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Abstract
Introduction: Dynamic functional network connectivity (dFNC), derived from mag-
netic resonance imaging (fMRI), is an important technique in the search for biomarkers 
of brain diseases such as mild traumatic brain injury (mTBI). At the individual level, 
mTBI can affect cognitive functions and change personality traits. Previous research 
aimed at detecting significant changes in the dFNC of mTBI subjects. However, one of 
the main concerns in dFNC analysis is the appropriateness of methods used to correct 
for subject movement. In this work, we focus on the effect that rearranging movement 
correction at different points of the processing pipeline has in dFNC analysis utilizing 
mTBI data.
Methods: The sample cohort consists of 50 mTBI patients and matched healthy con-
trols. A 5-min resting-state run was completed by each participant. Data were pre-
processed using different pipeline alternatives varying with the place where 
motion-related variance was removed. In all pipelines, group-independent component 
analysis (gICA) followed by dFNC analysis was performed. Additional tests were per-
formed varying the detection of temporal spikes, the number of gICA components, 
and the sliding-window size. A linear support vector machine was used to test how 
each pipeline affects classification accuracy.
Results: Results suggest that correction for motion variance before spatial smoothing, 
but leaving correction for spiky time courses after gICA produced the best mean clas-
sification performance. The number of gICA components and the sliding-window size 
were also important in determining classification performance. Variance in spikes cor-
rection affected some pipelines more than others with fewer significant differences 
than the other parameters.
Conclusion: The sequence of preprocessing steps motion regression, smoothing, gICA, 
and despiking produced data most suitable for differentiating mTBI from healthy sub-
jects. However, the selection of optimal preprocessing parameters strongly affected 
the final results.
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1  | INTRODUCTION

Traumatic brain injury (TBI) has a significant impact in our society. 
Although traffic laws in several countries have reduced the occur-
rence of TBI (Redelmeier, Tibshirani, & Evans, 2003), the world health 
organization considers traffic accidents among the three major global 
concerns for disease and injury (Finfer & Cohen, 2001). In many cases 
TBI leads to serious short-  and long-term effects that impair cogni-
tive abilities of the patient. Dangers of TBI are observed even in mild 
cases. Suicidality, depression, and posttraumatic stress disorder symp-
toms are among the deleterious effects experienced by mTBI patients 
(Bryan, Clemans, Hernandez, & Rudd, 2013). The wide spectrum of TBI 
symptoms motivates the search for new unexplored technologies that 
might improve the detection of mTBI.

Functional magnetic resonance imaging (fMRI) is one of the import-
ant modalities in mTBI research (Mayer, Mannell, Ling, Gasparovic, &  
Yeo, 2011). Several studies provide evidence that point to static func-
tional connectivity, a data modality derived from fMRI, as promising 
biomarker. We call static functional connectivity the measure of co-
herence between brain areas evaluated over the whole period of fMRI 
acquisition. The potential of static functional connectivity to detect 
mTBI after concussions has been explored by Zhu et al. (2014). Vakhtin 
et al. (2013) found that the connectivity of the brain default-mode 
network (DMN) (Buckner, Andrews-Hanna, & Schacter, 2008) might 
be disrupted in mTBI patients. Zhou et al. (2012) found a pattern of 
decreased connectivity in the posterior cingulate cortex and parietal 
regions, but increased connectivity within the medial prefrontal cor-
tex. Connectivity changes in the supplementary motor area and the 
cerebellum have been reported by Nathan et al. (2014) using a seed-
based approach. While changes in the DMN of mTBI patients were 
found in the study by Vakhtin et al. (2013), no significant differences, 
following multicomparison correction for false positives could be 
observed in another work by Mayer et al. (2014). Similar functional 
connectivity methods might deliver inconclusive results and more re-
search is needed.

Static connectivity is a measure obtained over sufficiently long 
periods of time (Allen et al., 2011). Such measurements assume tem-
poral stationarity that could result in an oversimplified analysis (Allen 
et al., 2012). More detail can be obtained through the dynamic func-
tional network connectivity (dFNC) method (Allen et al., 2012; Sakoğlu 
et al., 2010) that attempts to analyze connectivity in relatively short 
periods of time. Few studies have investigated dFNC in mTBI patients, 
but results indicate a trend of dFNC differences in mTBI patients 
(Mayer et al., 2014). However, the ability to detect group differences 
in fMRI data might be dependent on the data preprocessing pipeline 
used (Damaraju, Allen, & Calhoun., 2014; Power et al., 2014; Vergara 
et al., 2015). In static functional network connectivity, removing mo-
tion variance early in the preprocessing pipeline leads to better de-
tection of group differences (Vergara et al., 2015). Originally in dFNC, 
motion variance has been considered as a preprocessing step to be 
implemented after group-independent component analysis (gICA) 
(Allen et al., 2012). However, studies of functional connectivity pre-
processing provide evidence in favor of processing motion variance 

early in the pipeline (Power et al., 2014). One important concern in 
gICA is the data reduction step usually implemented through principal 
component analysis (Calhoun, Adali, Pearlson, & Pekar, 2001). Data 
reduction introduces nonlinear effects that have not been yet char-
acterized in the context of gICA. Another important difference is that 
processing motion variance after gICA works on aggregated temporal 
information. The aggregated temporal information has been separated 
from corresponding spatial maps. In contrast, motion variance has to 
be processed for each voxel and may produce effects on the four fMRI 
dimensions. In contrast to static connectivity, dFNC is based in cor-
relations estimated over a short period of time. For this reason, dFNC 
may be more sensitive to movement or spikes than the static connec-
tivity analysis. Mentioned characteristics of data preprocessing may 
have an impact in dFNC analysis.

In this work we hypothesize that dFNC will be affected by the se-
lected preprocessing. The estimation of dFNC is preceded by the use 
of a gICA as described by Allen et al. (2012). In our analysis, gICA de-
composes the data in a set of spatial regions and corresponding time 
courses. As the dFNC analysis utilizes the time courses obtained from 
gICA, we will focus on the temporal rather than the spatial informa-
tion. One of the major concerns is whether preprocessing pipelines 
should attempt to correct for motion variance in a voxel-wise manner 
before gICA (Power et al., 2014), as opposed to performing the re-
gression in aggregated time courses obtained after gICA (Allen et al., 
2011; Mayer et al., 2014). This work explores different dFNC results 
obtained from different options for handling subject head motion in 
fMRI preprocessing pipelines.

2  | MATERIALS AND METHODS

2.1 | Subjects

A total of 100 subjects, 50 mTBI patients (25 females), plus 50 age 
(within 3 years), and gender-matched healthy controls (HC), were in-
cluded in this study. The 50 mTBI patients (mean age 27.9 ± 9.2) were 
recruited from local emergency rooms. Subjects classified as mTBI had 
a Glasgow Coma Scale (Teasdale & Jennett, 1974) between 13 and 
15 at first contact with medical staff, no more than 30 min loss of 
consciousness (if present), and no more than 24 hr posttraumatic am-
nesia (if present). The inclusion criterion was based on the American 
Congress of Rehabilitation Medicine as described in Mayer et al. 
(2014). HC and mTBI subjects were excluded if there was a prior his-
tory of neurological disease, major psychiatric disturbance, and addi-
tional closed head injuries with more than 5 min of lost consciousness, 
additional closed head injury within the past year, learning disorder, 
ADHD, or a history of substance abuse/dependence including alcohol. 
All participants provided informed consent in accord with institutional 
guidelines at the University of New Mexico.

2.2 | Imaging

All images were collected on a 3 Tesla Siemens Trio scanner lo-
cated at the Mind Research Network. A 5-min resting-state run was 
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completed by each participant using a single-shot, gradient-echo echo 
planar pulse sequence [TR = 2000 ms; TE = 29 ms; flip angle = 75⁰; 
FOV = 240 mm; matrix size = 64 × 64]. Foam padding and paper tape 
were used to restrict motion within the scanner. Thirty-three contigu-
ous, axial 4.55-mm-thick slices were selected to provide whole-brain 
coverage (voxel size: 3.75 × 3.75 × 4.55 mm). The first five images 
were eliminated to account for T1 equilibrium effects. A total of 145 
images were selected for further analysis. Presentation software, 
Neurobehavioral Systems (RRID: SCR_002521), was used for stimulus 
presentation and synchronization of stimuli with the MRI scanners. 
Subjects were instructed to stare at a foveally presented fixation cross 
(visual angle = 1.02⁰) for approximately 5 min and to minimize head 
movement.

2.3 | Preprocessing pipelines

This work focuses on preprocessing pipelines that differ on the order 
of the preprocessing steps implemented. Here, the words preproc-
essing and pipeline are not used to designate a specific toolbox. The 
goal was not to test differences among known toolboxes. Instead, the 
focus is in the effects that preprocessing ordering has on subsequent 
analysis. The specific variations of the preprocessing order are de-
scribed in this section as well as the definition of each pipeline.

Resting-state fMRI data were preprocessed using statistical para-
metric mapping version 5 (SPM 5; RRID:SCR_007037; http://www.
fil.ion.ucl.ac.uk/spm) (Friston, 2003) including slice-timing correc-
tion, realignment, coregistration, spatial normalization, and transfor-
mation to the Montreal Neurological Institute (MNI) standard space. 
These preprocessing steps will be designated as “STRCoN” for nota-
tion purposes. The voxel size after STRCoN was 3 × 3 × 3 millime-
ters. We established four different preprocessing pipelines based on 
the order of steps, especially the motion artifact correction. Figure 1 
presents a description of each pipeline. The despiking step, desig-
nate as “SpkReg”, consisted on the orthogonalization with respect 
to spike regressors. Each spike is represented by an independent 
regressor valued 1 at the spike time point and 0 everywhere else. 
The DVARS method (Power, Barnes, Snyder, Schlaggar, & Petersen, 
2012) was used to detect spikes and build corresponding regressors. 
Three different thresholds (2.5, 3.0, and 4.0 standard deviations) 
were considered each creating differently preprocessed datasets. 
There was no group difference (p > .50) in the number of spike re-
gressors identified between HC and mTBI groups on any of the three 
thresholds. In the step designated as “MotReg”, time courses were 
orthogonalized with respect to i) linear, quadratic, and cubic trends; 
ii) the six realignment parameters; and iii) realignment parameters 
derivatives. In two of the pipelines, correction for spikes and mo-
tion variance are performed together using one regression analysis. 
This joint step is denoted as “SpkMotReg”. Smoothing and group-
independent component analysis (gICA) are performed one after the 
other in all four pipelines. A FWHM Gaussian kernel of 6 mm was 
used for the “Smoothing” step. The “gICA” step (Calhoun & Adali, 
2012; Calhoun et al., 2001) was performed using GIFT (version 4.0a; 
RRID:SCR_001953; http://mialab.mrn.org/software/gift/) to obtain 
a set of functionally independent resting-state networks (RSN) each 
one composed of a temporal and a spatial part (Calhoun & Adali, 
2012). As this study deals with dFNC, performed analysis focuses 
mainly on the temporal information.

The optimal number of gICA components was determined to be 
70 using a modified version of ICASSO (RRID:SCR_014981; ICASSO 
was included in the GIFT v4.0a package; http://mialab.mrn.org/soft-
ware/gift/) (Himberg, Hyvärinen, & Esposito, 2004; Ma et al., 2011) 
such that the overall R-index is close to the minimum and the index 
quality of at most two components falls below 0.7. The R-index as 
defined in Himberg et al., (2004) is a cluster validity index (Levine & 
Domany, 2001) that constitutes a measure of compactness and sepa-
ration of independent components. This setup was considered a good 
consistency trade-off between RSN quality and clustering validity  
(R-index) considering the differences among all four pipelines. 
However, the three numbers of components 60, 70, and 80 were 
considered to study the effects caused by varying this parameter. 
The combined steps “SpkMotReg” are applied before smoothing and 
gICA in pipeline A (PA), but after gICA in pipeline D (PD). In pipeline 
B (PB) only motion parameters “MotReg” are processed before gICA. 
In pipeline C (PC) only spike regression “SpkReg” is performed before 
smoothing and gICA. PC is similar to the pipeline commonly followed 
in previous mTBI FNC studies (Mayer et al., 2014) and thus represents 

F IGURE  1 Preprocessing pipelines considered for dFNC. The 
main difference is the position on the pipeline where despiking 
(SpkReg) and motion parameters (MotReg) were regressed. 
SpkMotReg correspond to the combination SpkReg and MotReg. 
STRCoN correspond to the initial steps: slice-timing correction, 
realignment, coregistration, and spatial normalization. The figure does 
not show variations in other parameters considered and explained in 
the main text
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our baseline. The order of steps in PD has been also considered in the 
literature (Allen et al., 2011).

The last two steps correspond to interpolation and filtering. 
Interpolation in this work corresponds to the replacement of spike 
time courses by values calculated using a cubic spline. For some pipe-
lines spikes were also processed using a regression, which simply set 
spike time courses to zero. In static connectivity it is possible to simply 
censure spiky time courses (Vergara et al., 2015), but dFNC requires 
the use of interpolation to avoid discontinuities in small time windows 
(Allen et al., 2012). Filtering was implemented using a fifth-order 
Butterworth filter with bandwidth [0.01 0.15] Hz as it has been sug-
gested in previous dFNC literature (Allen et al., 2011, 2012).

2.4 | Dynamic functional network connectivity

Spatial maps were z-transformed and thresholded at |z| > 3.5 to iden-
tify brain areas of relevance in each RSN. Artifactual RSNs were de-
tected and discarded based on their frequency content following the 
method proposed in Allen et al. (2011). RSNs were also manually in-
spected and validated by three experts who discarded RSNs if their 
main activation occurs in areas of white matter or cerebrospinal fluid. 
In addition, RSNs that could not be replicated in all four pipelines were 
not considered. RSN matching was performed by considering spatial 
correlations larger than 0.5 and by visual inspection. A total of 29 non-
artifactual RSNs were selected for further analysis.

Functional relevance of each RSN was determined by assessing 
spatial overlap with the 90 functional regions of interest (ROI) de-
fined by Shirer, Ryali, Rykhlevskaia, Menon, & Greicius (2012). RSN 
groups include subcortical (SBC), auditory (AUD), sensorimotor (SEN), 
cerebellum (CER), visual (VIS), salience (SAL), executive control (ECN), 
DMN, and language (LAN) brain regions. Thalamus and putamen 
constitute the SBC group. There is only one auditory RSN in the left 
superior temporal region. The SEN group embraces regions of the 
supplementary motor area and the postcentral gyrus. The VIS group 
includes calcarine, cuneus, occipital, and fusiform giri. Right insula and 
supramarginal gyrus were classified in the SAL group. Frontoparietal 
networks (van den Heuvel, Mandl, Kahn, Pol, & Hilleke, 2009) consti-
tute the ECN group. The DMN is represented by angular gyrus, ante-
rior and posterior cingulate cortexes. The LAN group consisted of left 
and right middle temporal gyrus.

The dFNC was estimated using the sliding time window correlation 
approach (Allen et al., 2012). Three different window sizes 15, 30, and 
45 TRs rectangle width convolved with a Gaussian (σ = 3 TRs) were 
considered, each slid in steps of 1 TR. The information collected for 
each window consists of windowed correlations between the time 
courses of all RSN pairs. Obtained windows were clustered using the 
k-means method with a L1-norm distance to obtain a set of dFNC 
states, one for each cluster.

2.5 | Difference between mTBI and healthy controls

Before analyzing the influence of preprocessing on classification 
performance it is important to gather evidence of the existence of 

differences between the sample groups mTBI and HC. This is impor-
tant as the baseline is based on mTBI diagnosis, but not on functional 
connectivity. In the case of dFNC, there are a finite set of states that 
the brain can momentarily occupy. One simple analysis in dFNC is 
to tests occupancy rate differences between HC and mTBI. The oc-
cupancy rates are represented by the percentage of dFNC windows 
found on each state and for each subject. An unpaired t-test was used 
to find significant differences in occupancy rates.

2.6 | Pipeline assessment

The first step for this section was to examine the windows for each 
subject, identify windows belonging to the same state, and calculating 
a mean connectivity matrix for each state and pipeline. The frame-
wise displacement (FWD) measure of movement noise introduced by 
Power et al. (2012) was calculated subject wise and separated in two, 
one corresponding to the temporal mean taken over the three trans-
lations (TRN = mean[|△dx| + |△dy| + |△dz|]) and one temporal mean 
for the three rotations (ROT = mean[|△dpitch| + |△dyaw| + |△droll|]).  
An additional vector containing the number of detected spikes (spk) 
was also utilized.

The first objective was to assess differences in functional connec-
tivity among pipelines. A MANOVA analysis was performed within 
each cluster to determine if there were significant differences among 
pipelines. As a second-level analysis, an ANOVA test was performed 
for each dFNC within the state. The analysis was repeated with the 
inclusion of a nuisances regression step to study the possible influence 
of known variability sources on functional connectivity differences 
among pipelines. The covariates included diagnosis, gender, age, TRN, 
ROT, and spk.

The second analysis seeks to find relationships between dFNC and 
covariates of interest (diagnosis, TRN, ROT, and spk) for each pipeline. 
This time the data were segregated in 16 datasets corresponding to 
the combinations of pipelines and states. The strength of the relation-
ship between each dFNC and the covariates was taken as the abso-
lute value of the regression coefficient |β| of each covariate. The linear 
model included vectors for diagnosis, gender, age, TRN, ROT, and spk 
covariates. The set of coefficients |β| were compared for each state 
and among pipelines utilizing ANOVA tests.

A classification procedure was performed utilizing machine 
learning classification and cross validation. The same covariates, 
except for diagnosis, were regressed out before classification and 
cross validation. The regression was performed separate for each 
pipeline and state. A linear Support Vector Machine (SVM) based 
on least squares with soft margin parameter C = 0.01 was uti-
lized to classify subjects in mTBI and HC. Classification accuracy 
was measured using area under the curve (AUC). The overall SVM 
performance was assessed using leave-one-out cross validation 
(LOOCV). This way one AUC measure was obtained for each pipe-
line separately.

High AUC suggests the preference of one pipeline over the oth-
ers. Pipelines acts as different models of data preprocessing, but at 
this point model selection has not been cross validated. Problems with 
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overfitting model selection have been described in Cawley & Talbot 
(2010). A nested optimization loop as displayed in Figure 2 was used 
to select the pipeline model and deal with model selection overfitting. 

The nested loop measured the AUC performance of each pipeline 
using a second LOOCV and the remaining samples, that is, those left 
after leaving the one sample out from the first LOOCV. In this sec-
ond loop, the 95 remaining samples are subject to four independent 
LOOCV corresponding to each pipeline. The LOOCV with the highest 
AUC designate the pipeline with higher chance of correctly classifying 
the first left out sample. These four AUC are saved for further analysis. 
The pipeline choice is also recorded.

3  | RESULTS

Two subjects were identified as outliers with more than 3 standard 
deviations on at least two frame-wise displacement measures. These 
subjects and their respective matched control subjects were excluded 
from the analysis (Mayer et al., 2014). The final number of subjects 

F IGURE  2 Nested LOOCV loop used to assess pipeline 
performances. AUC measures are obtained using an independent 
LOOCV for each pipeline after leaving one sample out. The SVM 
is then trained using data from the pipeline with largest AUC. On 
each inner loop there were 108 different options corresponding to 
the combination of four pipelines, three different spike detection 
thresholds, three different numbers of gICA components, and three 
different sliding-window sizes. The three dots on the figure indicate 
the existence of parameter pipeline variations. AUCs obtained for 
each sample left out were stored and used for further analysis
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F IGURE  3 dFNC centroids obtained for each of the four clusters 
obtained using the k-means algorithm. Each cluster represents a 
particular dFNC state. The picture displays two patterns of each 
strongly and weakly connected dFNC states
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was 96. The spatial maps of resulting RSNs can be observed in the 
provided Figure S1.

One hundred and eight different datasets were available after the 
preprocessing steps. These datasets are the results of the four differ-
ent pipelines (PA, PB, PC, and PD) and the variation of parameters: 
three different spike detection thresholds (2.5, 3.0, and 4.0 standard 
deviations), three different gICA total components (60, 70, and 80), 
and three different dFNC sliding-window sizes (15, 30, and 45 TRs). 
Each spike detection threshold, based on different standard deviations 
(σ), detected a different ratio of spikes per subject: 2.28 for 2.5σ, 1.46 
for 3.0σ, and 0.68 for 4.0σ.

The application of k-means clustering required the estimation of 
the number of clusters. A cluster validity index was obtained repeating 
the k-means clustering and requesting a different number of clusters 
in the range from 2 to 8. We choose four clusters based on the elbow 

criteria as described in Allen et al. (2012). Centroids of obtained clus-
ters are depicted in Figure 3. Clusters were matched among all data-
sets using correlation between centroids. This way, each dFNC state is 
represented by one corresponding cluster matched among pipelines. 
State 1 has the basic structure of a resting-state matrix as it has been 
described before (Allen et al., 2011). State 2 is similar to State 1 with 
the exception of a stronger correlation between different RSN groups. 
State 3 is similar to State 2 except that subcortical RSNs are negatively 
correlated with the rest of the brain. State 1 and State 4 have few dif-
ferences and are states of very low connectivity between RSN groups. 
The RSN groups SEN, CER, and VIS are slightly more connected in 
State 1 than State 4.

3.1 | Occupancy rate results

Figure 4 shows the occupancy rate results. Data from all parameter 
variations were considered, but the analysis was focused on the dif-
ference between pipelines and dFNC states. More strongly connected 
states have lower occupancy and more weakly connected states have 
larger occupancy. In HC, PA and PD exhibited no significant difference 
in occupancy rates between State 1 and State 4, all other occupancy 
rates are different between dFNC states. In mTBI, occupancy rates are 
different between states except for pipelines PB and PC where State 
1 and State 4 are not different.

The t-test results show the difference between HC and mTBI 
samples. State 2 exhibits the largest t-values. Significant differences 
(p < .05) are found for all pipelines in State 1 and State 2. In State 3 
only pipelines PA and PB had significant differences. Although dif-
ferences between State 1 and State 4 are not easily visible from the 
clusters in Figure 3, the difference is evident after considering the oc-
cupancy rate results where mTBI versus HC differences were detected 
in State 1, but not in State 4. Significant t-values indicate that State 
2 increases its occupancy in mTBI compared to HC samples, but de-
creases in State 1 and in State 3 only for PA and PB. This t-test pattern 
is similar to that observed in occupancy rates.

3.2 | Functional connectivity

In this analysis we utilized a mean dFNC matrix per state for each 
subject. Differences in dFNC among the four pipelines were detected 
on all states after a MANOVA analysis. The largest Wilk’s λ was 0.66 
with the smallest χ2 as 2284.3 (1218 degrees of freedom). As signifi-
cant differences were detected on all states, we proceeded to find 
those differences by second-level ANOVA tests and summarize the 
results. Figure 5 displays the mean absolute value of the correlation 
over all dFNCs on each state. The connectivity of PD was larger in 
State 1 compared to the other three pipelines. State 2 exhibited no 
difference. In State 3, PC and PD were characterized by smaller con-
nectivity compared to PA and PB. State 4 shows the weakest connec-
tivity magnitude with no dFNC strength difference among pipelines. 
The comparison among the three spike detection thresholds indi-
cated no significant differences among the pipelines. The number of 
components produced significant differences in all four states. The 

F IGURE  5 Summarized functional connectivity. The summary 
includes the dFNC mean of each pipeline and state. In the case 
of preprocessing parameters the results are organized by state. 
Significant results (p < .05) are marked with asterisk (*)

0.25

0.3

0.35

0.4

0.45

State 1 State 2 State 3 State 4

M
ea

n|
dF

N
C|

0.25

0.3

0.35

0.4

0.45

State 1 State 2 State 3 State 4

M
ea

n|
dF

N
C|

Thr. 2.5

Thr. 3.0

Thr. 4.0

0.25

0.3

0.35

0.4

0.45

State 1 State 2 State 3 State 4

M
ea

n|
dF

N
C|

60 ICs

70 ICs

80 ICs

0.25

0.3

0.35

0.4

0.45

State 1 State 2 State 3 State 4

M
ea

n|
dF

N
C|

wSz 15

wSz 30

wSz 45

PA PB PC PD

*

* *

*

*

* *
* *

*

* **
*

*

*

*

*

*
*

*

*
*

*

*
*

*



     |  7 of 11VERGARA et al.

dFNC strength was in general larger when 70 total components were 
selected. Differences in sliding-window size had the same pattern 
on each state with decreasing dFNC strength as the window size 
increases.

Figure 6 display results for the strength of regression coefficients 
from covariates of interest. Correlation (Corr) between diagnosis and 
head movement covariates was calculated to see if these two signifi-
cant effects might be related, but no significant correlation was found. 
These measurements are as follows: Corr(dia,TRN)   = 0.16 (p = .12), 
Corr(dia,ROT)  = 0.16 (p = .13), Corr(dia,spk = 2.5σ)  = −0.05 (p = .61), 
Corr(dia,spk = 3.0σ)   = 0.01(p = .89), and Corr(dia,spk = 4.0σ)   = 0.0 

(p = 1.0). PA showed a significantly higher strength compared to the 
other pipelines in State 3. However, PA also exhibit significantly higher 
strength with TRN in State 3. PC and PD exhibited significantly higher 
strength than the other pipelines. However, PD was significantly af-
fected by the number of spikes in State 2. PA and PB were more af-
fected by the TRN covariate, and PD by ROT and spikes. PC was the 
only pipeline that lacked significant results with nuisance covariates 
in Figure 6.

Further analysis was performed on the different parameters by re-
stricting the data to a specific state or pipeline. The significant results 
are presented in Figure 7. The parameter producing more differences 
across the different tests was the sliding-window size. The observed 
trends were decrements of the mean dFNC strength (see Figure 5) and 
the diagnosis coefficient magnitude (see Figure 7) linked to increments 

F IGURE  6 Regression coefficient strength. Results used the 
absolute value of the regression coefficients averaged over all 406 
(29*28/2) connectivity values. The mean coefficients were compared 
using ANOVA tests. Asterisks indicate significantly higher (p < .05) 
coefficient magnitude within the state comparison
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of window size. In addition, the number components affected the TRN 
covariant for the PD pipeline. However, PD did not show this trend in 
Figure 6.

3.3 | Classification results

The classification results for the separate single LOOCV pipelines 
were as follows: PA(63%), PB(71%), PC(66%), and PD(66%). These 
results were obtained by applying an independent LOOCV for each 
pipeline resulting in four values where variability cannot be studied. At 
first it seems that PB achieves the highest classification, but this result 
must be cross validated to study the stability of picking PB.

At this point there are dFNC features available from 108 differ-
ent datasets representing different pipelines and parameter settings. 
Although one LOOCV-SVM can be run for each dataset, results ob-
tained this way are not suitable for comparing the different datasets. 
The nested double LOOCV in Figure 2 was designed to measure these 
characteristics as on each outermost LOOCV loop the datasets enter 
a contest and the best is chosen to then classify. The number of times 
each dataset was selected as the best to use for training was counted 
for each of the 96 subjects. As a result the dataset with PA as pipe-
line, a threshold of 3.0, a number of components of 80, and a sliding-
window size of 45 TRs was chosen 93 times. The dataset with PB as 
pipeline, a threshold of 4.0, a number of components of 80, and a 
sliding-window size of 15 TRs was chosen for the remaining three iter-
ations. No other dataset was chosen as the best on any iteration. The 
final classification had an AUC of 73%. This result indicates high model 
stability for the dataset chosen 93 times. After this analysis, a total of 
96 AUC measurements were available for each of the 108 datasets 

given the way the nested LOOCV in Figure 2 works. Figure 8 displays 
plots of mean AUC obtained from the LOOCV implementation shown 
in Figure 2. After bootstrapping the 10368 (108 datasets X 96 sub-
jects/LOOCV loops) AUC values to estimate a null model we found 
five significant AUCs. Each pipeline has at least one AUC result higher 
than chance, being PD the smallest one with 63.4%. Coincidentally 
the same dataset that was chosen 93 times by the nested LOOCV 
also exhibited the highest mean AUC of 72.5%. Further analyses were 
performed to investigate differences solely for pipeline and parame-
ters. This time PB showed the highest mean AUC after considering 
only pipeline differences. Although a specific combination of parame-
ters using PA resulted in the highest AUC, PB achieved higher perfor-
mance after averaging AUCs from different parameter combinations. 
PC and PD had similar performance, but smaller than the other two 
pipelines. Results for despike threshold indicate that 2.5σ, the small-
est threshold, also resulted in lower AUC. The AUC was significantly 
higher when using 70 total components. Finally, the AUC significantly 
decreases as the sliding-window size increases. The AUC trends for 
number of components and sliding-window size are similar to those 
found in Figure 5, but the despike threshold followed a different 
pattern.

4  | DISCUSSION

This work tested different preprocessing pipelines observing the 
effect produced in dFNC results. In addition, pipelines were tested 
using differences among important parameters of the dFNC analysis. 
Just as it was observed for static connectivity (Vergara et al., 2015) 

F IGURE  8 Classification performance 
results. Data obtained from the nested 
LOOCV scheme depicted in Figure 2 
allow the estimation of classification 
performance variability by subject. An 
AUC value was calculated for each subject 
left out. This figure shows the mean AUC 
values averaged on the subject dimension. 
After a bootstrapped null model only five 
AUC were determined to be significantly 
larger than chance. These AUC values were 
labeled in this figure. Four extra ANOVA 
tests were used to study the effect that 
each variation of pipeline and parameters 
has on the mean AUC. The significant 
differences (p < .05) are indicated by an 
asterisk (*)
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preprocessing impacts the results obtained in dFNC. To the best of 
our knowledge, this is the first time preprocessing have been tested 
in dFNC analysis. This work provides further evidence that pipelines 
where motion variance is processed before gICA tend to deliver 
stronger group differences. These results agree with suggestions 
for ROIs preprocessing where motion variance is removed before 
smoothing and ROI processing (Power et al., 2012, 2014). Although 
gICA and ROI are different techniques for time-series estimation, re-
sults are in favor of following the recommendation for ROI where rea-
lignment parameters are regressed early in the preprocessing.

One of the first assumptions in this work is that dFNC differs be-
tween HC and mTBI subjects. Static FNC difference has been utilized 
in the past to classify these two sample groups indicating that con-
nectivity differences actually exist (Vergara, Mayer, Damaraju, Kiehl, &  
Calhoun, 2017). In the present analysis, occupancy rate differences 
provided evidence that dFNC data also differs between these two 
sample groups. In addition to the numerical observations presented 
here, there are several studies that support the assumption of func-
tional connectivity differences. We can find in the literature examples 
where mTBI subjects exhibit increased functional connectivity when 
compared to controls. Sours et al. (2013) reported increased connec-
tivity between salience and task-positive networks. The connectivity 
between cerebellum and the SMA has been found to be stronger in 
mTBI patients (Nathan et al., 2014; Vergara et al., 2015). The evidence 
points to a pattern of increased connectivity involving salience, sen-
sorial, auditory, and visual areas (Mayer et al., 2011, 2014). Given that 
State 2 represents a state with strong connectivity across the brain, 
increased occupancy rates for this state could explain why higher 
connectivity is observed in static functional connectivity. Another 
important characteristic is that larger occupancy rates for the state 
represented by State 2 decreases the occupancy in all the other states. 
Decreased occupancy for State 3, where subcortical networks had a 
more negative dFNC value, might affect overall subcortical connec-
tivity. This provide evidence for a thalamic abnormality based on in-
creased functional connectivity as it has been previously reported 
in the literature (Sours, George, Zhuo, Roys, & Gullapalli, 2015; Tang 
et al., 2011). This is reflected in State 2 where the thalamus has pos-
itive correlations with other RSNs in the default mode and the cere-
bellum groups. This correlation enhancement can be explained by a 
compensatory mechanism for detrimental sensorial symptoms in mTBI 
patients (Sours et al., 2015). Structural corticothalamic abnormalities 
of white matter in TBI patients are linked to more serious symptoms 
including posttraumatic stress disorder (Yeh et al., 2014). Obtained 
results cannot directly explain decreased connectivity linked to the 
DMN reported by previous studies (Bonnelle et al., 2011; Sharp, Scott, 
& Leech, 2014; Sharp et al., 2011). Our analysis is in favor of a stron-
ger anticorrelation relationship between DMN and other cortical re-
gions. If the DMN interference hypothesis is correct (Sonuga-Barke &  
Castellanos, 2007), this connectivity enhancement might indicate a 
rupture of the balance between DMN and task-positive networks af-
fecting goal-directed attention. Based on this discussion, we assume 
that diagnosis information is effectively related to dFNC contrast be-
tween mTBI and HC samples. Furthermore, our focus is to identify 

the preprocessing pipeline sensitive to this dFNC contrast and less 
sensitive to parameter selection and nuisance signals.

The results for the dFNC strength in Figure 5 suggest that resid-
ual head movement variance may have a significant effect on some 
dFNC state. This can be deducted from the fact that preprocessing 
motion parameters before gICA resulted in a trend of higher abso-
lute value of dFNC strength for PA and PB in State 2 and State 3. 
These two states also exhibit higher occupancy rates and occupancy 
rate differences between mTBI and HC. Together, these observations 
suggest that PA and PB are appropriate pipelines for the detection 
of increased static connectivity in mTBI samples (Sours et al., 2013; 
Vergara, Mayer, Damaraju, Hutchison, & Calhoun, 2017; Vergara et al., 
2015) previously mentioned. However, this panorama is not fully clear 
for the results in Figure 6. The relationship between dFNC and diag-
nosis was higher for PC and PD in State 2, but higher for PA in State 3. 
Although PC and PD exhibited increased relationship with diagnosis in 
State 2, the occupancy rate is smaller for this state which explains why 
this increased sensitivity with diagnosis is not similarly observed in 
static connectivity (Vergara, Mayer, Damaraju, Hutchison, et al., 2017). 
These results suggest that the difference between static and dynamic 
connectivity is rooted on the difference in occupancy rate instead of 
connectivity strength. In contrast, the results from classification per-
formance suggest that PC and PD contain less information useful to 
distinguish HC from mTBI. The AUC results in Figures 8 and 4 agree 
that regressing motion parameters before gICA, as was performed in 
pipelines PA and PB, creates better sensitivity to diagnosis, but with-
out pointing to a specific state. Classification results suggest that a 
particular parameter combination in PA produced a very stable model 
selected 96.8% of the times by the nested LOOCV. Although the max-
imum AUC result was obtained in PA for a specific combination of pa-
rameters, PB had a higher mean AUC than PA after averaging results 
from considered parameter combinations. In general, PB allowed the 
best differentiation between HC and mTBI in case variations of pre-
processing parameters cannot be cross validated as is the case of most 
studies and applications.

Differences in preprocessing parameters exhibited different 
trends. The threshold used for spike detection was the parameter that 
resulted in the fewest number of observed effects. The most notable 
observation was a reduction in the AUC when using 2.5σ compared to 
the other two thresholds. This difference does not seem to be related 
to the difference in number of spikes between HC and mTBI subjects 
as the correlation with diagnosis was not significant and lower than 
0.05. The difference could be explained by particular differences in 
the spike magnitude and their effect on connectivity (Damaraju et al., 
2014). However, results in Figure 5 indicate this effect on connectiv-
ity is not a major source of differences and was observed in only one 
state. It is possible that the SVM was better at detecting the difference 
caused by spikes than the other analyses considered in this work. As a 
parameter, the total number of independent components had a consis-
tent pattern through all analyses. Results for 70 components exhibited 
higher mean connectivity and higher mean classification performance 
than the other two options. These results indicate an optimal number 
of gICA components as 70, such as it was initially determined using 
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ICASSO. There was only one unfavorable relationship with transla-
tional head motion affecting PD, as displayed in Figure 7. However, 
the effect was not detected on the other three pipelines. The pattern 
for sliding-window sizes was also very consistent. Smaller sizes pro-
duced increases in several measures including mean dFNC, diagnosis 
regression coefficient, and mean classification performance. Windows 
with a shorter temporal span might allow for the detection of dif-
ferences in temporal variations between mTBI and HC. In summary, 
evidence indicates that an optimal number of gICA component esti-
mation and shorter sliding-window sizes allow for a higher sensitivity 
of group differences.

Besides the different parameters tested, the pipelines considered 
in this work varied only on the position that spikes (SpkReg) and re-
sidual motion variance (MotReg) preprocessing steps occupy on each 
pipeline. Specifically, the order of steps varied according to the posi-
tion of SpkReg and MotReg before or after smoothing and gICA. The 
implementation of SpkReg utilized was to censor spiky time courses. 
We proceeded with spike censoring following previous suggestion in 
the literature (Grouiller et al., 2011; Lemieux, Salek-Haddadi, Lund, 
Laufs, & Carmichael, 2007). In contrast, other studies suggest to re-
move spike time points by replacing the spike point with an interpo-
lated value extracted from surrounding (no spike) times values (Allen 
et al., 2011). This second approach seems necessary for dFNC anal-
ysis (Allen et al., 2012). The effect of the SpkReg step in PB and PD 
might have been redundant as applied interpolation step obliterated 
spike censoring. Nevertheless, testing SpkReg before smoothing in 
PA and PC allowed us to observe how it would affect the final re-
sults. The main difference for PA and PC is that spikes censoring was 
performed in a voxel-wise manner thus removing larger quantities of 
information than in PB and PD. The best classification result was ob-
served within the set of PA datasets. In general, PA and PB achieved 
the best classification performances with PB being best in the mean 
AUC, but PC and PD gave a similar and smaller performance. This 
result agrees with previous observation in static functional connec-
tivity indicating that PA achieves the highest classification perfor-
mance, followed by PB, for the same dataset utilized here (Vergara 
et al., 2015). Both PA and PB are pipelines with MotReg performed 
before smoothing and gICA (see Figure 1) consistently suggesting 
that motion variance should be dealt with before gICA.

One limitation in our study was the scan duration of 5 min. 
Several studies utilize larger scan time which may provide a better 
chance of observing dFNC patterns per subject (Hutchison et al., 
2013). However, evidence suggests that 5 min is enough to acquire 
a stable connectivity signal (van Dijk et al., 2010) and is thought as 
minimum necessary (Allen et al., 2012). Another limitation is that we 
preferred a spike preprocessing method where spike repressors can 
be included with FWD repressors in one linear model. However, other 
methods to handle spikes information may have different effects.

In conclusion, the choice of preprocessing steps order significantly 
affects final results. Removing motion variance before smoothing and 
gICA, but handling spikes information after gICA as in PB might be the 
best bet to provide higher sensitivity to diagnosis contrasts in dFNC. This 
sensitivity is highly dependent on preprocessing parameters selected 

with a trend of better classification performance for smaller sliding-
window sizes and an optimal number of gICA-independent components.
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