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Abstract

A multi-parametric sequence-specific model for predicting peptide electrophoretic mobility has 

been developed using large-scale bottom-up proteomic CE-MS data (5% acetic acid as background 

electrolyte). Peptide charge (Z) and size (molecular weight, M) are the two major factors 

determining electrophoretic mobility-- in complete agreement with previous studies. The extended 

size of the dataset (>4000 peptides) permits access to many sequence-specific factors that impact 

peptide mobility. The presence of acidic residues Asp and Glu near the peptide N-terminus is by 

far the most the prominent among them. The induction effect of the side chain of N-terminal Asp 

reduces the basicity of the N-terminal amino group- and as hence its charge- by ~0.27 units, 

lowering mobility. The correlation of the model (R2~0.995) indicates that the peptide separation 

process in CZE is relatively simple and can be predicted to a much higher precision than current 

RP-HPLC models. Similar to RP-HPLC prediction studies, we anticipate future studies that 

introduce peptide migration standards, collect larger datasets for modeling through the alignment 

of multiple CZE-MS acquisitions, and study of the behaviour of peptides carrying post-

translational modifications. The increased size of datasets will also permit investigation of the 

fine-scale effects of peptide secondary structure on peptide mobility. We observed that peptides 

with higher helical propensity tend to have higher than predicted electrophoretic mobility; the 

incorporation of these features into CZE migration models will require significantly larger data 

sets.
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INTRODUCTION

Accelerated developments in mass spectrometry have revolutionized the field of 

bioanalytical chemistry and protein analysis [1]. High-speed (MS/MS) peptide analysers 

coupled to various peptide separation devices perform the vast majority of proteomic 

studies. Different variants of HPLC (predominantly reversed phase but also HILIC and ion-

exchange) and capillary zone electrophoresis (CZE) represent the most popular choices of 

separation techniques; all have been tailored to provide the uniform, highly efficient delivery 

of separated compounds into the mass spectrometer. It is interesting to note that to a great 

extent, retention/migration times no longer serve their original purpose of qualitative 

analysis (identification) of sample components, as the resolving power and speed of MS/MS 

acquisition in modern mass spectrometers makes the identification of multiple co-eluting 

components a routine task. However retention/migration times have found their applications 

in improving the confidence of MS and MS/MS identification by predicting physico-

chemical properties of peptides [2, 3], and for guiding quantitative LC-MS procedures such 

as SRM [4] and SWATH [5].

RP-HPLC, which is the dominant peptide separation technique, has received most of the 

attention from separation scientists: new retention prediction models were developed using 

large retention data sets, spanning from a few thousand to hundreds of thousands of peptides 

[6–9]. These huge datasets provided an enormous advantage over the models developed in 

1980s–90s: most of the early models were based on 20–30 peptides for model optimization 

[10, 11], leaving undiscovered the multitude of sequence-specific factors involved in 

complex separation mechanisms, based on both hydrophobic and ion-pairing interactions. 

Early attempts to increase these dataset led to significant disagreement against previously 

published data (260 synthetic peptides [12]) or inconsistent results due to the uncontrollable 

oxidation of Met and Trp residues (1738 peptides [13]). New features involved in peptide 

separation mechanisms were discovered as soon as researchers got access to high quality 

retention data for a few hundred or more peptides [6, 14–16].

In its own right, prediction of electrophoretic mobility of peptides was a subject of intense 

studies and debates in late 1990s to the early 2000s [17]. Most of these approaches were 

based on application of semi-empirical models similar to Offords’ [18] equation: μef = 

k(Q/M2/3), where Q and M are peptide charge and mass respectively [19–23]. Several 

attempts have been made to introduce multi-variable models, which used additional 
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descriptors beyond peptide charge and mass to predict peptide mobility: average mass and 

charge distribution across peptide sequence [24], peptide width [25], steric interaction 

effects and molar refractivity [26], and the relative number of oxygen (RNO) and nitrogen 

(RNN) atoms [27]. Some of these approaches were supplemented by using modern machine 

learning techniques such as Analytical Neural Networks (ANN) [26, 27]. However, 

prediction accuracy of these models rarely exceeded 0.98 R2-value. The only exception from 

this was a few observations of Kim et al. [21]. The authors reported ~0.99 correlations using 

simple μef = k(Q/M0.56) model applied to sets of 20–30 relatively short proteolytic peptides.

Compared to the development of RP-HPLC prediction models two decades earlier [10–11], 

many researchers explicitly targeted proteomic techniques as their major application area. 

For example, Katayama et al. [3] used peptide charge, calculated based on electrophoretic 

mobility and mass, as an additional parameter in protein identification by peptide mass 

fingerprinting. Kim et al. [21] observed deviation from the predicted mobility for several 

peptides carrying post-translational modifications. By 2008, when mobility modeling in 

CZE was extensively reviewed by Mittermayr et al. [17], the gap in size of optimization 

datasets between CE and HPLC-MS applications was significant. Petritis et al. [7] reported 

ANN-based approach using 300,000 peptides identified in RP-HPLC-MS. Krokhin [6] used 

~6,000 peptides retention datasets collected under different RP-HPLC conditions. 

Conversely, the datasets used for developing CE migration models rarely exceeded 100 

entries [17].

Recent improvements in coupling CZE to MS/MS aimed to bridge the gap between CE and 

RP-HPLC in combination with tandem mass spectrometry analysis [28–31]. Sun et al. [28] 

reported the identification of over 10,000 peptides and 2,100 proteins in a single pass 

analysis of tryptic digest of HeLa cells – almost an order of magnitude improvement from 

previously reported studies. This was achieved through extending the CZE separation 

window, along with improvements in sample loading, CZE-MS coupling techniques and 

mass spectrometer. We have no doubt that the rapid improvement in CZE-MS performance 

for large-scale peptide identifications will provide significant impact on further advancement 

in peptide electrophoretic mobility modeling, similar to RP-HPLC in early 2000s.

Our objective is the development of a peptide electrophoretic mobility model, which is based 

on an extended dataset containing migration data for thousands of peptides. Similar to the 

successful development of Sequence-Specific Retention Calculator for RP-HPLC [6, 14–

16], we based our model on the best approaches reported before, but we have made an 

attempt to supplement the basic model with an empirical evaluation of sequence-specific 

factors, which may play a role in altering apparent electrophoretic mobility of peptides. 

These factors may have been missed in previous prediction studies due to the limited size of 

their experimental datasets.

EXPERIMENTAL

We used experimental data and identification outputs from Proteome Discoverer 1.4 [28] 

from CE-MS analysis of tryptic digests from E. coli, S. cerevisiae, and HeLa whole cell 
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lysates. Raw data from these analyses were converted into MGF (mascot generic format) 

files and analysed using X!Tandem search engine.

The following X!Tandem search parameters were used: up to one missed cleavage tryptic 

peptides was considered; constant modification Cys +57.021 Da (cysteine protection with 

iodoacetamide); variable modifications: Met, Trp +15.995 (oxidation) or +31.989 (double 

oxidation); Ser, Thr, Tyr +79.966 (phosphorylation), N, Q +0.984 (deamidation); parent 

mass error: +−20 ppm, fragment mass error: 0.5 Da. Peptide identification with expectation 

values Log10 (e) < −1 were permitted.

Migration times (tM, min) were determined as time of MS/MS acquisition of the most 

intense tandem spectra for each unique peptide identification. We assumed that the electro-

osmotic flow at 5% acetic acid in the background electrolyte is very low and mapped tM into 

electrophoretic mobility (μef) using the equation for their experimental conditions (a 90 cm 

long capillary at 280 volts/cm):

Hydrophobicity indexes and helical content for peptides were calculates using on-line 

versions of SSRCalc [6] and AGADIR models [32], respectively.

RESULTS AND DISCUSSION

Generating high-quality optimization data set using migration data filtering

Table 1 presents the summary of X!Tandem identification outputs for the five CE-MS/MS 

runs. Note that X!Tandem identification results are somewhat different from those reported 

by Proteome Discoverer 1.4 [28] due to differences in the peptide identification algorithms. 

Having an optimization dataset free of false positive identifications and miss-assigned 

migration/retention time values is critical for correct model optimization. Our own peptide 

retention prediction project had started with RP-HPLC – MALDI MS analysis of tryptic 

digest of 17 purified proteins with known sequences [14]. Peptide mapping with high mass 

accuracy (10 PPM) supplemented by MS/MS confirmation yielded a retention data set of 

extremely high quality. Later, we switched to high-throughput RP-HPLC – ESI MS/MS 

approach, but based peptide identification on both MS/MS analysis and peptide retention 

prediction filtering – often in two LC dimensions [15].

We began this project by using the familiar X!Tandem search engine, which usually yields a 

false discovery rate ~0.3–0.4% for the datasets of similar complexity acquired with mass 

spectrometers of comparable characteristics. Upon subsequent improvement of our model, 

we applied migration prediction filtering, but never excluded peptides identified with high 

confidence (Log(e) < −3). The identification outputs from Proteome Discoverer represented 

an additional source of information, which was used to confirm questionable identifications/

migration time assignments. The following discussion describes model development using 

X!Tandem identifications of 4463 tryptic peptides in first CE-MS/MS replicate of yeast 

digest. Peptides were 6–51 residues in length (17 on average), carrying 1–5 positively 

charged residues. Identifications were filtered through mobility prediction and the cross 
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correlation with results reported from Proteome Discoverer. The remaining datasets were 

used as prediction algorithm test sets.

Application of the classical semi-empirical models showed different accuracy for the 

dataset under consideration (Table 2). We concluded that the Cifuentes and Poppe [23] 

model provided the best correlation of R2~0.974 (Figure 1a). Molecular weight (M) and 

charge (Z) equal to the number of positively charged residues at pH of 5% acetic acid in the 

background electrolyte (Arg, Lys, His and N-terminus) were used as parameters in this 

model. We used this simplified version of charge calculation due to the well-recognized 

concern about the accuracy of estimation of Z value based on known pKa values of ionizable 

functional groups [17]. There is no doubt that these values are affected by steric and 

electrostatic interaction, leading to discrepancies in charge calculation and uncontrollable 

deviations from the model. Our rationale was that leaving the charge calculation in its most 

fundamental form would hopefully allow establishing the most important sequence-related 

factors affecting pKa values and peptide charge.

Model optimization

Finding sequence specific factors, which affect peptide physico-chemical properties 

(electrophoretic mobility in our case), is a key process applied in our modeling approach [6, 

14, 16]. It is based on repetitive application of following steps:

i. the visual inspection of peptides with the most significant deviations from 

current version of prediction model (both positive and negative) and finding a 

common features between these peptides;

ii. the introduction of corrections to the model to improve prediction accuracy for 

these outlier peptides;

iii. the modified version of the model with improved prediction accuracy (R2-value) 

is applied in the next cycle of optimization in pp. (i).

Table 3 and Figure 1 shows the three cycles of this optimization process.

Cycle 1 of optimization started with a visual inspection of the prediction errors from the 

Cifuentes and Poppe [23] model shown in Figure 1a, and revealed following features:

1. Very large negative deviations from predicted mobility (peptide migrate slower 

than expected) were characteristic for peptides carrying acidic amino acids Asp 

(predominantly) and Glu in N-terminal positions;

2. Positive deviations were observed for peptides with relatively high content of 

Asn and possibly Gln;

3. Negative deviations – for peptides carrying multiple internal Asp and Glu.

These findings are not surprizing considering the possible decrease/increase of peptide 

basicity because of presence of acidic/basic residues. This induction effect is particularly 

profound for N-terminal amino group of Asp, due to presence of a carboxy group in close 

proximity of the N-terminal amino group. A three-fold larger induction effect of Asp 
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compared to Glu is observed due to the shorter (by one methylene group, Figure 1b) side 

chain.

One of the multi-variable models developed in the past used the relative number of oxygen 

(RNO) and nitrogen (RNN) to supplement Offord’s model and found it applicable for one of 

the datasets under investigation [27]. Our findings on the effect of Asp and Glu confirm this 

observation, but also show that there is a significant difference between carboxy and 

hydroxy groups in this regard. Thus, the oxygen in hydroxy groups of N-terminal Ser and 

Thr is located closer to a terminal amino group, but showed no effect on peptide mobility. 

Based on this we introduced the notion of corrected charge Zc:

Where Cres
pos represent correction coefficients for Asp, Glu, Asn, Gln in a position 

dependent manner: each residue had separate coefficient value for positions 1, 2, 3, a general 

“internal” position, and well as N-2 and N-1 (since most of analytes had N-terminal Arg or 

Lys). Figure 1b shows optimized values for these correction coefficients. An N-terminal Asp 

residue reduces the apparent charge value by ~0.27, with diminished effect for the internal 

positions. The contribution of Glu is also negative but is three times lower in magnitude. Asn 

shows a small positive, position-independent effect. Therefore, 0.016 average corrections 

were applied for all Asn regardless of their position (Figure 1b). Gln show no effect, so these 

corrections were removed from the model.

Following the same logic, we then explored possible influence of basic residues Arg, Lys, 

His on basicity of N-terminal amino group and found no effect. The next step tested a 

possible charge correction for a “nearest neighbour” effect that Asp and Glu might have on 

internal basic residues (Arg, Lys, His). We found small a decrease in the apparent charge of 

basic residues for this situations: −0.026 and −0.007 for Asp and Glu, respectively. This 

effect is 10-times smaller compared to the N-terminal amino group and also tracks the ~3-

fold difference between Asp and Glu. Introduction of these corrections to peptide charge 

significantly improved model accuracy: from 0.974 to 0.991 (Figure 1c). All together charge 

correction had 13 residue and position dependent coefficients: 5 for Asp and Glu each, one 

for Asn and two for nearest neighbour effect of Asp and Glu on internal basic residues.

In cycle 2 of optimization we introduced a correction related to peptide mass associated 

with the average size of the residues in a particular peptide. We observed that peptides 

composed of heavier residues tend to have positive prediction errors (migrating faster than 

predicted) and vice versa – peptides composed of light residues migrate slower than 

predicted. Indeed - two peptides of the same mass and charge may have different number of 

residues (peptide length, N), which will result in higher mobility of sorter peptide 

(composed of heavier residues).

We introduced a corrected mass value as:
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where N is the peptide length, 110.9 the mass of average residue in our dataset, and 0.66 and 

0.34 are empirically optimized coefficients.

The larger contribution of M (2/3 of calculated value) compared to peptide length N 
confirmed the common features of previous models, which usually use molecular weight as 

one of the descriptors. (0.34*N*110.9) term was introduced to correct for the difference in 

average size of the residues in a particular peptide and further improved observed correlation 

up to 0.992 (Figure 1d).

Cycle 3 of the optimization followed from a visual inspection of correlation in Figure 1d 

showing significant deviation for slowest (positive) and fastest (negative errors) peptides. We 

believe that these two extreme cases are different in nature, but can be corrected using the 

same polynomial function with (Zc/N) ratio as its argument.

Singly charged peptides should exhibit different geometry while migrating towards cathode. 

Because they have only one charged residue they should assume orientation parallel to 

capillary axis, which provides smaller frictional force and higher mobility. We found that the 

vast majority of tryptic peptides from protein C-termini (those having only N-terminal 

charged group) migrate faster than predicted. The symmetry of distribution of charged 

residues was considered as one of the parameters affecting peptide mobility [24]. Figure 1e 

shows the correlation between prediction error Δμ = μef observed − μef predicted and the Zc/N 
ratio. Singly charged peptides with smallest Zc/N showed large positive prediction errors. 

These are the heaviest singly charged peptides, which mobility benefits the most from this 

(axial) orientation of the molecule.

Peptides with large ratios (Zc/N > 0.4) are relatively short in length but with a large number 

of basic functional groups. These molecules have extremely high charge density, which lead 

to excessive peptide hydration (relative to its size) and a corresponding decrease in observed 

mobility. For example, YHLEHHYK and QQEQYGNSNFGGAPQGGHNNHHR have the 

same number of closely spaced internal His residues, but differ by ~3-fold in length. The 

former showed extremely large negative prediction error (−2.24) in Figure 1d and the latter – 

small positive (0.24). We believe that the difference in (Zc/N) values for these peptides-- 

0.60 vs. 0.21, explains this behaviour.

We used a fifth-order polynomial correction function in Figure 1e to calculate offset for 

predicted mobility value. Resulting gains were impressive with a final model fit of R2-value 

0.995 (Figure 1f). It should be noted that when done correctly, this polynomial offset 

function should be introduced as a peptide size correction to Mc. However, at this point we 

do not sufficient theoretical or experimental background to predict how peptide orientation 

and hydration status will impact the peptide size.

Final version of the model:
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where 3.069 and 386 are coefficients applied to align output with experimentally measured 

values (slope 1 and intercept 0 in Figure 1f). Zc was calculated as a number of positively 

charges groups at pH 2.4, corrected using 13 residue and sequence specific coefficients. Mc 
= (0.66*M + 0.34*N*110.9), where M and N are peptide mass and length, respectively; 0.66 

and 0.34 are empirically optimized coefficients. OFFSET is a function of Zc/N: OFFSET = 

−783*x5 + 1380*x4 − 902*x3 + 256*x2 − 29.7*x +1.07 from Figure 1e.

Please note, the number of empirical correction coefficients is significantly lower than the 

number of peptides in the data set, which is a key condition to prevent over-fitting of the 

model. Multi-parametric models benefit from repetitive optimizations of the model 

parameters. Each cycle of optimization procedure will affect optimal parameter’s values 

from previous cycles. In our case we did not attempt additional optimization cycles: further 

improvements in model accuracy would be marginal and possibly dataset specific. However 

repetitive optimization would be needed when similar models will be developed for larger 

data sets using larges number of composition and sequence-specific variables.

Peptide hydrophobicity and secondary structure have been proposed as some of the 

parameters affecting accuracy of mobility prediction [17]. Cross-correlations between 

prediction errors in Figure 1f with calculated peptide hydrophobicity (SSRCalc [6]) and 

propensity to form helical structures (AGADIR [32]) are shown in Figure 2. There is no 

correlation between prediction error and peptide hydrophobicity (Figure 2a). At the same 

time, peptides with high helical propensity tend to have higher than predicted mobility. This 

is not surprizing considering the more compact structure of peptides in a helical 

conformation. However, a comprehensive evaluation of impact of peptide helicity on 

electrophoretic mobility will need a significantly larger dataset. For example, we needed a 

~300,000-peptides retention dataset to establish rules for N-capping helix stabilization in 

RP-HPLC [16] from a sub-population of ~ 5,000 amphipathic helical peptides.

Model testing using additional data

Examining correlations between observed and predicted values (μef obs vs. μef pred) for test 

data provides real estimation of model’s accuracy. Figure 3a–c shows application of final 

model to outputs of three additional CE-MS/MS runs from Table 1. All non-modified tryptic 

peptides with Log (e) < −1 are shown. Clearly, the accuracy of prediction remains the same 

(counting the impact of obvious false-positive ID outliers), except for the HeLa digest. The 

latter shows a systematic deviation for peptides with low mobility. This feature could be the 

result of a sudden change in separation conditions observed in this run. Similar to nano-RP-

HPLC, such variations could be corrected by using a set of standard synthetic peptides that 

cover a wide range of electrophoretic mobility. Application of such peptide mixtures was 

introduced in proteomic RP-HPLC by Krokhin & Spicer [33] and reagents have been 

provided by several LC-MS vendors [34].

Figure 3d shows CE mobility prediction for the whole set of identified peptides in yeast 

digest, including PTM carrying species. We find that most PTMs lead to reducing mobility 

of peptides. There are distinct trend lines in the plots shown in Figure 3d, each representing 

a different group of peptides. The most dramatic shifts are observed for N-terminal 

cyclization (N-terminal Gln and Cys alkylated with iodoacetamide [35]) and N-terminally 
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acetylated peptides. These modifications eradicate the N-terminal amino group and reduce 

the Z value by 1. There are at least two distinct trend lines corresponding to these 

modifications: the lower group contains peptides with no internal basic residues (charge 

reduction from 2 to 1). The upper line represents species with one internal charge (charge 

reduction from 3 to 2). Significant negative migration shifts are expected for phosphorylated 

peptides due to extremely acidic character of phospho- group [21]. Asparagine deamidation 

is another PTM, which will lead to formation of slower migrating (at acidic pHs) species. 

Deamidation of Asn yields two different products: Asp and β-Asp residues. We expect that 

the latter will possess lower electrophoretic mobility because the carboxy group of β-Asp is 

located closer to the peptide backbone than for Asp. Met oxidations represent another PTM 

contributing to migration shifts observed in Figure 3d. Our preliminary assessment indicates 

that oxidation leads to decreased electrophoretic mobility as well. Recent contribution by 

Barroso et al. [36] showed a significant decrease of peptide mobility due to glycosylation. 

Taken all together, studying the details of PTMs impact on electrophoretic mobility will be 

another exciting addition to CE prediction modeling – similar to RP-HPLC studies [37, 38].

CE vs. RP-HPLC: pros and cons

Having the capability to predict both peptide’s hydrophobicity and electrophoretic mobility 

allowed us to compare CE and RP-HPLC from the point of view of the uniformity of the 

peptide distribution in separation space – a key feature in determining overall output of the 

analysis. Figure 4a, b show theoretical distribution of these parameters for in-silico digestion 

of whole yeast proteome with one allowed tryptic missed cleavage (more than 4 amino acids 

peptide length). Being transformed into migration/retention times for CE conditions used in 

this paper and typical LC-MS acquisition with 0.5% acetonitrile per minute gradient and 

trap column injection (0.1% formic acid ion-pairing modifier), it provides a realistic 

distribution of tryptic peptides from complex mixtures in typical runs (Figure 4c, d). The 

first finding indicates the clear advantage of CZE: peptides with SSRCalc HI < 0 will not 

retain on a C18 trap column and will be lost during sample loading. But CZE has access to a 

whole population of peptides, compared to RP-HPLC. This clearly suggests that 

combination of RP-HPLC and CZE will provide more comprehensive peptide identifications 

from complex proteome samples, thus leading to better protein sequence coverage and better 

characterization of protein isoforms. Note, that hydrophilic peptides will have a chance to be 

detected in RP-HPLC-MS if direct injection is used, but will elute along with all other 

hydrophilic species in the beginning of the chromatogram.

The obvious advantage of RP-HPLC is a more uniform distribution of peptides throughout 

the separation space. CZE separation will deliver close to 50,000 unique tryptic peptides (in-
silico yeast digest) in a 2-minute wide bin of separation space at the densest portion of 

electropherogram (Figure 4c). RP-HPLC has maximum of ~18,000 peptides per 2 minute 

wide separation bin. Another operational advantage of RP-HPLC is the relative ease of 

manipulation of elution speed. Gradient slope can be adjusted (increased) to make overall 

elution speed (peptides/time bin) more uniform at the end of chromatogram. This feature is 

widely used by proteomic practitioners to minimize MS instrument time without significant 

impact on ID output.
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The differences outlined here will dictate the choice of separation technique depending on 

the sample complexity and purpose of the analysis. CZE is preferable for relatively simple 

samples, when complete coverage for peptide mapping and fast analysis are needed. RP-

HPLC will be more useful for extremely complex samples targeting protein identification. 

But we also need to note that RP-HPLC is prone to significant sample loss during sample 

loading due to use of injection valves and suffers from significant peak diffusion due to 

larger dead volume of the entire separation system. CZE has much lower sample loss due to 

the direct sample injection from sample vial to capillary and its open-tubular design. 

Accordingly, CZE has advantages for analysis of mass-limited samples [39].

Separation scientists, who are heavily invested in studying separation mechanisms of 

peptides, will find many striking differences and analogies between CZE and RP-HPLC 

modeling. Our data indicates a dramatic gap between the classical additive models for RP-

HPLC [10, 11] and semi-empirical models for CZE (R2~0.974) shown here. The simplest 

20-parameter additive models with peptide length correction produce at best a R2~0.93 

correlation for the common RP-HPLC separation proteomic data set of tryptic peptides [40]. 

This performance indicates a significant and fundamental difference in complexity of 

separation mechanisms between these two techniques. RP-HPLC retention is affected by 

hydrophobic, ion-pairing, and hydrogen-bond interactions. It occurs on hydrophobic surface 

in the environment with constantly changing proportion of organic solvent to water. 

Modeling these interactions presents an extremely complicated task. Application of the most 

advanced models available today will rarely produce correlations above R2 0.965 for a 

typical set of tryptic peptides [41]. In this study we showed that R2 0.99+ correlations for 

predicting peptide electrophoretic mobility could be achieved. Electrophoretic mobility 

depends on the charge of the particle and its Stoke’s radius. The former is affected by pKa 
values of all ionisable groups in a peptide, and the pH of the CZE background electrolyte. 

Peptide size (Stoke’s radius) will also depend on the conformation of the peptide in solution 

determined through ion-pairing, hydrogen bonds and hydrophobic interactions. However, 

these effects in free solution combined with the constant polarity of the CZE background 

electrolyte are much more subtle.

The similarities are notable too, and are observed due to distinct chemical properties of 

peptides at acidic pHs. The first sequence-specific effect we found for RP-HPLC modeling 

included N-terminal amino group as well [14]. We showed that hydrophobic contribution of 

N-terminal residues into peptide retention is much smaller due to ion-pair formation and 

effective “shielding” of the hydrophobic residues by more hydrophilic counter-ions 

(formate, trifluoroacetate). In case of CE – this is a direct induction effect of acidic residues 

on the apparent basicity of N- terminal amino group. Correct prediction of peptide helicity is 

another key development, which will improve prediction modeling for both RP-HPLC [16] 

and CE.

The historical time differential (~10–15 years) between developing RP-HPC and CZE 

predictive tools – both from the point of view of modeling and instrument throughput – 

allows us to predict future progress/developments in CZE modeling studies. These will 

include:
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i. The introduction and wider application of peptide migration standards, similar to 

HPLC peptide retention standards, which will facilitate addressing separation 

reproducibility issues. Both nano-LC and CZE suffer from this problem due to 

their extremely low flow/mobility rates, and the dependence of separation on the 

sample load. Peptide retention/migration standards, which cover entire separation 

range, represent the only viable solution of this problem.

ii. The accumulation of significantly larger datasets through aligning multiple CZE-

MS/MS runs.

iii. The incorporation of PTMs into migration modeling, similar to RP-HPLC 

studies.

iv. The guided development of optimal 2D combinations of HPLC-CZE separation 

techniques using peptide retention/migration prediction algorithms.

We have developed the first sequence specific model to predict peptide electrophoretic 

mobility for an extended set of tryptic peptides (more than 4,000) identified by CZE-

MS/MS. Despite a significant increase in dataset size and the diversity of analytes, our 

model accuracy has exceeded all previously reported approaches: an R2-value of 0.995 vs. 

0.98. We attribute this improvement to our ability to select major sequence-specific features 

that alter apparent peptide charge at acidic conditions. This approach was previously 

unavailable to researchers studying electrophoretic mobility of peptides due to the limited 

dataset sizes. The presence of acidic residues (Asp and Glu) near the peptide N-terminus is 

by far the major the factor causing deviation of experimental mobility values from values 

predicted via the classical approaches. The superior accuracy of our model suggests that it 

may be used for migration time filtering of CZE-MS/MS analysis outputs, and the a-priori 
selection of separation conditions for targeted analysis. Further developments in modeling 

CZE separation process will undoubtedly include use of significantly larger datasets, which 

will allow the elucidation of additional sequence-specific features affecting electrophoretic 

mobility.
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Figure 1. 
Step-by-step optimization of mobility prediction model (see Table 3 for details). A) initial 

correlation using Cifuentes and Poppe [23] model; B) sequence specific charge correction 

coefficients: Asp(N1), Asp(N2), Asp(N3), Asp, Asp(N-2), Asp(N-1) correspond to 

correction coefficients of Asp in position 1, 2, 3, internal, third to last and second to last in 

peptide sequence, respectively; C) correlation after incorporating charge correction; D) 

correlation after incorporating mass correction; E) correlation between prediction error and 

Zc/N ratio approximated by polynomial function; F) final correlation after introducing 

polynomial offset function. Electrophoretic mobility μef x 105 (cm2*V−1*s−1) is shown.

Krokhin et al. Page 14

Anal Chem. Author manuscript; available in PMC 2018 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Correlation of mobility prediction errors vs. peptide hydrophobicity (A) and helical content 

(B).
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Figure 3. 
Predicting electrophoretic mobility for test sets of peptides A) E. coli tryptic digest (3290 

non-modified tryptic peptides); B) replicate #2 of yeast digest (4663); C) HeLa cells tryptic 

digest (7979); D) replicate #2 of yeast digest (5164) including peptides with PTM. Two 

distinctive groups of peptides (N-terminal cyclization and acetylation) are marked with 

arrows. Note, that all plots contain false positive identifications, which reduce accuracy of 

the model (R2-values). Electrophoretic mobility μef x 105 (cm2*V−1*s−1) is shown.
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Figure 4. 
Predicted distributions of μef (A), peptide hydrophobicity (B), CE migration times (C) and 

retention times for typical LC-MS with trap column injection and 0.5% per minute 

acetonitrile gradient (D). 441,664 tryptic peptides from yeast proteome (> 4 residues, 1 

missed cleavage allowed) were used for these in-silico calculations. Note, that hydrophilic 

peptides with SSRCalc HI < 0 (%ACN) will not retain in RP-HPLC system (labeled with 

red dots) with 0.1 % formic acid as ion pairing modifier.
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Table 1

The summary of X!Tandem CZE-MS/MS identification output for the analyses of three different tryptic 

digests.

Sample (replicate) # of MS/MS # of peptide IDs # of unique peptide IDs # of protein IDs

E.Coli (#1) 41,982 8,539 3,841 830

E.Coli (#2) 40,585 9,002 4,109 872

Yeast (#1) 61,923 11,549 5,164 1,428

Yeast (#2) 51,287 11,002 5,256 1,497

HeLa (#1) 49,228 15,063 9,022 2,119
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Table 2

Performance of previously reported semi-empirical models* for 4463 peptides training data set.

Model R2-value correlation

μef = k(Z/M1/3) [19] 0.909

μef = k(Z/M2/3) [18] 0.953

μef = k(Z/M1/2) [20] 0.959

μef = k(Z/M0.56) [21] 0.962

μef = k(ln(1+Z)/M0.43) [22] 0.945

μef = k1(ln(1+k2Z)/M0.411) [23] 0.974**

*
charge Z was calculated as a number of positively charged residues (Arg, Lys, His, N-terminus);

**
best fit model from Cifuentes and Poppe [23] μef = 900*(ln(1+0.35*Z)/M0.411)
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Table 3

Step-wise optimization process and model accuracy.

Optimization cycle Corrections introduced R2-value

Starting point μef = 900*(ln(1+0.35*Z)/
M0.411)

- 0.974 (Figure 1a)

1 (sequence specific Z corrections) Position specific charge corrections for Asn, Glu, Asn; nearest 
neighbour effect for Asn, Glu

0.991 (Figure 1b, c)

2 (mass correction) Correction related to relative size of the residues in peptide sequence 0.992 (Figure 1d)

3 (polynomial correction) Polynomial offset – function of Zc/N 0.995 (Figure 1e, f)
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