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Plants constantly undergo external mechanical loads such as
wind or touch and respond to these stimuli by acclimating
their growth processes. A fascinating feature of this mechanical-
induced growth response is that it can occur rapidly and at long
distance from the initial site of stimulation, suggesting the exis-
tence of a fast signal that propagates across the whole plant. The
nature and origin of the signal is still not understood, but it has
been recently suggested that it could be purely mechanical and
originate from the coupling between the local deformation of
the tissues (bending) and the water pressure in the plant vascu-
lar system. Here, we address the physical origin of this hydrome-
chanical coupling using a biomimetic strategy. We designed soft
artificial branches perforated with longitudinal liquid-filled chan-
nels that mimic the basic features of natural stems and branches.
In response to bending, a strong overpressure is generated in
the channels that varies quadratically with the bending curva-
ture. A model based on a mechanism analogous to the ovaliza-
tion of hollow tubes enables us to predict quantitatively this
nonlinear poroelastic response and identify the key physical
parameters that control the generation of the pressure pulse. Fur-
ther experiments conducted on natural tree branches reveal the
same phenomenology. Once rescaled by the model prediction,
both the biomimetic and natural branches fall on the same master
curve, enlightening the universality of our poroelastic mechanism
for the generation of hydraulic signals in plants.
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S ince Darwin and Knight (1, 2), scientists have known that
plants are able to perceive external mechanical perturbation

and respond to these stimuli by modifying their growth, a pro-
cess called thigmomorphogenesis (3–6). In response to mechan-
ical stress, plants tend to decrease their elongation growth and,
for plants having secondary growth like trees, increase the diam-
eter of their organs. Over the past decades, reports have refined
our understanding of thigmomorphogenesis at the biomechan-
ical, physiological, and molecular levels (4, 7–12). A remark-
able feature of this mechanically induced response is that it
can be local and also nonlocal. When a shoot is bent, a sud-
den arrest of the elongation growth is observed far away from
the perturbed area (13) within minutes (8). These experiments
demonstrate that plants can carry mechanosensing information
over a long distance (from centimeters to meters) very rapidly
throughout the whole organ. Among the different hypotheses
for this long-distance signaling [hormones transport and elec-
trical signals (14–16)], it has long been argued that hydraulic
pulses could provide a unique way for rapid communication in
plants, thanks to their highly connected hydraulic network that
brings water from the roots to the leaves (16–18). Propagat-
ing hydraulic waves were first mentioned by Ricca in the 1920s
during his study of the sensitive plant Mimosa pudica (19) and
later observed in different organisms in response to wounding
stress, often in association with electrical waves of depolariza-
tion (20–22). Recently, Lopez et al. (23) observed that bend-
ing the stem of a whole living tree or an isolated branch seg-

ment generates a sudden overpressure that propagates rapidly
in the plant vascular system. This hydraulic signal induced by
a nonwounding elastic stress appears as a promising candi-
date for the rapid communication of the thigmomorphogenetic
response. However, the physical mechanisms responsible for its
generation and the parameters that govern its properties remain
poorly understood. In mechanics, the hydraulic response of a
porous material saturated with water, like a branch or a stem, is
described by the poroelastic theory (24, 25). In this framework,
the bending of a branch is expected to induce local water expul-
sion/suction in response to the longitudinal compression/tension
strains of the plant tissues from both sides of the neutral sur-
face of the branch. However, according to the linear beam the-
ory, these local changes of volume should cancel each other out
in average over the whole system. Therefore, it remains unclear
how hydraulic signals could be generated in plants from such
bending stress.

The objective of this study is to understand the origin of this
hydromechanical coupling and the physical parameters that con-
trol the generation of hydraulic pulses induced by bending in
plant tissues. To this end, we use a biomimetic approach (26–
29) and study the hydraulic response to bending of soft artificial
branches that mimic the basic structural and mechanical features
of natural stems and branches. While previous theoretical and
experimental works have studied the linear behavior of poroe-
lastic beams (30–32), very few have investigated the large defor-
mation regime of fluid-infiltrated media composed of cellular
materials like wood or soft plant tissues (33). In this work, we
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demonstrate a generic nonlinear mechanism responsible for the
generation of hydraulic pulses in both biomimetic and natural
tree branches representative of wood diversity.

Results
Evidence of Hydraulic Pulses Induced by Bending in Soft Biomimetic
Branches. From a mechanical perspective, tree branches and
stems can be viewed in first approximation as flexible elastic
beams composed of microchannels that carry water longitu-
dinally (34, 35) (Fig. 1A). To mimic these minimal ingredi-
ents, we use polydimethylsiloxane (PDMS)-based 3D molding
techniques to design soft synthetic branches (Young modu-
lus E ∼ 0.1− 1 MPa, radius R = 5 mm, length L= 100 mm)
perforated with parallel longitudinal microchannels (diameter
d = 500 µm) with various channel numbers and array patterns
(Fig. 1 B and C and Materials and Methods). The channels
are filled with a nonvolatile liquid (silicone oil) and connected
together to a pressure sensor at one extremity of the beam, while
the other extremity is closed (Fig. 2A). To bend the branch, we
design an original setup in which one extremity of the beam
is fixed and the other is moved by using a system of pivoting
arms connected to a linear displacement motor (Fig. 2B, Bend-
ing Setup for the Biomimetic Branches, and Fig. S1). This enables
us to apply a uniform curvature on the soft beam, while mini-
mizing compressional and shearing effects within the material.
The bending strain εB is then defined as the maximal longitu-
dinal strain in the beam: εB =CR (36), where C is the mean
curvature measured by image analysis.

A typical pressure response of the synthetic branch for a
bending strain εB of order 10% is shown in Fig. 2C. Here,
the beam is initially straight, and the internal fluid pressure in
the channels is equal to the atmospheric pressure Pref =P0 (no
effect of the initial pressure is noticed as long as |Pref−P0|
is small compared with the beam Young’s modulus E ). In
response to bending, a mean overpressure rises up inside the
channels and reaches a steady value ∆P of the order of a
few kilopascals. When the branch is brought back to its initial
straight shape, the overpressure goes back to zero, showing the
reversible nature of this hydraulic response. The striking obser-
vation is that the overpressure strongly increases with the bend-
ing strain, with a quadratic relationship ∆P ∝ ε2B that is inde-
pendent of the bending protocol (Fig. 2D). This nonlinearity
does not come from the intrinsic material properties, since the
maximal strain in our case (εB ∼ 0.1− 0.2) is far below the lin-
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Fig. 1. Natural vs. biomimetic tree branches. (A) X-ray microtomography
of a Vitis vinifera branch (grape vine), showing the network of longitudi-
nal conducting vessels (dark gray). (B) Sketch of the mold used to design
the synthetic branch with the different channel patterns investigated (Top,
square array, N = 37; Middle, square array, N = 12; Bottom, circular array,
N = 30): i, piano strings; ii, POM plate; iii, Plexiglas tube; iv, Plexiglas block.
(C) Picture of the synthetic branch made of PDMS elastomer after removal
from the mold (Materials and Methods).
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Fig. 2. Hydraulic pulse induced by bending in PDMS biomimetic branches.
(A and B) Sketch (A) and picture (B) of the bending setup and pressure mea-
surements, where ∆θ is the variation of angle between the free extremity
and the clamped extremity of the beam, C the mean curvature of the beam,
R the beam radius, Pref is the initial fluid-pressure in the channels, and P− P0

is the fluid-pressure in the channels relative to the atmospheric pressure.
(C) Pressure response to bending/unbending sequence in a closed system
(square channel pattern, N = 12, E = 1.4 MPa, εB = CR' 0.1). (D) Steady
overpressure ∆P vs. bending strain εB = CR. Filled square, bent/unbent
cycles with return to the straight state; open square, positive ramp of strain.
(E) Overpressure ∆P vs. bending strain εB for various channel patterns, num-
ber of channels N, and PDMS Young moduli E. The solid lines in D and E are
quadratic fits of the data.

ear elastic limit of the PDMS elastomer (ε∼ 1). Experiments
with beams of different Young’s modulus E and channel geome-
tries all exhibit the quadratic relationship between the pressure
and the bending strain (Fig. 2E). The response appears inde-
pendent of the channels’ number or distribution, but strongly
increases with the beam’s rigidity. This confirms that the gen-
eration of these hydraulic pulses arises from a purely elastic
phenomenon.

Physical Modeling: A Nonlinear Poroelastic Coupling. Our biomi-
metic system therefore contains the relevant physical ingredi-
ents needed to reproduce the hydraulic pulse induced by bending
recently reported in plant tissues (23). However, explaining the
generation of this pulse is not straightforward. Classical linear
beam theory tells us that the total volume of a symmetrical bent
beam should remain constant, regardless of its elastic proper-
ties (36). This would predict a null pressure variation in a closed
poroelastic beam with interconnected channels, in contradiction
with observations.
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To solve this paradox, we propose a nonlinear mechanism
analogous to the ovalization of thin elastic tubes (37). When
an elastic beam is bent, the longitudinal elastic strain (exten-
sion or compression) increases linearly with the distance to the
neutral surface (Fig. 3 A, Left). This induces a bending elastic
energy per unit volume that varies quadratically with the radius
of the beam, Ub ∼Eε2B ∼EC 2R2, where E is the beam Young’s
modulus and C is the bending curvature, assumed uniform here
(36). Therefore, a way for the system to lower the bending elas-
tic energy is to squeeze its cross-section, hence decreasing the
beam radius by a quantity δ in the transverse direction (Fig. 3 A,
Right). The maximal bending strain then reduces to C (R−δ) and
the bending energy to Ub ∼EC 2(R − δ)2. However, this trans-
verse compression δ/R involves the cost of a positive compres-
sive energy in the transverse direction Uc ∼E(δ/R)2. By mini-
mizing the sum of the bending and compressive elastic energy,
d
dδ

(Ub + Uc) = 0, the transverse compression is found to vary
quadratically with the bending longitudinal strain: δ/R∼ ε2B . For
an elastic beam perforated with longitudinal channels, this com-
pression is associated with a reduction of the channels’ vol-
ume ∆Vc/Vc ∼−δ/R, where Vc is the total volume of the
channels (38). If now the channels are filled with an incom-
pressible liquid and closed, this reduction in volume is con-
verted into a global rise of pore pressure ∆P =−B∆Vc/Vc ,
such that:

∆P = γBε2B . [1]

The coefficient B , which relates the variation of liquid volume
in the channels to the change of pore pressure, is an elastic bulk
modulus known as the inverse of the specific storage coefficient
in the poroelastic literature (39). Dimensionally, B is propor-
tional to the beam Young’s modulus E and depends on the chan-

A

B

Fig. 3. Mechanism of hydraulic pulse generation and poroelastic model-
ing. (A) The nonlinear coupling between bending and transverse modes
of deformation induces a transversal squeezing of the branch’s channels
δ/R ∝ ε2

B and thus an overpressure in the channels varying as ∆P ∝ Bε2
B,

where B is the elastic bulk modulus of the branch. (B) Overpressure ∆P nor-
malized by the measured elastic bulk modulus B as a function of the bending
deformation εB for all biomimetic branches studied (same symbols as in Fig.
2E). The solid line gives the best quadratic fit of the data in log–log scale:
∆P/B = (0.55± 0.02)× ε2

B (R2 = 0.972).

nels’ distribution and geometry. The dimensionless factor reads
γ= 1/2 in the framework of this simple energy model, which
assumes a uniform transverse compression (see Energy Model
for Anisotropic Beams). A more elaborate model shows that the
transverse compression is actually nonuniform and maximal at
the neutral line (Materials and Methods, Eq. 2). As a result, γ is
found to weakly depend on the channels’ distribution and varies
between 0.56 and 0.59 for our biomimetic beams (Materials and
Methods, Eq. 4).

Our model therefore predicts that the bending of poroelas-
tic beams filled with a liquid generates a global increase of the
pressure that varies quadratically with the bending strain, as
observed experimentally. To test Eq. 1, we independently mea-
sure the elastic bulk modulus B of the biomimetic branches
(Materials and Methods, Eq. 2). As predicted, data for vari-
ous Young’s modulus and channel geometry all collapse into
a single curve of slope 2 in log–log scale when overpressure
is normalized by the bulk modulus B (Fig. 3B). The prefac-
tor γ found experimentally (0.55± 0.02) agrees with the pre-
diction of the model, showing the relevance of the nonlin-
ear mechanism we propose for the generation of hydraulic
pulses in the biomimetic porous branches (see Influence of the
Bending Mode on the Pressure Response and Fig. S2 for addi-
tional comparison with the model in the case of a nonuniform
curvature).

Experiments on Natural Woody Branches. To check the validity
of the model in the context of plants, we conduct experi-
ments on natural tree branches and stems (Materials and Meth-
ods and Plant Materials). Three species representative of the
wood anatomy diversity are studied: a gymnosperm species
(P. sylvestris L.), whose conducting hydraulic network is made of
tiny and short conduits (tracheids) regularly distributed; a ring
porous angiosperm species (Quercus ilex L.), where the large
conducting vessels are concentrated in the earlywood zone; and
a diffuse porous angiosperm species (P. alba× tremula L. clone
717-1B4), where the conducting vessels are homogeneously dis-
tributed in the annual ring structure (40). Freshly cut, well-
hydrated branches are connected at one end to a pressure sensor
and sealed at the other end to create a closed vascular system
(Fig. 4A and Materials and Methods).

First, we observe that bending generates a large increase of the
water pressure in the xylem, hence confirming the first observa-
tions of Lopez et al. (23) (Fig. 4B). The overpressure is indepen-
dent of the bending rate or bending history (Fig. 4C), indicating
a reversible response as in the case of the biomimetic branches.
Second, for all branches and species studied, we again recover a
quadratic relationship between the overpressure and the bending
strain (Fig. 4D), once the pressure ∆P∗ and the bending strain
ε∗B are properly defined to take into account dead-volume effects
and the rest natural curvature of the branches (see Extension of
the Model to Beams with a Rest Curvature, Fig. S3, and ref. 41 for
the generalization of the model to naturally curved branches).
The amplitude of the response for a given strain also strongly
depends on the species or growing conditions, in addition to
large intraspecific dispersions. By fitting the averaged data for
each species and growing conditions by a quadratic law ∆P∗=
a×ε∗B2, we found a clear positive correlation between the ampli-
tude factor a and the longitudinal Young’s modulus E‖ of the
branches (Fig. 4E). The case of P. alba × tremula L. is especially
instructive. Although all branches come from the same inbred
line, the hydraulic pulse induced by bending is much higher in
trees grown outside, which show much stiffer mechanical prop-
erties (red symbols in Fig. 4 D and E), than trees grown indoor,
which show softer properties (black symbols in Fig. 4 D and E).
This is a strong indication that elasticity, like in the biomimetic
systems, controls the generation of the hydraulic pulse in natural
branches.
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Fig. 4. Hydraulic pulse induced by bending in natural tree branches. (A) Sketch of the experimental setup, where Ltot is the total branch length and Lb the
bent length. (Scale bar, 5 cm.) (B) Xylem water pressure measured at the fixed extremity of a pine branch (Pinus sylvestris L.) in response to a bent/unbent
sequence. (C) Relationship between the overpressure and the bending strain for the same branch using two different bending protocols: incremental step
displacement (filled symbols) and step displacement with return to the initial position after each bending (open symbols). Here, ∆P∗ = ∆P× (Ltot/Lb) and

ε∗B = εB(1 + ε0
B/εB)1/2, where εB = R(C − C

0
) and ε0

B = RC
0
, with C

0
the mean curvature of the branch at rest (Extension of the Model to Beams with a Rest

Curvature). The solid line is a quadratic fit of the data. (D) Overpressure ∆P∗ vs. bending strain ε∗B averaged over n branches for different tree species and
growing conditions (symbols) with quadratic fit a× ε∗B

2 (solid lines). Green: P. sylvestris L., n = 6, a = 0.056 ± 0.008 GPa, R2 = 0.91; blue: Q. ilex L., n = 5,
a = 0.070±0.005 GPa, R2 = 0.94; red: Populus alba× tremula L. grown in field condition, n = 7, a = 0.139±0.013 GPa, R2 = 0.88; black: P. alba× tremula L.
grown in greenhouse conditions, n = 4, a = 0.038 ± 0.003 GPa, R2 = 0.98). Each symbol corresponds to a running average over five data (seven data for
poplar in field conditions) with an overlap of 50%; error bars give the SD. (E) Coefficient of the quadratic fit a as function of the longitudinal Young’s
modulus E‖ (same color as in D). The coefficient a is found proportional to E‖ (solid line: linear fit, R2 = 0.96).

Comparison Between the Natural and Biomimetic Systems. To fur-
ther investigate the similarity between the synthetic and biologi-
cal branches, we gather in the Fig. 5 Inset the pressure response
obtained in all systems as a function of the bending strain.
As expected, for a given strain, the amplitude of the pressure
pulse is almost three orders of magnitude larger in the natu-
ral woody branches, whose Young’s moduli are of the order of
a few gigapascals, than in the soft synthetic branches, whose
Young’s moduli are of the order of a few megapascals. More
precisely, the model predicts that the relevant parameters con-
trolling the response should be the elastic bulk modulus B of the
porous beam. Such mechanical property is difficult to measure
or compute in natural branches, as it would require the knowl-
edge of both the anatomy of the conductive network and the
transverse elastic properties of the wood. However, we are able
to obtain reliable measurements on the poplar branches grown
outdoors, giving B = 0.37± 0.08 GPa, that is B 'E‖/18 (Mate-
rials and Methods, Measurement of the Elastic Bulk Modulus in
Woody Branches, and Fig. S4). The bulk modulus of the other
species or other growing condition is then estimated from their
longitudinal Young modulus by assuming the same relationship
to hold. Remarkably, when the pressure response is normalized
by the value of the elastic bulk modulus of each branch, data
from the biomimetic and biological systems all collapse on the
same master quadratic curve over a range of 5 decades (Fig.
5). The prefactor of the law γ' 0.50 ± 0.01 is also compatible
with the model prediction. This latter observation may appear
surprising, as the model was built for isotropic elastic materials,
while wood is highly anisotropic (orthotropic) (33, 34). A crude
generalization of the energy model for orthotropic media gives:
∆P =B(E‖/4E⊥)(1 − ν⊥)/ψ × ε2B , where E⊥ is the Young’s
modulus in the transverse direction, ν⊥ is an effective 2D trans-
verse Poisson’s ratio, and ψ is the volume fraction of the con-
ductive channels (see Energy Model for Anisotropic Beams). Our
results on natural tree branches showing that ∆P/B ∼ ε2B there-

fore suggest that (E‖/4E⊥)(1 − ν⊥)/ψ∼ 1, compatible with
mechanical properties of green woods in a wide range of tree
species (E‖∼ 10E⊥, ν⊥∼ 0.6, ψ∼ 0.5) (33, 42). Interestingly,
our prediction can also be compared with the experiments of
Lopez et al. that reported hydraulic pulses in other tree species
(23). In their study, they bent branches open at both ends and sys-
tematically measured the flux of water expelled during bending
increments. We reanalyze their data to extract the total amount
of water expelled ∆Vc/Vc as a function of the bending deforma-
tion εB . Although the species and experimental protocol (open
vs. closed system) differ from our study, their data are found to
follow the quadratic law predicted by our mechanism [Revisiting
Lopez et al. (2014) and Fig. S5]. The prefactor of the quadratic
law is also of order one, which gives another independent mea-
sure that fulfills the relationship (E‖/4E⊥)(1 − ν⊥)/ψ∼ 1 in
woody branches.

Discussion
Hydraulic pulses induced by bending were recently put for-
ward as a promising pathway for the rapid transmission of
mechanosensing information in plants. However, how such sig-
nals could be physically generated, and how they rely on the
biomechanical traits of plant tissues remained poorly under-
stood. In this work, we address these issues using a biomimetic
approach. We reveal a generic mechanism for the generation of
hydraulic pressure pulses under bending, both in soft artificial
branches and natural tree branches. Our mechanism relies on
a nonlinear coupling between the bending and transverse mode
of deformation of the beam that squeezes its cross-section, by
analogy with the ovalization of thin, hollow tubes. This flatten-
ing then induces a global increase of the hydraulic pressure in
the conductive channels of the branch that varies quadratically
with the bending strain. Hence, unlike predictions of the linear
beam theory, a nonzero hydraulic pressure pulse can be pro-
duced under bending in a poroelastic beam due to nonlinear
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Fig. 5. Comparison between biomimetic (squares; same symbols as in Fig.
3) and natural tree branches (triangles; same symbols as in Fig. 4). The over-
pressure ∆P∗ normalized by the elastic bulk modulus B of each branch
shows a common behavior with the amplitude of the bending strain ε∗B .
The solid line represents the best quadratic fit of all data in log–log scale:
∆P∗/B = (0.50 ± 0.01) × ε∗B

2 (R2 = 0.98). (Inset) Overpressure vs. bending
strain for all data.

geometrical effects, independent of the material properties. This
finding confirms and explains the paradox previously hypoth-
esized about the origin of hydraulic pulses induced by bend-
ing in plants (23). In an engineering context, it could also
be applied to artificial devices like microfluidic pumps or soft
robots to rectify pressure and fluid flow under oscillatory motion
(32, 43).

The simple poroelastic model we built shows that the key
parameter controlling the amplitude of the pressure response
is the elastic bulk modulus of the branch, a mechanical prop-
erty that mainly depends on the Young’s modulus of the branch.
The master curve that enlightens a unique mechanical law for
artificial and natural branches is available in a wide range of
material rigidities (Fig. 5), suggesting the robustness of the the-
oretical modeling. The few key parameters that drive the gen-
eration of the hydraulic pulse are basic patterns, which are com-
mon to all plants: the presence of a conducting hydraulic network
in a rigid structure, without any further prerequisites about the
other structural parameters. This suggests a universal physical
phenomenon that occurs in all plants that daily experience the
mechanical loads of the wind (44).

Our study therefore gives a physical basis for long-distance
communication in plants based on hydraulic signals. However,
for these pressure pulses to function as information carriers, they
must fulfill two main conditions: (i) they should transfer rapidly
information from the places that experience the mechanical stim-
uli to the apical zones that sense the signal; and (ii) they should
be perceived and converted to a relevant physiological response
(thigmomorphogenetic growth response).

According to our study, a bending strain of few percent caused
by wind sway (44) generates a hydraulic pressure pulse of ampli-
tude 0.01–0.1 MPa without change of conductivity (the squeez-
ing of the cross-section is of order ∼ 10−4). This pressure
pulse first propagates ballistically at the speed of the compres-
sive elastic waves c =

√
B/ρ' 500 m s−1 (ρ is the water den-

sity) (45), then spreads with a diffusive dynamics when viscous
effects prevail over inertia. This cross-over between the bal-
listic and diffusive regime naturally defines an effective range
Lb of propagation without damping when the inertial timescale
τi ∼Lb/c becomes equal to the poroelastic timescale τp ∼L2

b/D
(25), where D∼ d2B/η is a longitudinal diffusion coefficient
related to the channels diameter d , the channel elasticity B ,
and the water viscosity η. Typical values for woody tissues
give Lb ∼D/c∼ 1 m (d ∼ 50 µm, B ∼ 0.3 GPa, η∼ 1 mPa s).

Beyond this length, the hydraulic signal still propagates rapidly,
but with a diffusive dynamics (the effective speed of the dif-
fusion front D/L is about 50 m s−1 for a traveling distance
L= 10 m).

Even though hydraulic pulses spread rapidly throughout the
conductive network, whether they are perceived or not as a sig-
nal is still an open question. Typical pressure pulses induced
by bending are one order of magnitude smaller in amplitude
than the slow daily variation of the (negative) water pressure in
the conductive network of transpiring plants (35), but their fre-
quency is much higher (typically a few hertz). This separation
of amplitude and time scales is found in most biological sen-
sory systems (46). How this overpressure may be sensed in the
apical part is still under debate, but recent works suggest that
mechanosensing channels could be involved in this transduction
process (11, 12), opening the pathway for ion fluxes that gener-
ate local electrical signals and molecular responses (16). Future
works are needed to address these issues and establish whether
thigmomorphogenesis in plants do rely on this peculiar mode of
signaling: hydraulics.

Materials and Methods
Experiments on Biomimetic Branches. Synthetic branches are made in PDMS
with the Sylgard 184 Silicone Elastomer Kit using either 10% or 4% (wt)
cross-linker (degassed for 30 min). The liquid PDMS is injected in a nega-
tive 3D mold made of a poly(methyl methacrylate) (PMMA) tube (length
L = 10 cm, inner diameter D = 1 cm) containing piano strings (diameter
d = 500 µm) fixed at both extremities in a pattern of holes drilled in a poly-
oxymethylene (POM) plate. Once cured (1 wk at 60 ◦C), the solid PDMS beam
is removed from the mold and fitted into two perforated PMMA blocks. The
channels are then filled with a viscous silicone oil (viscosity 1 Pa·s) and con-
nected together to a differential pressure sensor. The Young’s modulus E of
the beam’s matrix is determined from plain slender rods of PDMS by using a
tensile testing device in the linear regime of deformation (<25%). The elas-
tic bulk modulus B of the synthetic branches is determined by injecting a
given amount of liquid inside the channels with a microsyringe and measur-
ing the corresponding increase of liquid pressure. The beams are bent either
manually or by using an automated bending device (see Bending Setup for
the Biomimetic Branches for details). The mean curvature of the beam is
measured from the difference of the angle of the beam’s profile at both
extremities.

Experiments with Plant Materials. All experiments are conducted between
May and September on well-watered trees (see Plant Materials for details
on the species and growing conditions). Buds and leaves are removed a few
days before collecting the materials, and the scars are glued to avoid leaks
during measurements. The cutting of branches and stems is done following
the method described in ref. 47 to avoid any air contamination in the con-
ducting system. The branches are then plugged to the experimental setup
and flushed for several hours with degassed water to fill the conductive
hydraulic network. During the bending, the branches are either in air or
immersed in water to avoid evaporation. The determination of the longi-
tudinal Young’s modulus E‖ of the branches is done after each experiment
by using a standard four-point bending test. The determination of the elas-
tic bulk modulus B of the channels is done by applying pressure increments
∆P to the water-saturated xylem of the branch (Measurement of the Elastic
Bulk Modulus in Woody Branches).

Refined Model. In the Results, the quadratic relationship [1] between the
hydraulic overpressure ∆P and the bending strain εB is obtained from sim-
ple scaling arguments, assuming a uniform transverse strain ε⊥∼ δ/R in the
cross-section of the beam. Here, the prefactor γ of the scaling law is com-
puted by taking into account the spatial variation of the transverse strain.
For a cylindrical elastic beam of radius R, bent with a uniform curvature
C, the balance of the bending longitudinal stress implies the existence of
a compressive stress in the transverse direction due to the finite curvature
of the beam. This second-order effect in the slender beam parameter RC
is responsible for the ovalization of the cross-section and gives rise to a
parabolic transverse strain field given by ref. 48:

ε⊥(z) =
1

3

[
1−

(
z

R

)2
]
× ε2

B , [2]
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where εB = RC and z is the height from the neutral line. To compute the
liquid overpressure ∆Pi generated by this transverse compression field in
the ith channel, a mean field approach is used in the limit of low chan-
nel density (low porosity). Each channel at height zi filled with an incom-
pressible fluid is assumed to deform as if it was isolated in an effective
infinite elastic medium and subjected to an external uniform compression
field ε⊥(zi). By using the superposition principle, the relative change of vol-
ume ∆vi of each channel is then given by the sum of the volume variation
induced by the transverse compression strain ε⊥(zi) and by the overpres-
sure ∆Pi (see ref. 36, chapter 13, problem 5, and chapter 7, problem 4);
that is:

∆vi

vi
= −2× ε⊥(zi) +

∆Pi

Bi
, [3]

where vi is the channel volume and Bi is the channel bulk modulus as
defined in the Results. In a closed system, the incompressibility of the liq-
uid implies

∑
i ∆vi = 0. Moreover, in natural branches and in our exper-

iments, the channels are always interconnected hydraulically, so the over-
pressure is uniform (∆Pi = ∆P). Therefore, substituting Eq. 2 in Eq. 3 and
summing over all channels for identical channels (Bi = B and vi = v) gives
Eq. 1 with:

γ =
2

3N

N∑
i=1

[
1−

(
zi

R

)2
]

, [4]

where N is the number of channels.
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