 

performance in both scenarios. However, a closer look at the first 8% of screened data as 

well as inspection of the values of BEDROC, clearly support the advantages of using a 

desirability-based methodology for multicriteria VS. In none of the six VS experiments 

performed was the aggregation of the classification scores able to achieve initial enrichment 

performances close to those obtained with our desirability-based methodology.

All this evidence strongly supports our hypothesis that desirability functions can be 

effectively used for the development of high-performance multicriteria VS tools. Finally, 

comparison of the classification and VS performances showed that, despite better 

classification performance being achieved for the dual A2AAR/MAO-B ligands, a better VS 

performance was obtained for the antimalarial data set. This finding supports our previous 

observation that good classification performances do not ensure good VS results [35]. Thus, 

the evaluation of the models in VS conditions using proper data sets is an essential 

component of any cheminformatics effort for VS.

Concluding remarks

Drug discovery can (and we believe must) be approached by methodologies able to 

explicitly account for the cascade of events initiated by biologically active compounds 

because of their mode of action and poly-pharmacological character. We have demonstrated 

here that it is possible to do so by considering how evolution works. The flamingo story we 

describe here brought us to a nature-inspired drug-discovery workflow that is centered on 

the desirability principle. In that sense, we investigated the potential of desirability functions 

for the multicriteria VS of databases of chemical compounds. For using classification scores 

to derive endpoint desirability values, it is critical to rely on high-quality classification 
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models for a robust modeling. In our proposal, this was achieved through ensemble 

modeling, a technique that, in addition to providing trustworthy predictions, ensures larger 

coverage of the chemical space by the applicability domain of the final predictor. We 

consider that a key factor determining the success of the proposed strategy herein is the 

inclusion of the applicability domain, which is dynamically structured throughout the 

modeling process. The results provided strong evidence supporting our hypothesis that 

desirability functions can be used for obtaining highly effective and robust tools for the 

development of high-performance multicriteria VS workflows.

Although ensemble models represent a good solution to the problems under investigation, 

we further focus here on the development of new methods for improving their 

generalization. This future direction is motivated by the evidence that each sample in the 

external set can be correctly classified by at least one base classifier for all endpoints. Thus, 

using more appropriate ensemble modeling methods could result in a considerably increase 

in the quality of the ensemble predictions. Although there is room for improving the 

proposed methodology, we consider that the results obtained are promising. We recently 

introduced a novel systemic QSAR approach that takes advantage of the integration of 

chemogenomic data [53]. In further research, we plan to investigate how the present 

methodology could improve the multicriteria VS performance of the systemic QSAR 

approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We approach drug discovery as a nature-inspired multi-criteria optimization 

process

• We propose a desirability-based method for multi-criteria virtual screening

• We highlight the role of ensemble modeling and the applicability domain

• We provide evidences of the suitability of the method through two case 

studies
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Figure 1. 
From flamingo mating rituals to drug discovery.

Sánchez-Rodríguez et al. Page 24

Drug Discov Today. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Overall workflow of the proposed methodology.
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Figure 3. 
Transforming classification scores into desirability values.
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Figure 4. 
Classification performance of the obtained ensembles for the antimalarial (a) and dual 

ligands (b) data sets. The average performance of the base models each ensemble comprises 

is shown using dotted bars.
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Figure 5. 
Accumulative curves for the two case studies. Curves corresponding to Virtual Screening 

Validation Sets (VSVS)-1, VSVS-2, and VSVS-3 are colored red, green, and blue 

respectively. Solid lines represent the curves corresponding to the weighted aggregation of 

the desirability functions; dashed lines correspond to their unweighted aggregation; and 

dotted lines correspond to the aggregation of the classification scores. The colors of the bars 

representing BEDROC correspond to the same color used for each VSVS. The bars 

representing the values of BEDROC obtained from the aggregation of the classification 

scores are presented with a dotted pattern. (a) Cumulative curve for the antimalarial data set. 
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(b) Magnification of the first 8% of screened data for the antimalarial data set. (c) 

Cumulative curve for the dual ligand data set. (d) Magnification of the first 8% of screened 

data for the dual ligand data set.
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Table 1

Examples of formalized MCO applications in drug discovery that maximally exploit different features of the 

desirability principle

Application Endpoints being co-optimized Desirability function 
feature(s)
that is (are) most 
exploited

Refs

Central nervous system marketed drugs Lipophilicity; distribution coefficient; topological 
polar surface area; molecular weight; number of 
hydrogen bond donors; most basic center

Solution ranking and VS [33]

Non-nucleoside HIV reverse transcriptase (RT) 
inhibitors

RT inhibitory efficacy; toxicity over MT4 blood 
cells

Solution ranking and VS [54]

Antidepressant drugs Binding to a targeted receptor (tR); functional assay 
on a receptor different to tR; binding to other four 
receptors; probability of non-mutagenicity; 
metabolization rate

Adaptability [28]

Inflammatory/immune process (P2X7 inhibitors) Potency; solubility; safety Ability to deal with 
missing values and data 
uncertainty; avoiding hard 
filters

[26]

Antibacterial activity (fluoroquinolones) Potency; safety; bioavailability Solution ranking and VS [35]

Central nervous system marketed drugs Aqueous solubility; human intestinal absorption; 
calculated logP; P-gp transport; plasma protein 
binding; CYP2D6 affinity; CYP2C9 affinity; blood–
brain barrier penetration; hERG inhibition

Ability to deal with 
missing values and data 
uncertainty; avoiding hard 
filters

[29]

Antialzheimer agents Affinity; selectivity Solution ranking and VS [55]

Extended-release formulations for propranolol Set of 20 pharmacokinetics parameters Adaptability; avoiding 
hard filters; solution 
ranking and VS

[27]

Optimization of oral drugs MOLECULAR weight; ALOGP; number of HBDs; 
number of HBAs; molecular PSA; number of 
ROTBs; number of AROMs

Solution ranking and VS [56]

Inhibitors of serotonin 5-hydroxytryptamine (5-
HT1A) receptor

Set of 11 pharmacokinetics parameters Ability to deal with 
missing values and data 
uncertainty

[57]
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