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Abstract

Aromatase inhibitors (AIs) have been commonly used as an effective adjuvant therapy in treatment 

of breast cancer, especially for menopausal women with estrogen receptor positive breast cancer. 

Due to the nature of aromatase, the key enzyme for endogenous estrogen synthesis, inhibitory of 

aromatase-induced side effects, such as cognitive impairment has been reported in both human and 

animal studies. While extensive evidences suggested that physical exercises can improve learning 

and memory activity and even prevent age-related cognitive decline, basic research revealed some 

common pathways between exercise and estrogen signaling that affected cognitive function. This 

review draws on clinical and basic studies to assess the potential impact of exercise in cognitive 

function from women treated with AIs for breast cancer and explore the potential mechanism and 

effects of exercise on estrogen-related cognition.
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Introduction

Aromatase is a key enzyme in estrogen synthesis and is widely expressed in many tissues, 

such as ovary, breasts and brain. Unlike ovary-synthesized estrogen, which is mainly 

released into the bloodstream, brain-synthesized estrogen mostly acts locally to maintain 

brain functions under normal conditions and plays neuroprotective roles in age-related 

cognitive decline and even Alzheimer’s disease (AD) [1,2]. Brain aromatase is important for 

maintaining local endogenous estrogen levels. Studies showed that reduction of brain 

aromatase is directly linked to decline of cognitive function and risk of AD in females [2–7].
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Breast cancer is one of the top cancers that occur frequently in women and about 75% of all 

breast cancers are estrogen receptor-positive [8]. Estrogen receptor-positive breast cancer is 

directly associated with over-proliferation of mammary gland epithelial cell by the 

stimulation of estrogen. Therefore, inhibition of estrogen synthesis and reduction of estrogen 

level has been an effective treatment to decrease the incidence of estrogen receptor-positive 

breast cancer. During the past decade, aromatase inhibitors (AIs) have been widely used as a 

standard therapy for estrogen receptor-positive breast cancer, which accounts for majority of 

the invasive breast tumors in postmenopausal woman [8]. Clinically, AIs are generally well 

tolerated; however, increasing basic and clinical reports suggest that AIs therapy may be 

associated with long-term cognitive impairment in some breast cancer patients, especially in 

breast cancer survivors [9–11]. Other side effects of AIs are also reported which include 

osteoporosis, and bone fracture [12,13]. Increasing evidence showed that exercise can boost 

patients’ immunity, reduce inflammation, and relieve joint pain during treatment of breast 

cancers [14,15]. It is also well recognized that exercise can improve cognitive function and 

prevent age- and disease-related cognitive decline including estrogen deficiency-induced 

cognitive impairment [16]. However, it is unknown that whether exercise could prevent the 

risk of cognitive decline induced by AIs treatment. In this review, we will focus on the 

potential exercise intervention in cognitive decline caused by AIs treatment.

Protection of estrogen on cognitive

Estrogen not only plays an important role in reproduction but also modulate cognition 

process, especially learning and memory. Recently, a cognitive function study recruited 1884 

women with 8 years annual following up and found that subjects with surgical menopause at 

early age had faster decline in global cognition, specifically episodic memory and semantic 

memory compared to age-matched women underwent natural menopause [17]. It is also 

suggested that women of surgical menopause were more likely engaged in cognitive 

impairment that primarily affected verbal episodic memory in later life compared with 

women of natural menopause [18]. In addition, the same study also reported that earlier 

onset of menopause was associated with increased AD neuropathology, especially neuritic 

plaques which had been proved that resulted from estrogen deficiency [17]. Furthermore, 

while some studies demonstrated controversial findings of a correlation between plasma 

estrogen levels and cognitive function in elderly women, more recent investigations found 

that the level of brain estrogen is directly associated with risk of AD in aged females [5–7]. 

Early and long-term hormone replacement therapy was associated with reduction of the age-

related global cognition decline [17]. And these results were consistent with previous studies 

showing that women with unilateral or bilateral oophorectomy had higher risk of cognitive 

impairment or dementia compared to age-matched women without oophorectomy [19,20]. 

Estrogen replacement therapy after menopausal showed a neuroprotection effect on 

cognitive impairment induced by surgical menopause [21,22]. Clinical evidences had also 

proved further evidence on estrogen-induced cognitive improvement in aged women. For 

example, Wroolie and his colleagues compared verbal memory between post-menopausal 

women (>55 years old) with risk factors for AD received 17β-estradiol (E2) and conjugated 

equine estrogen (CEE). They found that women treated with E2 had better performance in 

verbal memory test compared to subjects received CEE [23]. A functional magnetic 
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resonance imaging (fMRI) study revealed that estrogen treatment induced activation in the 

prefrontal cortex in young women (27–49 years old) with Lupron-induced ovarian 

suppression underwent estrogen replacement therapy (ERT) compared age-matched Lupron-

treated women without ERT. In addition, studies have demonstrated that long-term use of 

estrogen would increase activation of hippocampal with better performances in verbal and 

figure memory tests [24,25]. Together, these studies suggested a brain functional 

improvement by estrogen. However, there were also studies showed limited or no effect of 

estrogen on cognitive function. For example, another fMRI study showed significant 

activation in the regions of prefrontal cortex in estradiol-treated women compared with 

placebo-treated controls during verbal, spatial and visual memory tasks, but only reduced 

errors of perseveration during verbal recall [26]. The inconsistent in the effects of estrogen 

on cognitive function might be related by the variation of ERT durations and the specific 

cognitive tasks. For instance, the verbal memory, a most sensitive variable for women, was 

not always included. Taken together, prefrontal cortex and hippocampus are the most 

important brain regions associated cognitive function related to estrogen therapy.

In consistent with human studies, the estrogen-induced cognitive improvement had also been 

demonstrated in various animal studies [27,28]. It is also reported that the estrogen-induced 

cognitive improvement has also a brain regional-dependent effect. E2 administration could 

improve prefrontal cortex and hippocampus associated learning activities in rats while a 

negative effect of estradiol on the striatum-dependent learning was observed [29,30].

There are several hypotheses of underlying mechanism of estrogen-induced cognitive 

function improvement. One of the most popular mechanisms is the regulatory effect of 

estrogen on brain derived neurotrophic factor (BDNF). Many studies have showed that 

estrogen treatment can ameliorate memory by increasing spine density through elevation of 

BDNF level [31,32]. Some of the estrogen-induced BDNF neurotrophic effects are estrogen 

receptor-dependent. Tamoxifen, an estrogen receptor antagonist, decreased BDNF level in 

mice cerebellar, and BDNF administration increased Purkinje cell growth in these animals 

[33]. Estrogen receptors are also partially responsible for the estrogen-induced cognitive 

function improvement. For instance, estrogen receptor α was involved in estradiol enhanced 

object recognition memory in ovariectomized (OVX) mice [34]. Moreover, injection of ICI 

182 780, an estrogen receptor antagonist, into rat hippocampus bilaterally reversed the 

systemic estrogen administration-induced enhancement in place learning, suggesting that the 

estrogen-induced enhancement on place learning was dependent on the activation of 

hippocampal estrogen receptor [35]. Furthermore, various neurotransmitters are also playing 

roles in estrogen-induced cognitive improvement, such as norepinephrine, dopamine, 

serotonin, and acetylcholine [36,37]. In addition, epigenetic regulation of estrogen is also an 

assignable factor in the amelioration of memory. A series of studies have showed that dorsal 

hippocampal H3 acetylation and DNA demethylation of genes necessary for memory 

formation including BDNF gene are essential for E2 to enhance object recognition memory 

consolidation in female mice [38]. There were some reports on estrogen regulating vascular 

endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1) in both human 

and animal studies. It is general accepted that estrogen promotes cognitive function partially 

through activation of VEGF and IGF-1 [39,40], although the effect of estrogen on IGF1 
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remains controversial which might be associated with the different estrogen administration 

routs [41] (figure 1).

Cognitive impairment associated with AIs

AIs have been used as an adjuvant therapy for estrogen receptor-positive breast cancer 

patients by inducing an abrupt reduction of endogenous estrogen levels. As side effects of 

low endogenous estrogen, AIs can lead to risk of osteoporosis, fractures, cardiovascular 

disease and cognitive decline [9,11,42,43]. For example, the Intergroup Exemestane Study 

reported that patients switching to exemestane, one of AIs, had a higher incidence of 

fractures than those continuing receiving tamoxifen, a selective estrogen receptor modulator 

(SERM) as 7.0 vs 4.6%; P=0.003 [43]. Cardiovascular events were more common in patients 

receiving exemestane than those switched to tamoxifen as 20.8 vs 18.9%; P=0.09 [43].

Human studies

Although multiple studies demonstrated cognitive impairment associated with AIs treatment 

in breast cancer patients, the effect of aromatase on cognitive function by pharmacological 

inhibition remains controversial. For example, in humans, several studies showed that AIs 

treatment, a standard therapeutic strategy for women with estrogen receptor-positive breast 

cancer, showed a significant decline in cognition, particularly in cognitive processing speed 

and verbal memory [9–11]. One of the studies compared the outcome from cognitive tests 

performance and self-reported cognitive function in patients treated with AI and SERM, 

such as exemestane or tamoxifen and healthy controls. The results showed that all patients 

had significant decline in their objective cognition (two category fluency tests and one 

information processing speed tests) and subjective cognitive function compared with healthy 

controls [10]. Similarly, Collins and his colleagues used a longitudinal design to study the 

effect of adjuvant therapy on breast cancer patient’s cognition by conducting a baseline 

assessment (T1) and a second assessment (T2) after 5–6 months treatment in breast cancer 

patients and age-matched healthy controls. A significant decline of cognition from T1 to T2 

was observed in patients under adjuvant therapy, such as tamoxifen and anastrozole, one of 

AIs, compared with healthy controls. Among the all cognitive performance tests, the most 

effected cognitive domains affected by adjuvant therapy were processing speed and verbal 

memory [9]. Since the plasma estrogen level was much lower in breast cancer patients 

treated with anastrozole than those received tamoxifen treatment, Bender and his colleagues 

compared cognitive function between patients received anastrozole and tamoxifen for 3 

months, and found that women received anastrozole had poorer visual and verbal learning 

and memory than those received tamoxifen [44]. In addition, Lejbak et al. demonstrated 

additional estrogen sensitive cognitive domains, such as letter fluency, complex visuomotor 

attention and manual dexterity [45].

However, there were also several studies showed no effects of AIs on cognitive function in 

breast cancer patients [46–49]. For example, Hermelink and his colleagues assessed 

cognitive function in 101 breast cancer patients (62 treated with tamoxifen, anastrozole or 

letrozole for average 19 weeks) at the beginning of treatments, the end of treatments and 1 

year after the first assesses. They failed to identify any significant effects of anti-estrogen 
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treatments on patient’s cognition tests [46]. This result might be caused by learning effect 

with the same test conducted twice. Cross-session studies from Breckenridge et al. and 

Kilickap et al. evaluated cognition among breast cancer patients (aged 33–81) and found the 

effects of anti-estrogen therapy were distinct for patients at different menopausal status 

[47,48]. In addition, Hurria and his colleagues examined the relationship between AIs and 

cognition in 32 breast cancer patients aged >60 years old who had positron emission 

tomography (PET) scans and found no significant decline in cognition in patients treated 

with AIs therapy for 6 months compared with age-matched healthy controls. However, there 

were significant changes in cerebral metabolic activity between the AIs treated patients and 

healthy controls and the primary effective brain regions involved the medial temporal lobes 

and Broca’s area which are associated with long-term memory and verbal exposition, 

respectively [50]. This result suggested that AIs therapy might affect cognitive function 

through dysregulating metabolic activities in associated brain regions. However, the 

association between PET and cognition in AIs treated patients need further confirmative 

investigations due to the modest sample size with only 32 patients [50]. Furthermore, studies 

showed that cognitive function of postmenopausal women with breast cancer improved one 

year after the anti-estrogen therapy [51]. However, they did not conduct baseline assessment 

before treatment to get whether patients cognitive function could back to original statement 

[51].

In contrast, the effect of anti-estrogen therapy on cognition by self-reported cognitive 

performance were relative consistent. Studies showed that AIs treatment in breast cancer 

patients caused decline of subjective cognitive function [10,47,52], and such a cognitive 

impairment persisted for long time after the treatments reported in the follow-up studies 

[53]. However, studies showed irrelevance between self-reported cognitive functioning and 

cognitive test performance [10,54] or positive correlation only in the area of verbal memory 

[55]. The most assessments of subjective cognitive functioning in self-reported studies were 

the Cognitive Failure Questionnaire which primarily focusing on perception, attention and 

motor function [10,54,56], while the most AIs effective domain of cognition were verbal 

memory and information processing speed [9–11]. Therefore, these self-reported studies on 

subjective cognitive function might reflect partially, but not targeted cognitive impairment in 

AIs treated breast cancer patients. Bender et al. used the Patient’s Assessment of Own 

Functioning to evaluated perceived cognitive function, and discussed the relevance of 

objective and subjective cognition in early-stage breast cancer patients receiving adjuvant 

hormonal therapy (tamoxifen or anastrozole) and found that poorer cognitive function was 

related to poorer verbal learning and memory [55]. Again, all suggested that the 

controversial findings of AIs-related cognitive function in human might well be related to 

the type of cognitive function tests as well as menopausal status and variation of treatment 

durations.

Animal studies

Inhibition of aromatase induced cognitive impairment has been found in animal studies. 

Using genetic approaches, studies demonstrated that mice with genetic knockout of 

aromatase gene (ArKO) performed significant worse in Y-maze test for short-term spatial 

reference memory than wildtype control mice [57]. It was reported that the number of spine 
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synapses was significantly reduced in the hippocampus of mice treated with letrozole (one 

of AIs) compared to wildtype mice [56]. Furthermore, studies of AIs treatment and long-

term potentiation (LTP) in the hippocampus demonstrated a reduction in the magnitude of 

LTP in brain slices from the letrozole-treated animals compared to that from the control 

mice. And the LTP impairment increased significantly with longer treatment duration in 

female mice [58]. AIs, particularly letrozole, also could down-regulate steroid receptor 

coactivator-1 in specific brain regions primarily related to memory and integration [4]. 

Instead of causing reduction of spine synapse and LTP, some studies found beneficial effects 

of AIs on cognition. For example, systemic injection of letrozole increased spatial learning 

and memory activities in rats [59], while other research found an increase in expression of 

N-methyl-D aspartate (NMDA) receptor in female ArKO mice (14–16 weeks old) with 

higher performance in water maze test [60]. Moreover, an increased level of 

catecholaminergic neurotransmitters like noradrenaline and dopamine in the prefrontal and 

hippocampus after high dose (1mg/kg) of letrozole treatment for 6 weeks in OVX rats, while 

the level of catecholaminergic neurotransmitters above was decreased in OVX control group 

and intact letrozole treatment group [59]. These results indicated a potential window of 

protective action of AIs in OVX mice, not in intact mice.

In conclusion, aromatase deficiency at early age may lead to cognitive impairment while a 

potential bi-phases effect of AIs has been observed in aged animals. The animal studies are 

in consistent with human studies that AIs-induced cognitive impairments mostly occur in 

surgical menopausal women [61]. The impairment of cognition induced by aromatase 

deficiency might be induced by loss of spine synapse followed by impaired LTP. In addition, 

NMDA receptor, catecholaminergic neurotransmitters and steroid receptor coactivator-1 may 

also involve in the aromatase-related cognitive changes.

The possibility of exercise on improving the cognitive impairment induced 

by AIs

Positive effects of exercise on cognition

Physical activity, as a non-pharmacological therapy to cognitive impairment, has gained 

more and more attention recently. Numerous studies have confirmed the positive effects of 

exercise on cognition, especially in elderly adults with moderate cognitive impairment [62–

65]. It was reported that multimodal physical training for 16 weeks reduced pro-

inflammatory cytokines and improved BDNF peripheral levels, which lead the improvement 

of cognition in subjects with mild cognitive impairment [66]. Another independent study 

revealed that healthy adults at age 62–89 years after 12-month coordination exercise had 

better executive function mediated by the increased volume of basal ganglia nuclei [67]. 

Physical activity has been associated with better memory function mediated by increasing 

cerebral gray matter volume in prefrontal and cingulate cortex in healthy elderly adults 

[68,69]. The beneficial effects of exercise on memory storage and consolidation were also 

found in preadolescents and young adults [70–72], and this effect might be mediated by 

enhancing levels of BDNF and catecholamine [70]. Regression analyses showed that the 

exercise-induced enhancement of cognitive inhibitory control function in healthy young 

adults might be related to the increased cerebral-blood-flow (CBF) regulation as well as 
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cerebrovascular function [73,74]. In addition, the positive association between physical 

activity and cognition improvement were also reported in breast cancer survivors [75]. 

Because of both people with estrogen deficiency and breast cancer survivors often reported 

cognitive decline [47], it might be worth to investigate whether exercise could prevent or 

treat cognitive impairment in breast cancer patients treated with or without AIs. Indeed, 

Pradhan et al. showed that an exercise for 3 months has great likelihood to provide better 

attention function in young breast cancer survivors [75].

Animal studies provided further support on cognitive improvement induced by exercise. 

Studies observed that six weeks of treadmill exercise could protect short-term and spatial 

memory impairments in aged rats through increasing neurogenesis and suppressing 

apoptosis in hippocampus [76]. Exercise also can up-regulate proteins related to energy 

metabolism (i.e. Glycolysis, ATP synthesis, ATP transduction and glutamate turnover) and 

synaptic plasticity to enhance cognitive function [77]. Furthermore, changes in neurotrophic 

and growth factors, such as BDNF, IGF-1 and VEGF induced by exercise also contribute 

important roles the protection of cognition decline [16,78–80]. For example, treadmill 

exercise of 39 days in early age (21 days old) rats increased mossy fibers density and 

expression of BDNF and its receptor tropomyosin-related kinase B in hippocampus, which 

induced the improvement of spatial learning and memory. These exercised-induced 

enhanced spatial memories were maintained for long which were measured at 96 days old 

[81]. Blocking the action of BDNF abolished improvement in learning acquisition and 

increased expression of proteins related to energy metabolism and synaptic plasticity 

induced by 1-week wheel running [82,83]. IGF-1 can interact with BDNF to participate the 

action on learning and memory through synaptic plasticity, neurogenesis and energy 

metabolism [16,84]. Interesting enough, studies showed that the exercise-induced learning 

and memory improvement would be abolished after blocked of VEGF and IGF-1 

respectively [84,85]. Moreover, exercise can ameliorate cognitive function through gene 

level. For instance, Kohman et al. found that 8 weeks wheel running reversed age-induced 

decreasing expression of genes involved in cell growth and increasing expression related to 

immune function [86]. Other evidence also demonstrated that exercise-induced enhancement 

of learning and memory is partially mediated through facilitating DNA demethylation and 

acetylation of histone H3 localized to the promoter IV of the BDNF gene, a region intimate 

related to neuronal activity [87].

In conclusion, exercise can improve cognition through numerous pathways including 

improving cerebrovascular function, CBF regulation, immune system, stimulating 

neurotrophic factors and growth factors. The effects of exercise on growth factors-mediated 

cognitive function are similar to the pathways of estrogen-induced cognitive improvement 

(Fig. 1).

The interaction of exercise and estrogen on cognition

Clinical observation demonstrated that women with estrogen deficiency often engaged in 

cognitive impairment. As mentioned above, some of breast cancer survivors who had 

received AIs therapy also developed cognitive decline compared with healthy controls [9–

11]. Higher incidence of AD in post-menopausal women was also reported than that in age-
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matched men [88]. Women with surgical menopause at early age have higher risk of AD 

than healthy age-matched women [17]. While exercise has been widely used for better 

cognitive function in general, a meta-analysis revealed that the exercise-induced beneficial 

effect was more effective in females than males [64]. Furthermore, Jianqiang and his 

colleagues reported that 2-months treadmill increased serum levels of estrogen and level of 

BDNF in the rats hippocampus [89]. An independent study also found that 30 days of 

treadmill running in OVX rats could restore estrogen deficiency-induced down-regulation of 

creatine kinase activity, an important enzyme in energy metabolism [90]. To investigate the 

effect of exercise on estrogen deficiency-induced impairment of memory and cognition, 

Juliana Ben and his colleagues examined roles of running on female Wistar rats at 3 months 

old with or without ovariectomy. The exercise was conducted as running in a moderate 

intensity three times per week for one month. They found that OVX mice demonstrated a 

significant impairment in the inhibitory avoidance and Morris Water Maze test compared to 

the shamed mice, while exercise can restore the inhibitory avoidance behavior and spatial 

navigation memory in the OVX mice [91]. Another study showed that exercise reversed the 

estrogen deficiency-induced increased activation of Na+,, K+-ATPase and 

acetylcholinesterase in hippocampus and cerebral cortex in OVX mice [92]. All together 

suggested that exercise not only increase cognitive performance in general, but also protects 

the estrogen deficiency-induced cognitive decline in females.

However, the effect of exercise on estrogen deficiency-induced cognitive decline may be 

dependent on the length of exercise as well as the duration of estrogen deprivation. Studies 

showed that levels of BDNF mRNA in the hippocampus were lower in rats with ovariectomy 

for long term (7 weeks) than short term (3 weeks). Five days wheel running restored BDNF 

gene expression in short-term estrogen-deprivation rats only, suggesting that long term 

absence of estrogen might change the threshold to trigger a BNDF gene response, which 

leading a limitation for exercise in OVX rats with long term estrogen deficiency [93]. 

Evidence from Moreno-Piovano confirmed this speculation. Moreno-Piovano and his 

colleagues found higher methylation levels of regulatory sequences of BDNF in long-term 

OVX mice compared with short-term ones. In addition, estradiol failed to increase BDNF 

expression after long-term estrogen deficiency, while estradiol exerted an ideal effect on 

increasing BDNF and synaptophysin protein expression [94]. Similarly, Marosi and his 

colleagues compared the effects of E2 and long term moderate exercise on cognitive 

function and related intracellular molecular signaling pathways and found while E2 and 

exercise alone both enhanced attention and memory and activation of PKA/Akt/CREB and 

MAPK/CREB pathways in female rats at 15 months old, exercise alone failed to ameliorate 

behavior and molecular mechanism in female rats at 27 months old. In addition, E2+exercise 

improved cognitive function with enhanced activation of relevance pathways both in rats at 

15- and 27-month of age [95]. Therefore, these data suggested that exercise may share 

similar beneficial effects on cognition and combination of exercise with estrogen treatment 

might play provide more power in improving cognitive function, particularly in aged 

females.

Li et al. Page 8

Mol Neurobiol. Author manuscript; available in PMC 2017 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions

Estrogen is very important in the regulation of cognitive function. Lack of estrogen like 

aromatase inhibitor treatment among breast cancer patients might cause cognitive 

impairment. Exercise is an effective intervention to improve cognitive function. This 

improvement is more significant among persons with cognitive disease. Numerous evidences 

revealed that exercise and estrogen have many common ways in the regulation of cognitive 

function. Therefore, it is provided an opportunity for exercise to ameliorate cognitive decline 

induced by AIs treatment in breast cancer patients.
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Abbreviations

AIs Aromatase inhibitors

AD Alzheimer’s disease

E2 17β-estradiol

CEE Conjugated equine estrogen

fMRI Functional magnetic resonance imaging

ERT Estrogen replacement therapy

BDNF Brain derived neurotrophic factor

OVX Ovariectomized

SERM Selective estrogen receptor modulator

PET Positron emission tomography

ArKO Knockout of aromatase gene

LTP Long-term potentiation

NMDA N-methyl-D aspartate

CBF Cerebral-blood-flow

IGF-1 Insulin-like growth factor-1

VEGF Vascular endothelial growth factor
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Fig. 1. The relationship of mechanisms between exercise- and estrogen- induced neuroprotection
Exercise can facilitate neuroplasticity and neurogenesis through improving the expression of 

VEGF, IGF-1, BDNF as indicated as red lines, while the effects of estrogen on cognitive 

function might be mediated through estrogen receptors and regulate VEGF, IGF-1 and 

BDNF to exert neuroprotective functions as shown in blue lines.
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