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One of the major challenges in cell-based cardiac regenerative medicine is the in vitro construction
of three-dimensional (3D) tissues consisting of induced pluripotent stem cell-derived cardiomyocyte
(iPSC-CM) and a blood vascular network supplying nutrients and oxygen throughout the tissue after
implantation. We have successfully built a vascularized iPSC-CM 3D-tissue using our validated cell
manipulation technique. In order to evaluate an availability of the 3D-tissue as a biomaterial, functional
morphology of the tissues was examined by light and transmission electron microscopy through their

. implantation into the rat infarcted heart. Before implantation, the tissues showed distinctive myofibrils

© within iPSC-CMs and capillary-like endothelial tubes, but their profiles were still like immature. In
contrast, engraftment of the tissues to the rat heart led the iPSC-CMs and endothelial tubes into
organization of cell organelles and junctional apparatuses and prompt development of capillary
network harboring host blood supply, respectively. A number of capillaries in the implanted tissues were
derived from host vascular bed, whereas the others were likely to be composed by fusion of host and
implanted endothelial cells. Thus, our vascularized iPSC-CM 3D-tissues may be a useful regenerative
paradigm which will require additional expanded and long-term studies.

. Ischemic heart disease is responsible for many deaths worldwide'. Although various advanced therapies have

. been developed for the cardiac disorder, it is so far impossible to revive the function of the necrotic myocardium

* because of reduced ability of mature cardiac muscle cells to proliferate and regenerate?’. Therefore, cell-based

. regenerative medicine using stem cells such as embryonic stem cells or induced pluripotent stem cells (iPSCs)

. has attracted attention as a new therapeutic strategy to restore cardiac function in severe heart failure**S. Besides,
establishment of the method to differentiate human iPSC-CMs”?® and readiness of ethical issue clearance’ also
facilitate application of iPSC-CMs to cardiac regenerative medicine.

Meanwhile, direct engraftment of a large amount of iPSC-CM:s into the target area of the heart remains a
significant problem as to how to supply oxygen and nutrients into the graft for survival of the iPSC-CMs!*!!. To
address this problem, a cell sheet of the iPSC-CM:s has been developed and reported to cause a beneficial effect
on cardiac function through a paracrine effect after implantation to the infarcted porcine heart'2. However, this
iPSC-CM sheet could not provide sufficient thickness to supplement the mechanical function of severely disor-
dered myocardium and its long-term survival'?, Therefore, development of three-dimensional (3D) iPSC-CM

!Department of Anatomical Science, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori,
036-8562, Japan. 2Department of Frontier Biosciences, Osaka University Graduate School of Frontier Biosciences,
1-3Yamadaoka, Suita, Osaka, 565-0871, Japan. 3Department of Cardiovascular Surgery, Osaka University Graduate
School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. “Kyowa Hakko Bio Co., LTD, 1-9-2 Otemachi,
Chiyoda-ku, Tokyo, 100-0004, Japan. Correspondence and requests for materials should be addressed to H.S. (email:
hshimoda@bhirosaki-u.ac.jp)

SCIENTIFICREPORTS|7: 13708 | DOI:10.1038/s41598-017-14053-0 1


mailto:hshimoda@hirosaki-u.ac.jp

www.nature.com/scientificreports/

Figure 1. Light microscopic images of whole-mount preparations (a,b) and a tissue section (c) of vascularized
iPSC-CM 3D-tissues 4 days after construction. (a,c) Immunostaining for sarcomeric a-actinin (red) and CD31
(green) shows a meshwork of iPSC-CMs preparing myofibrils and a network of endothelial tubes with lumens.
(b) Immunostaining for ¢cTnT (red) and Cx43 (green) shows sarcomeres in iPSC-CMs, and a small amount

of reaction products for Cx43 on the cells. Cellular nuclei are stained with DAPI. (d) An image of reaction
products for Cx43 distilled from b.

tissues covering degenerated cardiac structure and function has been recently studied'*!* to enhance the in vivo
survival ratio of the implanted tissues.

Since myocardia is well known to need abundant oxygen and nutrients to maintain their functions and struc-
tures, it is readily anticipated that thick iPSC-CM tissue implants result in their shortage within the implants, only
depending on passive diffusion from the surrounding tissue. This is likely to eventuate in severe tissue damages
involving cellular necrosis and a low cell survival ratio'>!¢. Thus, equipment of vasculature supplying nutrient and
oxygen to the 3D iPSC-CM tissue is probably key challenge in its successful engraftment. Several studies have
attempted to furnish the vasculature to the implanted iPSC-CMs through angiogenesis from the host tissue in the
experiments using a stack of iPSC-CM sheets'*!” or matrigel-based tissue containing iPSC-CMs, endothelial cells
and their mural cells'®, but raised the issues on prompt and effective blood supply underlying conservation of the
cellular activity and tissue development!'*'713, frequent surgical invasions'* and preparation of artificial scaffold's.

Our research group has recently developed a cell-accumulation technique that enables construction of 3D
fibroblast tissue by coating extracellular matrix (ECM) nanofilms such as fibronectin onto single cell surfaces
without an artificial scaffold" and also succeeded in constructing a vascular network within the 3D fibroblast
tissue by using this technique'®-?'. In addition, we have recently improved this cell-accumulation technique to
fabricate a 3D iPSC-CM tissue with synchronous and periodic beating and found that the introduction of normal
human cardiac fibroblasts (NHCFs) into iPSC-CM tissues plays an important role in modulating organization
and synchronous beating depending on the proportion of NHCFs?.

In order to evaluate applicability of our vascularized iPSC-CM 3D-tissues as an implantation material for
regenerative medicine, the present study demonstrates their morphological characteristics and alteration through
implantation to the cardiac infarction model.

Results

Vascularized iPSC-CM 3D-tissue in in vitro. Light microscopy. Immunohistochemical analysis of our
fabricated iPSC-CM 3D-tissues (ratio of cell numbers: iPSC-CM:NHCF:HCMVEC = 7.5:2.5:1) demonstrated a
three-dimensional meshwork of iPSC-CMs being immunopositive for cardiomyocyte biomarkers such as sarco-
meric a-actinin and cardiac troponin T (¢TnT) (Fig. 1a,b). The cardiomyocytes elongated and branched in every
direction to connect to each other (Fig. 1a,b), but immunolocalization of connexin 43 (Cx43), a representative pro-
tein constituting a gap junction, was scanty at their connective sites (Fig. 1b,d). Although the cells also developed
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some myofirils with distinct sacomeres in their sarcoplasm, alignment of the myofibrils was irregular in this in
vitro condition (Fig. 1b). Meanwhile, the cardiac endothelial cells loaded into the 3D-tissues built many CD31-
immunopositive tubes with luminal structures extending a network around the iPSC-CMs meshwork (Fig. 1a,c).

Transmission electron microscopy.  The fine structure of the iPSC-CM tissues was clearly demonstrated by transmission
electron microscopy (TEM). The irregularly-shaped iPSC-CM:s aggregated to a few layer and contacted with each other
by adhering apparatus consisting predominantly of desmosomes (Fig. 2a-c). However, distinctive structures evidenc-
ing gap junctions were not found in the present TEM observation covering 210,000 pm? each of the three 3D-tissues,
though a few amounts of the reaction products for Cx43 were found under light microscopy. Each manufactured cardi-
omyocytes contained some myofibrils, small and oval mitochondria with a few cristae, sarcoplasmic reticula, glycogen
granules and lysosomes around their elliptical nucleus (Fig. 2a,b). The myofibrils were randomly arrayed within the
cytoplasm, and many free myofilaments, which were not developed into myofibrils, were also observed (Fig. 2b). In
addition, intracellular edema-like lesions of various degrees were recognized in some iPSC-CMs (Fig. 2c).

TEM examination of the 3D-tissue further disclosed many tubular structures consisting of the ECs around the
iPSC-CMs and their developing process (Fig. 2d,e). The flattened and elongated ECs developed such cell orga-
nelles containing coated vesicles, rough endoplasmic reticula, Golgi apparatuses, and lysosomes (Fig. 2e) as seen
in vascular endothelial cells in living body and interconnected by overlapping with adherens junctions and des-
mosomes to form capillary-like tubes (Fig. 2a,d). The endothelial pores being like fenestrations were also shown
in some parts of the vascular tubes (Fig. 2d). The extracellular matrices prepared the vessels a basal lamina-like
structure in parts (Fig. 2d). Some aggregated ECs formed funicular structures with insertion of extracellular tis-
sue pillar (Fig. 2e), indicating one of the angiogenic events®.

Vascularized iPSC-CM 3D-tissues after implantation in rat infarcted hearts. Light micros-
copy. 'The iPSC-CM 3D-tissues implanted on the left ventricle of the experimentally-infarcted rat heart were
well survived until 28 days after the operation (Fig. 3a,b and Supplementary Fig. 1), and the implanted tissues
significantly increased in thickness (261 &= 64 pm on day 28 following operation) as compared to those in in vitro
(69 £ 20 um; p < 0.05) (Supplementary Fig. 2a,b). The iPSC-CMs in the implanted tissues revealed abundant
myofibrils with ¢TnT-immunoreactivity, of which aspects were similar to those in the in vitro tissues, until the
endpoint of the experiment (Fig. 3¢). Immunoreaction products for gap junction protein, Cx43, on the contrary,
accumulated on the iPSC-CMs in this implanted condition (Fig. 3c). No neoplasms were recognized at least
throughout the experimental period.

Our 3D-tissues displayed a wide distribution of blood vessels immunopositive for multi-species CD31 28 days
following implantation, but the vascular density in the deep portion away from rat epicardium was lower than
that in the superficial portion (Fig. 4). Double immunostaining with anti-human and anti-multispecies CD31
antibodies further enabled to discriminate between implant-derived human and host-derived rat blood vessels in
the implanted tissues: most of the vessels were derived from host vessels immunoreactive only for multi-species
CD31, and a small number of the vessels, which were immunopositive both for human and multi-species CD31,
were of implanted human origin (Fig. 3d,e). Numerous blood vessels containing blood cells appeared within the
implants and the blood vascular area in the 3D-tissues was significantly increased after implantation (p < 0.05),
with the fact that the area were still less than that in rat cardiac ventricle (Supplementary Fig. 3).

Transmission electron microscopy. Under TEM in the implanted 3D-tissues, the iPSC-CMs basically exhibited similar
cytological features to those in in vitro 3D-tissue, whereas thickened myofibrils tended to be in parallel and numerous
cylindrical and/or elliptical mitochondria with many lamellar cristae were closely arranged along the myofibrils after
implantation (Fig. 5a,b and Supplementary Fig. 4). The gap junctions were also disclosed at many contact sites between
the iPSC-CMs, as well as numerous desmosomes and fasciae adherens, after implantation at an electron microscopic
level (Fig. 5b), as shown by immunohistochemistry for Cx43 (Fig. 3c). However, some iPSC-CM:s revealed such degen-
erative aspects as intracellular edema in the deep portion of the implants (Fig. 5¢). TEM examination further demon-
strated a lot of continuous-type capillaries equipped with substantial basal laminae and pericytes (Fig. 5d).

Discussion
This is the first study reporting the morphological features of vascularized iPSC-CM 3D-tissues fabricated by
our peculiar cell-accumulation technique in in vitro condition and following engraftment. The iPSC-CMs and
endothelial cells organized into networked constructions with spatial extension within in vitro 3D-tissues. Most
iPSC-CMs, however, impressed an immature morphological profile in this context, because their cell organelles
were small and sparse as seen in embryonic myocardium?»* (Fig. 2a,b and Supplementary Fig. 5). The simi-
lar findings have been reported in the previous studies on the iPSC-CM:s cell sheets'#?°. The endothelial net-
work, meanwhile, were composed of tubular structures with distinct lumens but insufficiently encompassed by
basal lamina. Since formation of basal lamina is thought to indicate the degree of maturation and stabilization in
native capillaries”, the endothelial tubes are probably regarded as angiogenic immature vessels. The endothelial
cord-like structures with insertion of tissue pillar indicating an angiogenic process* also support this idea.
Despite displaying a coordinated contraction?, our iPSC-CM tissues demonstrated only a few immunoreac-
tion products for Cx43 and no structures indicating the existence of gap junctions, being regarded as a specific
apparatus providing synchronous cardiac contraction®®, were found under TEM until 4 days after construction.
Several previous studies investigating iPSC-CM adhesions have described a sporadic expression of Cx43 on the
plasmalemma!®”?%, whereas Gherghiceanu et al.*® have reported no obvious gap junction on 31-days cultured
iPSC-CMs under TEM, in spite of their coordinated contraction, which may also be related to the recognized
technical challenges of immunostaining gap junctions in cardiac tissues. These inconsistencies might result from
the possibility that the Cx43 protein begins to be expressed before completion of gap junctions, along with the
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Figure 2. TEM images of vascularized iPSC-CM 3D-tissues 4 days after construction. (a) The iPSC-CMs

(CM) are assembled to contact with each other within some amount of extracellular matrices (ECM) and

the endothelial (blue) tubes (ET) extends along the iPSC-CMs. FB, fibroblast. (b) Higher magnification of

the boxed area in a. Numerous myofilaments assemble to form myofibrils (mf), whereas some myofilaments
with poor connectivity (white arrow) are also seen. Small mitochondria (m) with a few cristae are sparsely
distributed within sarcoplasm. Black arrows, white and black arrowheads indicate sarcoplasmic reticula,
Z-bands and desmosomes between the adjacent iPSC-CMs, respectively. (¢) Higher magnification of the contact
area of the iPSC-CMs. Many desmosomes (black arrowheads) are seen between the cells, but gap junction

is indistinguishable. The cell at the top shows intracellular edema. White arrowheads indicate Z-bands of
myofibrils (mf). m, mitochondria. (d) Higher magnification of the boxed area in a. The endothelial cells connect
to each other by overlapping (arrows) with junctional complex (black arrowheads) to form vascular lumen.

The endothelial pores (white arrowheads) are also seen. (e) A insertion of extracellular tissue (*) is seen in the
endothelial cords (EC). CM, iPSC-CM. Inset: Higher magnification of the boxed area in e. The endothelial cell
contains abundant rough endoplasmic reticula (rer), coated vesicles (black arrows), Golgi apparatuses (G) and
lysosomes (white arrow). Scale bar: 500 nm.

immaturity of the iPSC-CMs. As for gap junctions, their accumulation has been reported not to be noticeable
before birth*', and Gutstein, D. E. et al.*>** have suggested a dispensability of gap junctions because of normal
cardiac function developed in cardiac-specific Cx43 conditional knock out mice at two weeks of age. Therefore,
ultrastructural absence of gap junctions in our iPSC-CM tissue in in vitro might be associated with its immaturity.

Following implantation, our 3D-tisseus were well survived in long term and thickened as compared with
those in in vitro (Supplementary Fig. 2a,b). Some iPSC-CMs expressed cell proliferation marker, Ki67, even at 28
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Figure 3. Light microscopic images of tissue sections of vascularized iPSC-CM 3D-tissues 28 days after
implantation to rat infarcted heart. (a) Transverse section of rat heart implanted with the 3D-tissue with
hematoxylin-eosin (H.E.) staining. The area encircled by the dotted line indicates the implanted tissue in the
infarcted left ventricle (LV). (b) Immunostaining for ¢TnT (red) depicts cardiomyocytes both in the implant and
host residual myocardium. Cellular nuclei are stained with DAPI. (¢) Immunostaining for cTnT (red) and Cx43
(green) shows a fine meshwork of iPSC-CMs with substantially-ranged sarcomeres and many reaction products
for Cx43 on them. Cellular nuclei are stained with DAPI. Inset: Higher magnification of the boxed area in c. Scale
bar: 5um. (d) Immunostaining for human CD31 (red) and multi-species CD31 (green) shows many host-derived
vessels (arrows) immunopositive only for multi-species CD31 and a few implant-derived vessels (arrowheads)
immunopositive both for human and multi-species CD31 (yellow) within the implant. The dotted line

indicates the border between the host and implant tissue. (e) Higher magnification of an implant-derived vessel
(arrowhead) immunopositive both for human and multi-species CD31 (yellow). Inset: The H.E.-stained tissue
section adjacent to e shows blood contents within the implant-derived vessels (arrowhead). Scale bar: 40 um.

days after implantation (Supplementary Fig. 2¢), so that their proliferative activity presumably contribute to an
increase of the implanted tissue volume, though it cannot be denied that the tissue has been deformed. The cells
also showed a tendency of thickened myofibrils to range in parallel and of enlarged mitochondria to distribute
along the myofibrils (Fig. 5a,b and Supplementary Fig. 4), as seen in mature living myocardium. Their ultrastruc-
tural alteration implies that the iPSC-CM:s in our implanted 3D-tissues hold a potential to mature rapidly within
28 days as compared to those in stacks of iPSC-CM cell sheets at 6 months after subcutaneous implantation'?.

Although the implanted iPSC-CMs are likely to have the developmental capability as described above, the
deeper portion of the implants away from the host epicardium showed several degenerative iPSC-CMs in corre-
spondence to the lower vascular density. This suggests that vascularization in the implanted tissues is crucial in
establishment of the iPSC-CMs in the host heart, though passive diffusive flow from the surrounding host tissue
possibly effects the implantation. Our additional experimental data demonstrated that 3D-tissues of multilayered
fibroblasts without endothelial cells contained no vessels 14 days after subcutaneous implantation, whereas those
with endothelial tubes exhibited a marked extension of host blood vessels into the implants and connections
between the host and implanted vessels to form circulation promptly (Supplementary Fig. 6). Some previous
findings have also reported the application of endothelial tubes embraced in implants to provide blood supply**®.
The blood vessels in our implanted tissues further displayed matured vessels as continuous capillaries in their
ultrastructure. Thus, investment of vascular network in the iPSC-CM 3D-tissues is likely to play a pivotal role in
successful engraftment of the iPSC-CMs. Nevertheless, the vascular density in the implants was approximately
one fourth of that in native rat cardiac ventricles even 28 days after implantation (Supplementary Fig. 3), and
the implanted region away from pericardium often showed degenerative iPSC-CMs. This supposedly indicates
necessity of denser vasculature in the implants to yield sufficient blood supply.

The present study demonstrated the precise morphological characteristics of our peculiar iPSC-CM 3D-tissues
with vascular network and their alteration through implantation on the myocardial infarction model. Some previous
reports have described mechanical and physiological effects of iPSC-CM implantation'®*, but no reports, to our own
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Figure 4. Comparison of vascular distribution in iPSC-CM 3D-tissues 28 days after implantation to rat
infarcted heart. (a) The ratio of the CD31-immunopositive vascular area to unit area in the deep region

(0.76 £ 0.19%; n = 3, total 6 fields) is lower than that in the intermediate (1.03 +-0.31%; n = 3, total 6 fields) or
superficial (1.04 £ 0.52%; n = 3, total 6 fields) region within the implant, though there is no statistical difference
among each region. (b) A representative image of three divided regions in the implant and vascular distribution
in each region. Immunostaining for ¢TnT (red) and multi-species CD31 (green) on a transverse section of the
iPSC-CM 3D-tissue implanted to the infarcted rat heart. The pericardium is located at the top of the image.

Figure 5. TEM images of vascularized iPSC-CM 3D-tissues 28 days after implantation to rat infarcted heart.
(a) The iPSC-CM forms numerous myofilaments into substantial myofibrils (mf), which distribute densely
within the sarcoplasm. Many oval mitochondria (m) are seen ranging along the myofibrils. The arrow and
arrowheads indicate adherens junction and desmosomes between adjacent iPSC-CMs, respectively. (b) The
contact area between the adjacent iPSC-CMs shows substantial intercalated disk equipping gap junction (white
arrowhead), adherens junction (white arrow) and desmosome (black arrowhead). The mitochondria (m) show
many lamellar cristae. mf, myofibril; z, Z-band. (¢) The iPSC-CMs in the deep region shows intracellular edema.
(d) The endothelial cells (EC) form continuous capillary equipping substantial continuous basal lamina (white
arrowheads) and pericyte (P). An erythrocyte are also seen in the vascular lumen.
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knowledge, have investigated as regards three-dimensionally fabricated iPSC-CM tissue equipped with vasculature.
Our present findings might provide a capability of our vascularized iPSC-CM 3D-tissue as a biomaterial proper for
regenerative medicine against degenerative cardiac diseases involving cardiac infarction, though further and long-term
examinations for mechanical and functional recovery including incidence of arrhythmia and such improvements as
development of more elaborate vasculature and vigorous iPSC-CMs are required for clinical trials***.

Methods

Preparation of iPSC-CMs.  Materials. Mitomycin C-inactivated mouse embryo fibroblast feeder cells,
human recombinant FGF-2 and 1-thioglycerol, dispase and TeSR-E8 were purchased from Millipore Co. (MA,
USA), Sigma-Aldrich Inc (MO, USA), Roche Diagnostics (Basel, Switzerland) and STEMCELL Technologies
(Vancouver, Canada), respectively. Knockout-DMEM/F12, knockout serum replacement, 2-mercaptoethanol,
MEM non-essential amino acids, L-glutamine and StemPro-34 were purchased from Thermo Fisher Scientific
Inc. (MA, USA). L-ascorbic acid 2-phosphate trisodium salt, IWR-1-endo and Y-27632 were purchased from
Wako Pure Chemical Industries (Osaka, Japan). Recombinant human proteins of BMP-4, activin A and VEGF
were purchased from R&D systems Inc (MN, USA).

Procedure for preparing iPSC-CMs.  The human iPS cell line, 253G1%® was routinely maintained on mitomycin
C-inactivated mouse embryo fibroblast feeder cells in knockout serum replacement (KSR)-based medium supple-
mented with 4 ng/ml FGF-2. KSR-based medium consisted of knockout-DMEM/F12 medium, supplemented with
20% (v/v) KSR, 0.1 mM 2-mercaptoethanol, MEM non-essential amino acids, and 2mM L-glutamine. Cells were
passaged as small clumps every 6-7 days using 1 mg/ml dispase. The clumps and single cells after accutase treat-
ment were suspended in 30 ml TeSR-E8 containing 10 pM Y-27632 and seeded into a 30 ml single-use bioreactor
(ABLE Corporation & Biott Co., Japan). The agitation rate was 55 rpm. After one day, the medium was changed
to TeSR-E8. After day 3, EBs formed in bioreactor were cultured in StemPro-34 medium containing 50 ug/ml
L-ascorbic acid 2-phosphate trisodium salt, 2 mM L-glutamine and 400 uM 1-thioglycerol. The following growth
factors and small molecules were used at the corresponding days: days 3-4, 0.5 ng/ml BMP-4; days 4-9, 10 ng/ml
BMP-4, 5 ng/ml bFGE, 3 ng/ml activin A; days 9-11, 4 uM IWR-1; after day 11, 5 ng/ml VEGF and 10 ng/ml FGF-
2. At days, 6, 8, 11 and 13, the culture medium was exchanged. iPSC-CMs at day 15 were employed in this paper.

Construction of three-dimensional iPSC-CM tissue containing vascular network. Materials. All
of the reagents were used without further purification. Fibronectin (FN) from human plasma, gelatin (G), Dulbecco’s
modified eagle medium (DMEM), fetal bovine serum and the cell culture insert with a 0.4 or 3um pore membrane
was purchased from Sigma-Aldrich (MO, USA), Wako Pure Chemical Industries (Osaka, Japan), Nacalai Tesque
(Kyoto, Japan), Life Technologies (CA, USA) and Corning (NY, USA), respectively. Normal human cardiac fibro-
blasts (NHCFs), normal human cardiac microvascular endothelial cells (HCMVECs), cardiac fibroblast growth
medium (FGM-3) and endothelial growth medium (EGM-2 MV) were further purchased from Lonza (NJ, USA).

Procedure for constructing three-dimensional iPSC-CM tissue containing vascular network. The iPSC-CM
3D-tissue containing vascular network were constructed employing filtration Layer-by-Layer (LbL) technique
that enabled coating of individual cells with ECM-nanofilms, with minimal damage®*. Briefly, iPSC-CMs and
NHCFs were suspended in 0.2 mg/ml FN/PBS or G/PBS solution using a 6 well culture insert (3 um pore size),
and incubated for 1 min at room temperature using a plate mixer (MixMate, Eppendorf, Germany). Between each
coating step, the cells were washed with PBS. These coating procedures were performed total 9 times (FN: 5 times,
G: 4 times), and the cells whose surface was coated with FN-G nanofilm were collected by suspending in medium.

To construct iPSC-CM 3D-tissue with vascular network, the FN-G-coated iPSC-CMs and NHCFs, and
non-coated HCMVECs were mixed and seeded onto a 24 or 12 well culture insert. In this study, we fabricated the
tissue with the ratio of iPSC-CMs and NHCFs to HCMVECs being 7.5:2.5:1 because it showed better beating of
iPSC-CMs than those fabricated with another ratio??. Thus, we totally seeded 1.1 x 10° or 3.7 x 10° cells onto the
24 or 12 well culture insert respectively, which correspond to about 10 layers. These inserts were put into 6 well
plate, added 2 ml of culture medium, and incubated for 1h at 37°C in 5% CO,. An additional 10 ml of medium
was added to each well, and the samples were then incubated for 4 days. After cultured for 4 days, the samples
which fabricated in the 24 and 12 well culture insert were applied for analyses of their morphology in in vitro
and after implantation, respectively. For comparison, we also cultured them for longer time, more than 1 week.
However, the iPSC-CM tissues were shrunk to detach from the insert membrane.

Infarcted heart model preparation and implantation of iPSC-CM tissue. All animal experiments
were approved by Animal Research Committee of Osaka University. Animal care was conducted in compliance
with the Guide for the Care and Use of Laboratory Animals prepared by the Institute of Animal Resources.

Female F344/NJcl-rnu/rnu rats at 7 weeks of age (Crea, Tokyo, Japan) were generally anesthetized with inha-
lation of isoflurane (1.5%; Mylan Inc., Tokyo, Japan) and intubated and mechanically ventilated. The proximal left
anterior descending artery at 2 mm below the left appendage was permanently ligated with a 6/0 polypropylene
snare (Ethicon, Johnson & Johnson, USA) under left thoracotomy. Two weeks after the ligation, transthoracic
echocardiography (ViVid i; GE Healthcare, WI, USA) with a 11.5-MHz transducer was performed, and heart fail-
ure model rats (LVEF < 50%) were selected (n = 3). Rats were anesthetized and the heart was re-exposed through
left thoracotomy approach. The vascularized iPSC-CM 3D-tissue was placed on the surface of the left ventricle
and was sutured with 7/0 polypropylene. At 28 days after the treatment, under anesthesia by 5% isoflurane inha-
lation, rats were sacrificed and the heart was promptly dissected.
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Histological analysis. iPSC-CM 3D-tissues in in vitro and resected rat hearts were fixed with 4% paraform-
aldehyde (PFA) in PBS. Some iPSC-CM tissues in in vitro were used for whole-mount fluorescent immunostain-
ing, and the other iPSC-CM tissues and rat hearts were embedded with paraffin.

For whole-mount immunostaining, after incubated in PBS containing 0.3% Triton X-100 for one week and in
10% normal donkey serum (R&D systems) overnight, tissues were immersed in primary antibodies for one week
at 4°C. Following washing step, secondary antibodies was applied for 2 days at 4°C.

For paraffin-embedded samples, sections (5 um thickness) were prepared and stained with hematoxylin and
eosin (H.E.). Fluorescent immunostaining was conducted in a similar method to previous reports**’. Briefly,
the deparaffinized sections were incubated in a 0.01 M citrate buffer (pH 6.0) at 121 °C for 15 min to retrieve
antigenicity of the objective proteins. Subsequently, sections were incubated in 10% normal donkey serum for
15 minutes, in primary antibodies overnight, and then in secondary antibodies for 2 hours at room temperature.

For immunohistochemistry, mouse monoclonal anti-sarcomeric alpha actinin antibody (Abcam, Cambridge,
UK), mouse monoclonal anti-cardiac troponin T antibody (Thermo Fisher Scientific, Waltham, USA), rabbit
polyclonal anti-connexin43 antibody (Thermo Fisher Scientific), rabbit polyclonal anti-CD31 antibody (Abcam)
and mouse monoclonal anti-human CD31 antibody (Dako, Cytomation, UK) were used for primary antibod-
ies. Indocarbocyanine (Cy3)-conjugated donkey anti-mouse IgG (Jackson ImmunoResearch, West Groove, PA,
USA) and fluorescein isothiocyanate (FITC)-conjugated donkey anti-rabbit IgG (Jackson ImmunoResearch)
were applied as secondary antibodies. For fluorescent labeling of nucleus, 4, 6-diamidino-2-phenylindole (DAPI;
Dojindo, Kumamoto, Japan) was used.

Ultrastructural analysis. Previous reports were consulted for ultrastructural analyses using transmission
electron microscopy (TEM)*.. Briefly, iPSC-CM 3D-tissues in in vitro and resected rat hearts were fixed with
2.5% glutaraldehyde and 1% PFA in 0.1 M phosphate buffer (PB) containing 0.01% CaCl, and MgCl,, and cut
into small tissue pieces. Following post-fixation in 1% osmium teroxide solution for 1h at 4°C, these tissues were
dehydrated in a graded ethanol series and embedded in Epon 812 (Nisshin EM, Japan). Ultra-thin sections were
prepared at 70 nm thickness with an ultramicrotome (Reichert Ultracut S; Leica, Germany), and then electron
staining with uranyl acetate and lead citrate was applied.

Imaging and image processing. The images of H.E. staining and fluorescent immunostaining were
obtained with a bright-field microscope (BX50; Olympus, Tokyo, Japan) and confocal laser scanning microscope
(LSM 710; Carl Zeiss, Jena, Germany), respectively. TEM images were captured with a JEM1250 (JEOL, Tokyo,
Japan). Images were processed using Photoshop CC (Adobe Systems, San Jose, USA).

Statistical analysis. The thickness of the iPSC-CM tissues in in vitro (n = 3) and after implantation (n=3)
were measured from the acquired cross-sectional images. The implanted tissues in the sectional images (n=3,
total 6 fields) were evenly divided into three subdivisions, viz., superficial, intermediate and deep portion, and
the CD31-immunopositive vascular area in each portion were measured using National Institutes of Health’s
Image] software and then expressed as a percentage. These data were presented as means + standard deviations.
Comparisons between each tissue thickness and of ratio of the CD31-positive-cell-area per unit area among in
each subdivision of the implants were performed by Student’s unpaired t-test and Tukey’s test, respectively, at a
significance level of 0.05 using SPSS 12.0] for Windows software package (SPSS Japan Inc., Tokyo, Japan).
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