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Abstract
Background: It is common for patients diagnosed with medial temporal lobe epilepsy 
(TLE) to have extrahippocampal damage. However, it is unclear whether microstructural 
extrahippocampal abnormalities are consistent enough to enable classification using dif-
fusion MRI imaging. Therefore, we implemented a support vector machine (SVM)-based 
method to predict TLE from three different imaging modalities: mean kurtosis (MK), mean 
diffusivity (MD), and fractional anisotropy (FA). While MD and FA can be calculated from 
traditional diffusion tensor imaging (DTI), MK requires diffusion kurtosis imaging (DKI).
Methods: Thirty-two TLE patients and 36 healthy controls underwent DKI imaging. To 
measure predictive capability, a fivefold cross-validation (CV) was repeated for 1000 
iterations. An ensemble of SVM models, each with a different regularization value, was 
trained with the subject images in the training set, and had performance assessed on 
the test set. The different regularization values were determined using a Bayesian-
based method.
Results: Mean kurtosis achieved higher accuracy than both FA and MD on every itera-
tion, and had far superior average accuracy: 0.82 (MK), 0.68 (FA), and 0.51 (MD). 
Finally, the MK voxels with the highest coefficients in the predictive models were 
distributed within the inferior medial aspect of the temporal lobes.
Conclusion: These results corroborate our earlier publications which indicated that 
DKI shows more promise in identifying TLE-associated pathological features than DTI. 
Also, the locations of the contributory MK voxels were in areas with high fiber cross-
ing and complex fiber anatomy. These traits result in non-Gaussian water diffusion, 
and hence render DTI less likely to detect abnormalities. If the location of consistent 
microstructural abnormalities can be better understood, then it may be possible in the 
future to identify the various phenotypes of TLE. This is important since treatment 
outcome varies dependent on type of TLE.
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1  | INTRODUCTION

The structural changes that may be unique to medial temporal lobe 
epilepsy (TLE) have been continually investigated to better understand 
the mechanisms associated with disease development and to define 
targets for treatment. Historically, TLE imaging findings have con-
firmed the existence of temporal and extratemporal areas of neuronal 
loss (Keller & Roberts, 2008); with more recent studies demonstrat-
ing that microstructural abnormalities are extensive and pervasively 
distributed (Bonilha et al., 2015). Since most structural brain studies 
have investigated group-wise differences, it remains unclear whether 
microstructural abnormalities in TLE are consistently observed across 
all patients (and could therefore be used to classify TLE vs. individuals 
without TLE), or whether there is a high degree of variability beyond a 
common underlying pattern.

This question is important since the treatment outcomes of TLE are 
variable and not completely predictable based on clinical data (Engel 
et al., 2003; Spencer et al., 2005); indicating that there are different 
TLE phenotypes that remain unidentified, but could be discerned 
based on imaging, if the type and the location of regular TLE abnor-
malities were better understood. In this study, we tested the hypoth-
esis that microstructural abnormalities are present within a common 
pattern in most subjects with TLE. We employed a machine-learning 
algorithm to assess the accuracy with which individuals with TLE 
could be correctly classified as having epilepsy based on voxel-based 
microstructural abnormalities detected by diffusion MRI, including 
Diffusional Kurtosis Imaging (DKI). DKI is a postprocessing approach 
for diffusion MRI with multiple b-values that takes into account non-
Gaussian water molecule diffusion properties (Jensen et al., 2005). 
Since water diffusion in the brain is known to follow a non-Gaussian 
pattern, DKI captures more structural information than DTI–based 
measures, which neglect diffusional non-Gaussianity (Jensen et al., 
2005). From DKI it is possible to calculate voxel-wise mean kurtosis 
(MK), a measure of non-Gaussianity, as well as traditional voxel-wise 
diffusion tensor imaging parameters such as mean diffusivity (MD) and 
fractional anisotropy (FA).

We aimed to identify which extrahippocampal temporal lobe 
voxels were consistently abnormal in TLE, therefore serving as good 
disease classifiers. Moreover, we also tested which diffusion MRI mea-
sure (MK, MD, FA) was more consistently abnormal in each voxel, with 
the intent of providing anatomical and microstructural insight into TLE 
related abnormalities.

2  | MATERIALS AND METHODS

2.1 | Subjects

Thirty-two TLE patients and 36 healthy controls were assessed in this 
study. This cohort was previously reported in a study that revealed 
DKI-based, voxel-based abnormalities in epilepsy (Bonilha et al., 
2015). That study was not designed to assess individualized patterns 
of abnormalities or diffusion-based classification accuracy, which is 
the novel purpose of this study. Only left-sided TLE patients were 

used. As it is well known in the literature, left TLE is associated with 
a more widespread and homogeneous pattern of abnormalities com-
pared with right TLE (Bonilha et al., 2007; Kemmotsu et al., 2011; 
Pustina et al., 2015; Ahmadi et al., 2009). Since the purpose of this 
study is to assess the classification algorithm, we opted to use a more 
regular cohort. All TLE patients met the International League Against 
Epilepsy criteria for diagnosis (Berg et al., 2010; Shorvon, 2011; 
Commission on Classification and Terminology of the International 
League Against Epilepsy, 1989). They were recruited from the 
Comprehensive Epilepsy center at the Medical University of South 
Carolina. The mean age of patients was 44.8 ± 16.7 years, with 22 
females. This was a consecutive cohort of TLE patients, and not all 
patients were medication refractory. Their clinical characteristics can 
be appreciated in Table S1. The control population consisted of indi-
viduals with no neurological history or risk for epilepsy. Sex and age 
distribution differences between the patient and control groups were 
tested using a Chi-squared and a t-test, respectively, and were not 
statistically significant (p = 0.85 and p = 0.21).

2.2 | Image acquisition

A 3T Magnetom Verio MRI scanner (Siemens, Erlangen, Germany) 
with a 12-channel coil head was used to image all subjects. Diffusion 
imaging parameters were: a twice-refocused echo-planar imaging se-
quence with diffusion weightings of b = 0, 1,000, and 2,000 s/mm2, 
30 diffusion-encoding directions with number of excitations (NEX) = 1 
(NEX = 10 for b = 0), repetition time = 8,500 ms, echo time = 98 ms, 
field-of-view = 222 × 222 mm2, a matrix size of 74 × 74, a parallel im-
aging factor of 2, 3 mm slice thickness, and 40 axial slices. No partial 
Fourier encoding was used. The imaging acquisition parameters are 
further specified in our previous work (Bonilha et al., 2015).

2.3 | Image processing

Voxel-based scalar diffusion measures were obtained using the soft-
ware diffusional kurtosis estimator (DKE) (https://www.nitrc.org/
projects/dke/). The probabilistic white matter map in MNI152 space 
distributed with software SPM 8 (http://www.fil.ion.ucl.ac.uk/spm/ 
software/spm8/) was nonlinearly transformed into native diffusion 
space and used for selection of white matter voxels as described 
below. The parameters MD and FA were estimated without using 
the b = 2,000 s/mm2 images in order to mimic a typical DTI analysis, 
while the MK calculation required the use of all the images for all the 
b-values.

2.4 | Statistical analyses with machine learning

We employed support vector machines (SVM) to analyze voxel con-
tribution to epilepsy status. The diffusion measures compared were 
DKI-derived MK, and DTI-derived MD and FA. For each measure, the 
white matter voxels located in the left temporal lobe for the subjects 
were transformed into a matrix of size number of subjects by number 
of voxels. White matter voxels were those located in areas with 20% 

https://www.nitrc.org/projects/dke/
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or greater probability of belonging to white matter in accordance with 
the probabilistic white matter map transformed into diffusion space. 
Left temporal lobe locations were identified using a mask derived from 
the Talairach Atlas in MNI space. Specifically, the atlas was trans-
formed into diffusion space and a mask was created that corresponded 
to a union of all the ROIs associated with the left temporal lobe.

2.5 | Prediction

Our classification pipeline consisted of training 19 different linear-
kernel SVM models from 19 different cost values (C) on the training 
set (D), and then performing a weighted average over the predictions 
of the 19 models for each subject in the test set (V) (Bishop, 2006) :

In the above equation, the weight of a model trained with a particu-
lar cost (C= c) is given by: pC=c|D. These weights form a valid probability 
distribution as they sum to 1. Each classification model also outputs a 
probability, p1|C=c,D,i, which is the probability the model assigns the i

th 
test subject of being a patient. If the weighted average of the models’ 
outputs is greater than 0.5, then the subject is predicted to be a patient.

It is important to note that support vector machines do not directly 
output probabilities, but a score for each subject which ranges from 
−∞ to ∞. We employed a simple logistic link function to transform 
each score to a probability of being a patient (p1|C=c,D,i). Further details 
are explained in the supplementary material.

A fivefold stratified cross-validation scheme was executed, and the 
C vector was recalculated for the new D from each run of the cross-
validation. The folds were stratified to ensure a consistent patient to 
control ratio. To account for the variance associated with running 

fivefold cross-validation on small datasets, we repeated this pipeline for 
1,000 experimental iterations. Each iteration was unique from the other 
iterations in the random allocation of the data between the five folds.

The entire pipeline was written in Matlab (The MathWorks I, 2017), 
the implementation was placed online, and the URL can be found in 
the supplementary material.

2.6 | Finding Values for the Cost Hyperparameter (C)

Our first step for generating the inputs for the weighted average was 
to calculate the vector of cost values (C). The mean of C was defined 
as the minimum cost value (Cμ) required to fit D without any classifica-
tion error on D. The methodology used to determine this minimum 
fit is described in the supplementary material. It is important to note 
that though a model fit with Cμ had no classification error on D, it still 
was not a maximum fit on D as the probability outputs from the model 
could be further optimized.

We then calculated the minimum cost required to have a maxi-
mum fit on D (Cmax). In other words, the probability outputs could not 
be further improved with increased C. The fit increases approximately 
monotonically with C until a particular value is reached, at which point 
the fit score remains flat. Slight noise deviations from the monotonic 
increase were smoothed with a length-3 median filter. The fit was 
assessed with log-likelihood (LLD|C), the procedure for calculating the 
log-likelihood for a given c (LLD|C=c) is explained in the supplementary 
material. This optimization can be visualized in Figure 1.

From Cmax and Cμ, the C vector was found as:

where Δ=Cmax−Cμ.

H=
{(∑

C
pC=c|D ∗p1|C=c,D,i

)
> 0.5|i ∈ V

}

{
Cμ +Δ∗

i

9
|i∈−9 ⋅ ⋅ ⋅9

}

F IGURE  1 The fit on the training 
data (LLD|C) increases approximately 
monotonically with C until a particular 
point, and then remains flat. The minimum 
(C= c) at which LLD|C=c=max

(
LLD|C

)
 is 

depicted as a red dot and used as maximum 
value in the C vector
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Calculating the model weights (pC|D)
The model weights (pC|D) were calculated through the Bayesian 

formula:

In the above formula, LD|C can be viewed as the evidence in 
Bayesian derivations, pC can be viewed as the prior, and dividing by pD 
scales the vector in the numerator (LD|C ∗pC) so that pC|D sums to 1 and 
hence is a proper probability distribution.

The log of the evidence (the log-likelihood, LLD|C) was already cal-
culated to find the C vector. LLD|C was converted to a likelihood (LD|C) 
through the formula {eLLD|C=c |c∈C}, where each value indicates the like-
lihood of D given a model trained with C= c. An example LD|C can be 
seen in the middle panel of Figure 2.

Typically, pC is estimated from other experiments or data, but 
such information was not available. However, we did not desire “uni-
formed” flat priors because it was important to regularize LD|C (de-
crease the weights of the higher cost models) to prevent over-fitting. 
Therefore, pC was defined as a Gaussian distribution with a mean at Cμ

, and a standard deviation of Cσ = Δ/2. The values were scaled to en-
sure that pC sums to 1. We selected Cμ as the point with maximal prob-
ability (the mean), because a model will almost always have higher 
generalization error than training error, therefore the model needs to 
at least fit D. However, such sparse datasets are highly susceptible to 
over-fitting, therefore we chose a distribution with small weights for 

models that strongly fit D: for example, since, its corresponding weight 
will approximate 0.0275. An example of pC can be found in the top 
panel of Figure 2.

As both LD|C and pC were represented as vectors of size (19 by 1), 
the scalar pD was simply found through a dot product: pD=LD|C

�
⋅pC.

The final pC|D derived from the pC and LD|C examples used in this 
explanation can be seen in the bottom panel of Figure 2.

2.7 | Generating coefficients

On each run of the cross-fold validation, a βC=c vector of coefficients 
was generated for each of the 19 SVM models from the training data (D) 
associated with the current run (R= r). The vectors were aggregated into 
a single vector per run with a weighted average: βR=r=

∑
C pC=c�D ∗βC=c. 

The coefficients per run were averaged across runs to generate a vector 
for each of the 1,000 experimental iterations: βI=i=

1

5

∑
R βR=r. Finally, 

the βI vectors were aggregated into four vectors as shown below:

1.	 Mean vector
i.	 βμ =

1

1000

∑1000

i=1
βI=i

2.	 Standard deviation vector
ii.	 βσ =

√�
1

1000

∑1000

i=1
(βI=i−βμ)

2
�

3.	 Positive run count vector
iii.	β+ =

∑1000

i=1
βI=i>0

pC|D=LD|C ∗pC∕pD

F IGURE  2 The weight assigned to 
each model is determined by the fit on the 
training data (second row) multiplied with a 
Gaussian prior that has a regularizing effect 
(first row). The final weight distribution 
(third row) reflects the influence from both 
distributions

Measure Accuracy F1 Score Sensitivity Specificity

MK 0.820 ± 0.023 0.800 ± 0.026 0.765 ± 0.032 0.870 ± 0.031

FA 0.683 ± 0.037 0.642 ± 0.047 0.606 ± 0.058 0.752 ± 0.041

MD 0.514 ± 0.035 0.400 ± 0.047 0.345 ± 0.049 0.664 ± 0.049

TABLE  1 Predictive values following 
SVM vector analysis by diffusion measure
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4.	 Negative run count vector
iv.	β− =

∑1000

i=1
βI=i<0

Since the SVMs used linear kernels, these values could be directly 
interpreted. Voxels with negative coefficients had higher intensities for 
controls compared to patients, and positive coefficients corresponded to 
lower intensities for controls compared to patients.

2.8 | Ethical publication statement

We confirm that we have read the Journal’s position on issues in-
volved in ethical publication and affirm that this report is consistent 
with those guidelines.

3  | RESULTS

3.1 | Individual measures

As shown in Table 1, the classifier trained and tested with MK best 
classified TLE, followed by FA and then MD. As shown in Figure 3 and 
Table 1, MK scored higher prediction metrics for accuracy, F1-score, 
sensitivity, and specificity. With regard to accuracy and F1-score, MK 
out-performed the other measures for all 1,000 iterations. Figure 4 
depicts the most contributory voxels for MK and FA.

FA also clearly out-performed MD. However, the accuracy associ-
ated with FA was not significantly higher than what can be achieved 
with Gaussian noise given a small dataset (Combrisson & Jerbi, 2015).

F IGURE  3 At each iteration of the 
experiment, the subjects are randomly 
allocated among five folds. These subjects 
are used to train and test the models 
derived from the different measures. MK 
has higher accuracy than both FA and MD 
on all 1,000 iterations of the experiment

F IGURE  4 This mosaic demonstrates which FA and MK voxels most contributed to the classification model. Voxels colored in red were those 
in which lower values of MK had higher weight toward classifying individuals as belonging to the group of patients. Similarly, the voxels colored 
in green were those in which lower FA values contributed toward classifying the individuals as patients. The color bar represents the weights, 
whereas lower negative weights indicated a higher influence in the more towards classification as patients. Finally, voxels colored in yellow (red 
+ green) where those where both the FA and MK values contributed to the classification
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As shown in Figure 5, certain subjects were far more likely to be 
misclassified. In particular, there were six patients and three con-
trols that MK did not correctly predict in any of the 1,000 iterations.

4  | DISCUSSION

MK-derived classifiers were far more accurate for classifying TLE 
than FA- or MD-derived classifiers. However, certain subjects were 
always misclassified regardless of the data allocation across the folds.

Further insight into the relative contribution of each voxel location 
can be gained by assessing the anatomical distribution of abnormal-
ities that contribute to classification. As seen in Figure 4, the impli-
cated voxels in MK were distributed within the inferior medial aspect 
of the temporal lobes, which may represent areas of higher fiber cross-
ing, more complex fiber anatomy, or more axonal changes associated 
with epilepsy. Therefore, it appears these measures may reflect com-
ponents of microstructural pathology that are subtly different, but im-
portant in the classification of TLE.

Our results corroborate previous studies that have highlighted 
the sensitivity of DKI as compared to standard DTI when measuring 
microstructural abnormalities in adult and pediatric patients with TLE 
(Bonilha et al., 2015; Gao et al., 2012). The microstructural complexity 
and compartmentalization of brain tissue result in non-Gaussian water 
diffusion, which DTI cannot detect. By quantifying this diffusional 
non-Gaussianity with measures such as MK, DKI more fully reveals 
micropathologic changes that may be associated with inflammation 
and cell loss (Winston, 2015).

Our results achieve comparable performance metrics to previ-
ous literature that applies SVM to neuroimaging data to classify TLE. 
An SVM study using T1-weighted images performed by Rudie et al. 
achieved a prediction accuracy of up to 81% for patients with TLE 

compared to those with other structural abnormalities, and it ad-
ditionally found correlations between predictive value and clinical 
disease progression (Rudie, Colby, & Salamon, 2015).

Furthermore, our results indicate that microstructural abnormal-
ities in TLE (here exemplified by left TLE) may enable an accurate 
classification with kurtosis-based imaging. This is important since it 
demonstrates that a pattern of microstructural pathology is common 
across individuals with TLE and therefore forms a structural mainstay 
for the disease. Importantly, this approach is not intended only to di-
agnose epilepsy, but may be able to identify a common pathological 
pattern that could be used as a decision support tool for clinical as-
sessments in the future. We recommend that future analyses inves-
tigate the subjects that were consistently misclassified. It is possible 
that these subjects contain subtle but important features that distin-
guish patients from controls, which may be overshadowed by more 
general differences between the groups.
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