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Abstract

Background—Analyses of associations between clinicopathologic outcomes and recurrent 

somatic mutations in clear cell renal cell carcinoma (ccRCC) have been limited to individual 

cohorts.

Objective—To define clinicopathologic associations between specific mutations and ccRCC 

disease characteristics.

Design, setting, and participants—DNA sequencing data were pooled from three 

collaborative genomic cohorts (n = 754) and our institutional database (n = 295). All patients had 

clinical data and identification of somatic mutations from their primary tumors.

Outcome measurements and statistical analysis—Analysis of gene mutations for 

associations with maximal tumor size (linear regression) and pathologic stage (logistic regression). 

Cancer-specific survival (CSS) and recurrence-free survival (RFS) were calculated using 

competing risks methods. Analyses were adjusted for cohort site, and results were adjusted for 

multiple testing (q value). Relevant genes were used in multivariable models that included 

confounding variables and the validated Mayo Clinic Stage, Size, Grade, and Necrosis (SSIGN) 

score.

Results and limitations—Association with tumor size was found for mutations in BAP1 (q = 

0.013). No mutations were found to be associated with stage after adjusted analysis. Mutations in 

BAP1 (q = 0.004) and TP53 (q = 0.001) were associated with decreased CSS in a multivariable 

model; only TP53 (q = 0.005) remained significant when SSIGN score was included. SETD2 
mutations (q = 0.047) were associated with decreased RFS in multivariable models, including 

models with SSIGN score.

Conclusions—In >1000 patients with ccRCC, pooled analysis and multivariable modeling 

demonstrated that three mutated genes have statistically significant associations with poor clinical 

outcomes. This included the more commonly mutated BAP1 and SETD2 and the less frequently 

mutated TP53. After adjustment for clinical confounders, mutations of TP53 and SETD2 were 

associated with decreased CSS and RFS, respectively.

Patient summary—Using rigorous statistical methods, this study affirmed that certain 

mutations in clear cell renal cell carcinomamay portend inferior survival and an increased risk of 

recurrence.
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1. Introduction

Despite recent advances in surgical and systemic treatments, renal cell carcinoma (RCC) 

remains the most lethal urologic malignancy, accounting for about 3% of all human cancers. 

Manley et al. Page 2

Eur Urol Focus. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clear cell RCC (ccRCC) is the most common and aggressive histologic subtype [1]. The 

advent of next-generation sequencing technology has resulted in a fundamental shift in the 

understanding and potential treatment of ccRCC. Large-scale efforts by cooperative groups 

like The Cancer Genome Atlas [2], the International Cancer Genome Consortium [3], and 

the University of Tokyo [4] helped define the genomic landscape of ccRCC [5] and 

identified several recurrently mutated genes [6–8].

Observations and interpretations of the genetic landscape of ccRCC have been limited by 

several constraints. Most of the reports in this arena are based on relatively small patient 

cohorts with similar pathologic stages [2–4,9,10]. This, coupled with the low frequency of 

some mutations, has resulted in multivariable analyses being underpowered.

In this study, we performed comprehensive analyses of pooled publicly available cohorts, 

along with our institutional cohort, to identify associations between relevant mutations in 

ccRCC and clinicopathologic outcomes while controlling for known prognostic variables.

2. Methods

2.1. Patient selection

All patients included in the study signed informed consent at their respective institutions 

allowing for genomic testing. On approval by the institutional review board at Memorial 

Sloan Kettering Cancer Center (MSKCC), we searched our institutional kidney cancer 

database and identified 348 patients with ccRCC with prospectively collected genomic and 

clinical data between 2001 and 2015 (MSKCC cohort). Patients were excluded from this 

study if sequencing had not been performed on their primary tumors (n = 53), leaving 295 

patients available for analysis. This included patients (n = 185 [62.7%]) who had targeted 

sequencing of five genes and had been previously described [11] but now had >3 yr longer 

follow-up. Of these 185 patients, 54 (29.2%) had next-generation sequencing performed, 

which was used in place of their targeted sequencing results for this analysis. One hundred 

ten patients (37.3%) in the MSKCC cohort have not been previously described. A majority 

of patient samples (n = 157 [53.2%]) were analyzed using MSK-IMPACT (MSKCC 

Integrated Mutation Profiling of Actionable Cancer Targets), a hybridization-based exon 

capture assay of select introns and commonly altered oncogenes and tumor suppressor genes 

[12]. The panel of targeted genes is listed in Supplement 1. Details of our genomic pipeline 

have been previously published [12]. For 35 patients, sequencing data were obtained using 

MSK-IMPACT performed on dissociated cells from their primary kidney tumors after an 

average of 1.7 passages. Remaining samples were analyzed using Sanger (n = 131 [44.4%]) 

and whole-genome (n = 7 [2.4%]) sequencing.

The second cohort in this study (public cohort) consisted of three previously published 

cohorts of patients with ccRCC [2–4], with documentation of appropriate ethics and consent 

for all study participants. Details of these study populations may be found in Supplement 2.

2.2. Statistical analysis

Data from a total of 1049 patients were available for analysis. A panel of 14 genes was 

chosen for analysis based on previously published works focusing on the clinical relations of 
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significantly mutated genes across all cohorts. All patients had data available on four 

mutated genes (VHL, PBRM1, SETD2, and BAP1). Depending on the original study 

parameters, the 10 remaining genes had varying levels of data missing. To account for 

differences in patient characteristics and mutation frequencies across cohorts, all analyses 

were adjusted for cohort by including cohort as a categorical variable in all regression 

models. Linear regression analysis was used to assess the association between maximum 

pathologic tumor diameter and genetic mutations. Logistic regression estimated the 

association between gene mutations and American Joint Committee on Cancer (AJCC) stage 

[13]. We examined two ways of categorizing AJCC stage: (1) dichotomized as stages I/II/III 

versus stage IV and (2) categorized as stages I/II versus stage III versus stage IV.

Follow-up time was calculated from date of nephrectomy. Recurrence was determined 

according to previously described methods among the patients from the public cohort [2–4]. 

Date of recurrence was defined as date of pathologic confirmation of diagnosis, that is, 

biopsy. For patients with no pathology-confirmed recurrence, we used the date of the 

radiologic examination at which recurrence was diagnosed. Patients with documented 

recurrence who were reported as deceased on last follow-up and those with stage IV disease 

who were deceased without a listed cause were considered to have died from their disease. 

We used competing risks methods to estimate recurrence-free survival (RFS) and cancer-

specific survival (CSS), treating death without recurrence and death from other causes as 

competing events, respectively.

To control for potential confounding in multivariable models, two sets of covariates were 

determined a priori. The first set, the base set, included age at diagnosis, sex, AJCC stage, 

and Fuhrman nuclear grade. The second set, the Mayo Clinic Stage, Size, Grade, and 

Necrosis (SSIGN) set, included age at diagnosis, sex, and SSIGN score as a continuous 

variable. The SSIGN score [14] is a validated prognostic model that is widely used to 

control for confounding in analytic models for RCC prognosis; because a SSIGN score was 

not available for all patients under study, it was treated as a secondary analysis.

All q values reported in this paper are the p values adjusted for multiple testing using the 

Benjamini-Hochberg false discovery rate method. A q value <0.05 was considered 

statistically significant. All statistical analyses were conducted using R software v.3.1.1 (R 

Core Development Team, Vienna, Austria), including the survival and cmprsk packages.

3. Results

3.1. Demographic characteristics

Patient and disease characteristics, including gene mutation frequencies, are described in 

Table 1. The composite cohort (including both MSKCC and public cohorts) displayed 

classic recurrence and survival patterns for ccRCC.

3.2. Tumor size

Data on tumor size were available for 1045 patients. Tests for the association between each 

gene and tumor size were conducted using the available sample size for each respective 

gene. In analyses adjusted only for cohort, mutations in BAP1 (median: 8 vs 5.2 cm; p = 
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0.001) and PTEN (median: 8 vs 5.9 cm; p = 0.026) were significantly associated with larger 

median tumor diameter. After adjustment for multiple comparisons, mutations in BAP1 
remained significantly associated with larger tumor size (q = 0.013) (Supplementary Table 

1).

We further tested the difference in mutation frequency among tumors smaller than 4 cm, 

stratifying between those with pathologic (p) T1 classification and those with pT3 

classification for the five most recurrently mutated genes in the composite cohort (VHL, 

PBRM1, SETD2, BAP1, and KDM5C). On analyses adjusted only for cohort, we found 

PBRM1 (p = 0.021) and KDM5C (p = 0.040) to be associated with pT3 classification; after 

controlling for multiple testing, neither gene retained significance (q = 0.099 for both) 

(Supplementary Table 4).

3.3. Disease stage

Analyses for the association between each gene and stage were conducted using the 

available sample size for each respective gene. On analyses adjusted only for cohort, several 

genes were found to be associated with higher-stage disease (Supplementary Table 1 and 2); 

after adjustment for multiple comparisons, no genes were significantly associated with a 

specific stage in either analysis. Of note, mutations in SETD2, PTEN, and BAP1 did show a 

trend toward significance for association with higher AJCC stages when comparing stage 

I/II versus stage III versus stage IV, with q values of 0.071, 0.084, and 0.088, respectively.

3.4. Cancer-specific survival

Investigation of the association between each mutated gene and CSS was conducted using 

the available sample size for each respective gene. On analyses adjusted only for cohort, we 

found that mutations in BAP1 (n = 1049 for analysis; hazard ratio [HR]: 2.10; 95% 

confidence interval [CI]: 1.44–3.04; q < 0.001) and TP53 (n = 784 for analysis; HR: 2.63; 

95% CI: 1.36–5.08; q = 0.028) were significantly associated with increased risk of death 

from cancer after adjustment for multiple comparisons using competing risks regression 

(Fig. 1).

We consequently incorporated BAP1 and TP53 into multivariable competing risks 

regression models using the two sets of adjustment covariates described in the statistical 

methods. In the first model, which was adjusted for the base set of variables as well as 

cohort (n = 733 for analysis), we found both BAP1 (q = 0.004) and TP53 (q = 0.001) 

mutations to be significantly associated with decreased CSS (Supplementary Table 5). In the 

second model, which was adjusted for the SSIGN set of variables as well as cohort (n = 554 

for analysis), we found that only TP53 mutations were significantly associated with 

decreased CSS (Table 2). To assess the presence of sarcomatoid features as a possible 

confounding variable, we included this in a model with the base set of variables. We still 

found TP53 and BAP1 mutations to be associated with inferior CSS (Table 3).

3.5. Recurrence-free survival

After excluding the data of patients with AJCC stage IV disease, we looked for an 

association between the selected genes and RFS in 860 patients (depending on the available 
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sample size for each respective gene). On analyses adjusted only for cohort, we found that 

mutations in SETD2 (HR: 1.89; 95% CI: 1.26–2.83; q = 0.007), KDM5C (HR: 2.02; 95% 

CI: 1.29–3.18; q = 0.007), TP53 (HR: 3.12; 95% CI: 1.39–7.00; q = 0.017), PTEN (HR: 

3.78; 95% CI: 1.94–7.37; q < 0.001), and TSC1 (HR: 4.15; 95% CI: 2.04–8.41; q < 0.001) 

were significantly associated with increased risk of recurrence (Supplementary Table 6).

Our multivariable models included SETD2 and KDM5C but not PTEN, TSC1, or initially 

TP53 because of their lower overall mutation frequency (4.08%, 1.66%, and 3.44%, 

respectively) and the risk of overfitting. In the multivariable model adjusted for the base set 

of variables as well as cohort (n = 733 for analysis), only SETD2 showed statistically 

significant association with increased risk of recurrence (HR: 1.60; 95% CI: 1.04–2.47; q = 

0.033) (Supplementary Table 7). In the multivariable model adjusted for the SSIGN set of 

variables as well as cohort (n = 539 for analysis), SETD2 continued to demonstrate 

significance (Table 4). To assess the specific correlation of TP53 with RFS, it was included 

with SETD2 in two additional multivariable models with both sets of variables. We saw no 

significance for either gene in these models (Supplementary Table 8 and 9).

4. Discussion

This pooled analysis of data from >1000 patients with ccRCC, with genomic 

characterization of their primary tumors, allowed us to elicit the clinical implications of 

several recurrently mutated genes using more rigorous multivariable statistical modeling. We 

identified several somatic mutations that act as an inflection point in the pathogenesis of 

ccRCC. On univariable analysis, adjusted for cohort, we found six genes that were 

associated with clinical outcomes:BAP1, SETD2, KDM5C, PTEN, TP53, and TSC1. Three 

of these genes, BAP1, TP53, and SETD2, continued to show significance in multivariable 

modeling.

Previously published studies have reported a more aggressive clinical course and worse 

prognosis in patients who have ccRCC with BAP1 mutations [11,15]. In this investigation, 

BAP1 mutations were associated with increased risk of cancer-specific death, but the 

association did not retain significance on inclusion of the SSIGN score in a multivariable 

model. One reason for these outcomes may be the association of BAP1 mutations with larger 

tumors and with histologic grade 4 disease compared with grades 1–3 (p < 0.001; data not 

shown). Both of these pathologic variables are captured in the SSIGN score calculation, and 

BAP1 mutations may be surrogates for these variables.

Notably, we found no association between BAP1 mutations and decreased RFS, even on 

univariable analysis with adjustment for cohort site. A BAP1 mutation may encourage tumor 

cell growth, but unlike other mutations (eg, SETD2 and TP53 mutations), it may not 

facilitate dissemination of tumor cells [8,16].

While generally rare, mutations in TP53 were predictive of several adverse clinical 

outcomes, including decreased CSS and RFS, in this study. Strikingly, TP53 mutations 

maintained their association with increased risk of cancer-specific death even when 

controlling for the validated SSIGN score. The association with lower RFS was not found to 
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be significant in our multivariable models, which may highlight the importance of this 

mutation in those with stage IV disease. Other investigators have reported the enrichment of 

TP53 mutations in patients with metastatic disease [17] and in the aggressive sarcomatoid 

variant of ccRCC [18]. For the latter, we found TP53 to remain significant even when 

including this pathologic feature in a multivariable model.

Previous studies have associated SETD2 with advanced stage, tumor invasiveness, and 

development of metastatic disease [4,19,20]. In this study, SETD2 was associated with 

recurrence in models that were adjusted for both sets of variables.

A number of previous investigations have sought to identify prognostic biomarkers in 

ccRCC, and several studies focused on recurrently mutated genes along with cytogenetic 

alterations [10,11,15,21–24] in isolated cohorts. Many of the molecular biomarkers assessed 

in previous studies offered little or no advantage over more traditional pathologic and 

clinical variables in the prediction of clinical outcomes [11,21]. This may be because some 

somatic aberrations act as a proxy for traditional pathologic and clinical variables.

The clinical application of molecular markers spans the full spectrum of ccRCC treatment 

and management. There is potential for molecular markers obtained from biopsied tissue to 

aid in the selection of patients for active surveillance and also from surgical specimens for 

the development of risk-adjusted postoperative follow-up. Furthermore, assessment of the 

mutational status of the genes reported in this study in the metastatic setting may provide 

guidance on precision systemic therapies, as was recently reported in an analysis of the 

RECORD-3 cohort [25]. We believe these areas to be prime for directed clinical studies.

4.1. Limitations

A noted limitation of this study is that all sequenced samples were derived from a single site 

of each patient’s primary tumor. Tumor-variant allele frequency of each mutation in each 

patient was not evaluated in this study. Previous works from our group and others have 

highlighted the intratumoral heterogeneity in ccRCC. This is an inherent limitation in most 

previously published series in this arena, in both primary and metastatic tumor tissue [2–

6,8,9,17,26]. Some balance between multiple sampling and clinical benefit must be 

considered. Pooling of multiple cohorts that use different sequencing platforms has an 

inherent risk of possibly overestimating or underestimating the true frequency of mutations, 

especially when compared with each other. The different patient cohorts demonstrated 

heterogeneity in both patient characteristics (eg, pathological stage) and frequency of gene 

mutations (eg, VHL mutations), and we controlled for this by adjusting for cohort in all 

statistical analyses.

5. Conclusions

In this study of >1000 patients with ccRCC, pooled analysis and multivariable modeling 

demonstrated that three recurrently mutated genes, BAP1, SETD2, and TP53, have 

statistically significant associations with poor clinical outcomes. After adjustment for 

important clinical confounders, mutations of TP53 and SETD2 were associated with 

decreased CSS and RFS, respectively.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Forest plot of associations between gene mutations and cancer-specific survival, adjusted for 

study site.
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Table 1

Patient characteristics for composite patient cohort

Characteristic Composite cohort, n = 1049

Age at diagnosis, yr, median (range) 61 (21–91)

Maximum tumor dimension, cm, median (range) 5.5 (1–25)

BMI, kg/m2, median (range) 28.9 (12.7–69.7)

SSIGN score, median (range) 4 (0–15)

Sex, n (%)

 Male 716 (68.3)

 Female 333 (31.7)

Race, n (%)

 White 756 (72.1)

 Other 44 (4.2)

 Not reported 249 (23.7)

Sarcomatoid features, n (%)

 No 855 (81.5)

 Yes 90 (8.6)

 Not reported 104 (9.9)

Primary tumor grade, n (%)

 1 54 (5.1)

 2 461 (43.9)

 3 362 (34.5)

 4 163 (15.5)

 NA 9 (0.9)

Pathologic T stage, n (%)

 T1 521 (49.7)

 T2 95 (9.1)

 T3 393 (37.5)

 T4 17 (1.6)

 NA 23 (2.2)

Pathologic node stage, n (%)

 N0 577 (55)

 N1/N2 51 (4.9)

 Nx 397 (37.8)

 NA 24 (2.3)

Metastatic stage, n (%)

 M0 739 (70.4)

 M1 166 (15.8)

 Mx 124 (11.8)

 NA 20 (2.0)

AJCC pathologic stage, n (%)

 I 507 (48.3)
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Characteristic Composite cohort, n = 1049

 II 77 (7.3)

 III 276 (26.3)

 IV 189 (18.0)

Genes

VHL, % mutated 63.49

WT, n 383

Mutated, n 666

PBRM1, % mutated 37.18

WT, n 659

Mutated, n 390

SETD2, % mutated 14.20

WT, n 900

Mutated, n 149

BAP1, % mutated 11.06

WT, n 933

Mutated, n 116

KDM5C, % mutated 7.43

WT, n 847

Mutated, n 68

NA, n 134

TP53, % mutated 3.44

WT, n 757

Mutated, n 27

NA, n 265

MTOR, % mutated 6.51

WT, n 733

Mutated, n 51

NA, n 265

PTEN, % mutated 4.08

WT, n 752

Mutated, n 32

NA, n 265

TSC1, % mutated 1.66

WT, n 771

Mutated, n 13

NA, n 265

TSC2, % mutated 1.15

WT, n 775

Mutated, n 9

NA, n 265

NF2, % mutated 1.28

WT, n 774
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Characteristic Composite cohort, n = 1049

Mutated, n 10

NA, n 265

PIK3CA, % mutated 2.81

WT, n 762

Mutated, n 22

NA, n 265

KEAP1, % mutated 1.40

WT, n 773

Mutated, n 11

NA, n 265

TET2, % mutated 2.55

WT, n 764

Mutated, n 20

NA, n 265

AJCC = American Joint Committee on Cancer; BMI = body mass index; NA = not available; SSIGN = Stage, Size, Grade, and Necrosis; WT = 
wild type.
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Table 2

Multivariable competing risks regression for cancer-specific survival with the Stage, Size, Grade, and Necrosis 

set of adjustment variables

HR (95% CI) q value

BAP1 1.29 (0.85–1.95) 0.230

TP53 2.23 (1.27–3.92) 0.005

Age 1.02 (1–1.04) 0.022

Sex* 1.19 (0.81–1.74) 0.390

SSIGN score 1.42 (1.35–1.49) <0.001

CI = confidence interval; HR = hazard ratio; SSIGN = Stage, Size, Grade, and Necrosis. Competing risks regression adjusted for everything listed 
in the table as well as cohort. There were 140 events among 554 patients included in multivariable analysis.

*
Reference sex is female.
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Table 3

Multivariable competing risks regression for cancer-specific survival adjusted for the base set of variables and 

sarcomatoid features

HR (95% CI) q value

BAP1 1.87 (1.30–2.68) 0.001

TP53 2.03 (1.05–3.90) 0.034

Age 1.02 (1–1.04) 0.001

Sex* 1.14 (1.01–2.05) 0.390

Stage† 7.99 (5.62–11.36) <0.001

Sarcomatoid features 2.80 (1.70–4.59) <0.001

CI = confidence interval; HR = hazard ratio.

*
Reference sex is female.

†
Stage IV versus stages I/II/III.

Competing risks regression adjusted for everything listed in the table as well as cohort. There are 160 events among 680 patients included in 
multivariable analysis.
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Table 4

Multivariable competing risks regression for recurrence-free survival adjusted for the Stage, Size, Grade, and 

Necrosis set of variables

HR (95% CI) q value

SETD2 1.67 (1.01–2.77) 0.047

KDM5C 1.48 (0.82–2.68) 0.200

Age 1.01 (0.99–1.03) 0.280

Sex* 1.18 (0.74–1.87) 0.480

SSIGN score† 1.44 (1.33–1.55) <0.001

CI = confidence interval; HR = hazard ratio; SSIGN = Stage, Size, Grade, and Necrosis.

Competing risks regression adjusted for SSIGN set of variables as well as site. There are 114 events among 539 patients included in multivariable 
analysis.

*
Reference sex is female.

†
Patients with stage IV disease were not eligible for analysis of recurrence.
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