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Acidic mine drainage (AMD) is regarded as a pollutant and considered as potential source of valuable metals. With diminishing
metal resources and ever-increasing demand on industry, recovering AMD metals is a sustainable initiative, despite facing major
challenges. AMD refers to effluents draining from abandoned mines and mine wastes usually highly acidic that contain a variety
of dissolved metals (Fe, Mn, Cu, Ni, and Zn) in much greater concentration than what is found in natural water bodies. There
are numerous remediation treatments including chemical (lime treatment) or biological methods (aerobic wetlands and compost
bioreactors) used for metal precipitation and removal from AMD. However, controlled biomineralization and selective recovering
of metals using sulfidogenic bacteria are advantageous, reducing costs and environmental risks of sludge disposal. The increased
understanding of the microbiology of acid-tolerant sulfidogenic bacteria will lead to the development of novel approaches to AMD
treatment. We present and discuss several important recent approaches using low sulfidogenic bioreactors to both remediate
and selectively recover metal sulfides from AMD. This work also highlights the efficiency and drawbacks of these types of
treatments formetal recovery and points to future research for enhancing the use of novel acidophilic and acid-tolerant sulfidogenic
microorganisms in AMD treatment.

1. Introduction

Metal mining provides everyday goods and services essential
to society. However, this activity has at times caused extensive
and sometimes severe pollution of air, vegetation, and water
bodies [1]. Streams draining active or abandoned mines and
mine spoils are widely considered as hazardous to human
health and the environment, but on the other hand, they may
also be alternative potential sources of valuable metals [2, 3].

Currently, millions of tons of ores are processed every
year by the mining industry and are disposed in the form
of waste rocks and mine tailings. As higher-grade ores are
diminishing, the primary ores that are processed by mining
companies are of increasingly lower grade (metal content)
and the growing amount of waste material produced by
mining operations is consequently significant. The use of
lower grade ore was made possible by the development of the

flotation technique in the late 19th century, which allowed the
separation of metal sulfide minerals from gangue minerals
that have no commercial value [4]. As a result of selective
flotation, about 95 to 99% of the ground primary ores end
up as fine-grain tailings, in the case of copper ores. The
composition of tailings is directly dependent on that of the
ore, and therefore they are highly variable, though pyrite
(FeS
2
) is frequently the most reactive and dominant sulfide

mineral present in tailings wastes [4–6].
Pyritic mine tailings therefore have the potential to

become extremely acidic when in contact with surface water.
Under oxidizing conditions, pyrite-bearing wastes produce
sulfuric acid. The acidic water further dissolves other metals
contained in mine waste, resulting in low pH water enriched
with soluble sulfate, Fe, Al, and other transition metals,
known as acid mine drainage (AMD) (Figure 1) [7, 8].
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Figure 1: Illustration of streams of acidicwaters draining fromactive or abandonedmines andmine spoils. (a)AMD froma coppermine in the
State of Pará, Brazil, that has been remediated with limestone treatment, (b) acidic water released from abandoned undergroundmetalliferous
mine in the Republic of South Africa (reproduced fromAkcil and Koldas [9]), (c) acidic mine water draining from an abandoned sulfurmine,
northern Chile, (d) AMD discharge in the Lomero-Poyatos mine, Spain (reproduced from España et al. [10]), (e) acidic water draining from
Coal mines, Jaintia Hills, and (f) AMD originated from mine tailings, Canada, (reproduced from Burtnyski [11]).
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2. Remediation of Acidic Mine Water

Waters draining from abandoned metal mines and mine
wastes are often acidic (pH < 4) and contain elevated concen-
trations of dissolved metals and metalloids and high osmotic
potential associated with concentration of sulfate salts [14]. In
most cases, active chemical treatment and passive biological
treatment can provide effective remediation of AMD [15]
(details and literature of the advantages and disadvantages
of these treatment and others are presented in Table 1). A
major drawback to both approaches is that the immobilized
metals are contained in “sludge” (chemical treatment) or
within spent compost (biological treatment) and need to be
disposed in specially designated landfill sites, precluding their
recovery and recycling. Changes in redox conditions during
storage can lead to remobilization of metals (and metalloids
such as arsenic) in both sludge and spent composts. In
addition, potentially useful and valuable metal resources are
not recovered using conventional approaches for remediating
mine waters [3, 16].

A radically different approach for remediating AMD
which, like compost bioreactors, derives from the abilities of
some microorganisms to generate alkalinity and to immo-
bilize metals, is referred to generally as “active biological
treatment.”Microbiological processes that generate alkalinity
are mostly reductive processes and include denitrification,
methanogenesis, and dissimilatory reduction of sulfate, ferric
iron, and manganese (IV), which tend to be limited in
AMD. Considering that AMD usually contains elevated
concentrations of both ferric iron and sulfate, the ability of
some bacteria to use these compounds as terminal electron
acceptors suggests that these reactions can be highly useful
for mine water remediation. Acidic environments in which
sulfur or sulfide minerals are subjected to biologically-
accelerated oxidative dissolution characteristically contain
large concentrations of soluble sulfate [17]. Therefore, micro-
bial sulfate reduction might be anticipated to occur within
anaerobic zones in both acidic and nonacidic environments.
Biological sulfidogenesis generates hydrogen sulfide as a
result of a reductive metabolic process using sulfate reducing
bacteria (SRB). Biological sulfidogenesis has the additional
benefits of being a proton-consuming reaction, allowing the
increase in pHof theminewater treated contributing towards
mitigation and remediation. The hydrogen sulfide generated
can be used in controlled situations to selectively precipitate
many potentially toxic metals (such as copper and zinc) often
present in AMD at elevated concentrations [3, 18]. Active
biological treatment has many advantages over alternative
strategies for treatingmine waters, one of the most important
being its potential for recovering metals that are commonly
present in AMD.

There have been few successful applications of SRB-
mediated active AMD treatment systems, even though this
possibility has long been appreciated. One major reason for
this is that SRB happens preferentially between pH 6 and
8 [19], whereas AMD generally has a pH between 2 and 4
and commonly pH < 3 [20]. Under these circumstances, a
neutralization step is necessary beforeAMDeffluents are sub-
jected to bacterial sulfate reduction or, alternatively, “off-line”

systems need to be used. The latter is necessary by the fact
that current systems use neutrophilic SRB or sulfur reducing
bacteria, and direct exposure to the inflowing acidic solution
being treated would be lethal to these microorganisms.
Therefore, a separate vessel in which sulfide generated by
the bacteria is contacted with the acidic, metal-laden waste
water, is required [16, 21]. Examples of this technology are
the Biosulfide and Thiopaq processes (Figure 2) operated
under the auspices of two biotechnology companies, BioTeq
(Canada) and Paques B. V. (The Netherlands), which are
currently in operation in various parts of the world.

The Biosulfide process has two stages, one chemical
and the other biological. Metals are removed from AMD
in the chemical stage by precipitation with biogenic sulfide
produced in the biological stage by SRB under anaerobic
condition. In this system, hydrogen sulfide is generated by
the reduction of elemental sulfur, or other sulfur source, in
the presence of an electron donor, such as acetic acid. The
gas is passed to an anaerobic agitated contactor in which
copper can be precipitated as a sulfide, usually without pH
adjustment and without significant precipitation of other
heavy metals present in the water. The end result is a high
value copper product, usually containing more than 50% of
the metal. Other metals such as nickel, zinc, and cobalt can
also be recovered as separate high-grade sulfide products,
although pH control using an alkali source is usually required
to selectively precipitate the metal as a sulfide phase. The
high-grade metal sulfide precipitate is then recovered by
conventional clarification and filtration to produce a filter
cake which can be shipped to a smelter [12].

TheThiopaqprocess uses another system that involves the
use of two biological continuous reactors connected in series
(I) to an anaerobic upflow sludge blanket (UASB) reactor
for the reduction of oxidized sulfur species. In this reactor,
ethanol or hydrogen is utilized by the SRB as electron donor,
producing sulfide (mostly HS−) for the precipitation of metal
sulfides (which can proceed in the same reactor depending on
the toxicity of the wastewater), and (II) an aerobic submerged
fixed film (SFF) reactor where the excess sulfide is oxidized
to elemental sulfur, using sulfide-oxidizing bacteria. In this
process, metals such as Zn and Cd can be precipitated down
to very low concentrations [22].

The Paques B. V. process has been successfully imple-
mented at an industrial scale at the gold mine Pueblo Viejo,
located in the Dominican Republic. A copper recovery plant
installed in 2014 based on sulfide precipitation is used to
recover the copper liberated from the gold extraction process.
The sulfidogenic bioreactor generates H

2
S to recover up to

12,000 ton of copper per year generating value and reducing
the amount of copper sent to the tailing dam [23]. Application
of this process has also been demonstrated on a pilot-scale
at the Kennecott Bingham Canyon copper mine in Utah,
where >99% of copper present in a pH 2.6 waste stream was
recovered [22, 24, 25].

Sulfate reduction activity has been reported in low pH
ecosystems, for example, in acidic lakes, wetlands, and acid
mine drainage [19, 26, 27]. However, few acidophilic/tolerant
SRB have been cultured [16, 26, 28–30]. A major potential
advantage of using acidophilic sulfidogens would be to allow
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Figure 2: Schematic overview of the Thiopaq (a) and Biosulfide (b) processes (adapted from Adams et al. [12], Muyzer and Stams [13]).

simpler engineering designs and reduce operational costs by
using single on-line reactor vessels that could be used to both
generate sulfide and selectively precipitate target metal(s).
Precipitation and removal of many soluble transition metals,
often present in AMD emanating from metal mines, may
be achieved by ready biomineralization as their sulfides. The
produced metal sulfides have different solubilities; therefore
metals can be precipitated together or selectively by con-
trolling concentrations of the key reactant S2−, which may
be achieved by controlling pH (S2− + H+ ↔ HS−). Copper
sulfide, for example, is far less soluble than ferrous sulfide
(respective log Ksp values of −35.9 and −18.8) and therefore
CuS precipitates at pH 2, whereas FeS needs much higher pH
to precipitate. Diez-Ercilla et al. [31] have also demonstrated
that selective precipitation of metal sulfides occurs naturally
in Cueva de la Mora pit lake (SW Spain) and the geochemical
calculations match perfectly with the results of chemical
and mineralogical composition. Ňancucheo and Johnson
[3] showed that it was possible to selectively precipitate

stable metal sulfides in inline reactor vessel testing two
synthetic AMDs in acidic conditions (pH 2.2–4.8). In the first
bioreactor, with a composition of feeding similar to AMD at
the abandoned Cwm Rheidol lead-zinc mine in mid-Wales,
zinc was efficiently precipitated (>99%) as sulfide inside the
reactor while both aluminum and ferrous iron remain in
solution (>99%) and were washed out of the reactor vessel.
The second sulfidogenic bioreactor was challenged with a
synthetic AMD based on that from Mynydd Parys, North
Wales. Throughout the test period, all the copper present
in the feed liquor was precipitated (confirmed as copper
sulfide) within the bioreactor, but none of the ferrous iron
was present in the solids. Although the initial pH at which
the bioreactor was operated (from pH 3.6 to 2.5) caused
some coprecipitation of zinc with the copper, by progressively
lowering the bioreactor pH and the concentration of the
electron donor in the influent liquor, it was possible to
precipitate >99% of the copper within the bioreactor as CuS
and to maintain >99% of the zinc, iron, and aluminum in
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solution. Glycerol was used as energy and carbon source
(electron donor) and the generalized reaction is [1]

4C
3
H
8
O
3
+ 10H+ + 7SO

4

2−
+ Cu2+ + Zn2+ + Fe2+

󳨀→ 12CO
2
+ 5H
2
S + CuS + ZnS + Fe2+ + 16H

2
O

(1)

This low sulfidogenic bioreactor system was also demon-
strated to be effective at processing complex acidic water
draining from the Mauriden mine in Sweden [18]. Through-
out the test period, zincwas removed from the syntheticmine
water as ZnS, from which the metal could be recovered, as
in the case at the Budel zinc refinery in The Netherlands
[24]. Recently, Falagán et al. [32] have operated this sulfi-
dogenic reactor to mediate the precipitation of aluminum
in acidic mine waters as hydroxysulfate minerals. Besides,
this bioreactor was tested to demonstrate the recovery of
over 99% of the copper present in a synthetic mine water
drained from a copper mine in Carajás in the State of Pará,
Brazil [33]. The sulfidogenic system was also operated under
different temperatures. Although there were large variations
in rates of sulfate reduction measured at each temperature,
the bioreactor operated effectively over a wide temperature
range (30–45∘C) which can have major advantages in some
situations where temperatures are relatively high for example
in mine sites located in northern Brazil and in other regions
where high temperatures are observed. Therefore, there
would be no requirements to have temperature control (heat-
ing or cooling) to preserve the integrity of the acidophilic SRB
reactor [33]. The perceived advantages of this system are that
there are simple engineering and relatively low operational
cost. The system can be configured to optimize mine water
remediation and metal recovery according to the nature of
the mine water, which are the constraining factors in using
active biological technologies to mitigate AMD.

Metalloids such as arsenic are a common constituent of
mine waters. Battaglia-Brunet and colleagues [34] demon-
strated that As (III) can be removed by precipitation as a
sulfide.The results demonstrated the feasibility of continuous
treatment of an acidic solution (pH 2.75–5) containing up to
100mgAs (V).Under this approach,As (V)was reduced toAs
(III) directly or indirectly (via H

2
S) by the SRB and orpiment

(As
2
S
3
) generated within the bioreactor. In addition, this

process was also observed to occur naturally in an acidic pit
lake [31].

Recently, Florentino and colleagues [35] studied the
microbiological suitability of using acidophilic sulfur reduc-
ing bacteria for metal recovery. These authors demonstrated
that the Desulfurella strain TR1 was able to perform sulfur
reduction to precipitate and recover metals such as copper
from acidic waste water and mining water, without the need
to neutralize the water before treatment. One drawback on
the of use sulfur reducing microorganisms is that a suitable
electron donor needs to be added for sulfate reduction. Even
though sulfate is present in AMD, the additional cost of
electron donors (such as glycerol) for sulfate reduction is
higher than the cost of the combined addition of elemental
sulfur and electron donors. Subsequently elemental sulfur as
an electron acceptor can be more economically attractive for

the application of biogenic sulfide technologies. On the other
hand, cheaper electron donor such organic waste material
may be used but their variable composition makes it less
suitable for controlled high rate technologies. Besides, dead
algal biomass can release organic products suitable to sustain
the growth of SRB. Therefore, Diez-Ercilla et al. [31] have
proposed that under controlled eutrophication it could be
possible to decrease the metal concentrations in acidic mine
pit lakes.

3. Microbiology in Remediating Acidic
Mine Waters

Based on 16S rRNA sequence analysis, microorganisms that
catalyze the dissimilatory reduction of sulfate to sulfide
include representatives of five phylogenetic lineages of
bacteria (Deltaproteobacteria, Clostridia, Nitrospirae, Ther-
modesulfobiaceae, and Thermodesulfobacteria) and two
major subgroups (Crenarchaeota and Euryarchaeota) of the
Archaea domain (Table 2 shows a summary of sulfidogenic
microorganisms used for their main characteristics). SRB are
highly diverse in terms of the range of organic compounds
used as a carbon source and energy, though polymeric
organic materials generally are not utilized directly by SRB
[13]. In addition, some SRB can grow autotrophically using
hydrogen as electron donor and fixing carbon dioxide,
though others have requirement for organic carbon such as
acetate, when growing on hydrogen. Besides, many SRB can
also use electron acceptors other than sulfate for growth,
such as sulfur, sulfite, thiosulfate, nitrate, arsenate, iron, or
fumarate [78].

Most species of SRB that have been isolated from acidic
mine waste such asDesulfosarcina,Desulfococcus,Desulfovib-
rio, and Desulfomonile are neutrophiles and are active at
neutral pH [14, 25]. Besides, for a long time the accepted view
was that sulfate reducing activity was limited to slightly acidic
to near neutral pH explained by the existence of microniches
of elevated pH around the bacteria [21, 31]. Attempts to isolate
acidophilic or acid-tolerant strains of SRB (aSRB) havemostly
been unsuccessful, until recently [79]. One of the reasons for
the failure to isolate aSRB has been the use of organic acids
such as lactate (carbon and energy source) which are toxic
to many acidophiles. In acidic media, these compounds exist
predominantly as nondissociated lipophilicmolecules and, as
such can transverse bacterial membranes, where they disso-
ciate in the circumneutral internal cell cytoplasm, causing a
disequilibrium and the influx of further undissociated acids,
and acidification of the cytosol [80]. In contrast, glycerol
can be used as carbon and energy source as it is uncharged
at low pH. In addition, many SRB are incomplete substrate
oxidizers, producing acetic acid as a product, enough to limit
the growth of aSRB even at micromolar concentration. To
circumvent this problem and for isolating aSRB, overlay plate
can be used to remove acetic acid. This technique uses a
double layer where the lower layer is inoculatedwith an active
culture of Acidocella (Ac.) aromatica while the upper layer is
not. Therefore, the heterotrophic acidophiles metabolize the
small molecular weight compounds (such as acetic acid) that
derive from acid hydrolysis of commonly used gelling agents
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such agar.The advantage ofAc. aromatica is its use of a limited
range of organic donors and that it does not grow on yeast
extract, glucose, glycerol, or many other small molecular
weight organic compounds that are commonly metabolized
by acidophilic heterotrophic microorganisms. Overlay plates
are considered to be more versatile and efficient, particularly
for isolating acidophilic sulfidogens from environmental
samples, given that these microorganisms cannot completely
metabolize the substrate [20]. Using this technique, aSRB and
nonsulfidogens have been isolated from acidic sulfidogenic
bioreactors. Two acidophilic sulfidogens (Desulfosporosinus
(D.) acididurans and Peptococcaceae strain CEB3) and strain
IR2 were all isolated from a low pH sulfidogenic bioreactor
at different stages of operation, previously inoculated with
an undefined microbial mat found at abandoned copper
mine in Spain [3]. Although not yet fully characterized,
Peptococcaceae CEB3 appears to be a more thermotolerant
and acidophilic SRB that can oxidize glycerol to CO

2
[33].

In addition, D. acididurans grew successfully together
with Ac. aromatica in a pH controlled bioreactor, showing
an example of microbial syntrophy where this heterotrophic
bacterium converted acetic acid into CO

2
and H

2
[17].

D. acididurans tolerates relatively high concentrations of
aluminum and ferrous iron and can grow in a pH range of
3.8–7, with and optimum pH at 5.5. The temperature range
for growth was 15–40∘C with (optimum pH at 30∘C), and
it can use ferric iron nitrate, sulfate, elemental sulfur, and
thiosulfate as electron acceptors [78]. D. acidophilus, the
second acidophilic SRB validly described [26] isolated from
a sediment sample collected in a decantation pond receiving
acidmine effluent (pH ∼ 3.0), showed high tolerance to NaCl.
SRB belonging to the genus Desulfosporosinus are known to
thrive in low pH environments together with members of
the closely related genus Desulfitobacterium which have also
been detected in reactors operating at low pH. Interestingly,
Desulfitobacterium is a genus with members that can use
sulfite as electron acceptor, but not sulfate. Some bacteria,
phylogenetically related to sulfur reducers, have been also
detected in AMD bioreactors as well in natural acidic con-
ditions [29].

4. Natural Attenuation for the Design of AMD
Remediation Strategies

Natural remediation of metal pollutants generally involves
the catalytic action of microbial activities that can acceler-
ate the precipitation reaction of soluble toxic compounds
resulting in their accumulation in precipitates [81]. Such
information fromnatural systems can be useful for the design
of engineered systems. Natural attenuation of transition
metals in AMD has been described, for example, at the
Carnoulès mine in France [81] and the Iberian Pyrite Belt
(IPB) in Spain [10]. Rowe and colleagues [82] described in
detail such process at a small site at the abandonedCantareras
copper mine, which is located in theTharsis, mine district in
the IPB.They reported that SRB other thanDesulfosporosinus
spp. were responsible for precipitating copper (as CuS) in
a microbial mat found at the bottom layer and dissolved
organic carbon (DOC) originated from photosynthetic and

chemosynthetic primary producers serving as substrates for
the aSRB. The pH of AMD obtained from this bottom
layer was extremely acidic (pH < 3), and the dark grey
coloration was due to the accumulation of copper sulfide,
presumably as a result of biosulfidogenesis. No iron sulfides
(e.g., hydrotroilite; FeS⋅nH

2
O)were detected, presumably due

to the low pH of the mine water even at depth. Because the
solubility product of CuS (log Ksp at 25∘C is −35.9) is much
lower than that of FeS (−18.8), this sulfidemineral precipitates
in acidic waters whereas FeS does not.

Furthermore, Sánchez-Andrea and colleagues [83] described
in detail the importance of sulfidogenic bacteria of the Tinto
River sediments (Spain) and their role in attenuating acid
mine drainage as an example of performing natural biore-
mediation. The results showed that, for attenuation in layers
where sulfate reducing genera such as Desulfosporosinus
and Desulfurella were abundant, pH was higher and redox
potential and levels of dissolved metals and iron were lower.
They suggested that sulfate reducers and the consequent
precipitation of metals as sulfides biologically drive the
attenuation of acid rock drainage. Lastly, the isolation and
further understanding of anaerobic acidophiles in natural
environments such as Cantareras and Rio Tinto have led
to the proposal of new approaches to selectively precipitate
toxic metals from AMD, turning a pollution problem into a
potential source of metals [3, 83].

5. Concluding Remarks

Mining companies are increasing the extraction of mineral
resources guided by a higher market demand, and also sup-
ported by productivity improvement resultant from advances
on prospection and extraction technologies. Increased pro-
duction consequently results in a higher generation of
residues that is a global concern. The mining process has
been significantly developed; however, pollution is still one of
the main challenges of the mining industry and will require
innovative management tools.

Given the fact that protecting aquatic and terrestrial
ecosystems from pollutants generated from mine wastes is
a major concern, new strategies must be employed such as
the application of robust and empirically design bioreactors
as part of an integrated system for remediation of acidic
mine water and metal recovery. Using novel acidophilic and
acid-tolerant sulfidogenic microorganisms that are the key
components for bioremediation and knowledge about the
microbial interactions that occur in extremely acidic, metal-
rich environments will help in the development of new
methods for bioremediation purposes.
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