Skip to main content
. Author manuscript; available in PMC: 2018 Aug 30.
Published in final edited form as: Stat Med. 2017 Jun 5;36(19):3059–3074. doi: 10.1002/sim.7344

Table 3(b).

Coverage Probability of 95% Confidence Interval for AAPC over [c, d]: Two joinpoint model case

n τ1, τ2 σ [c, d] mCCI MCI FLT EmpQ n τ1, τ2 σ [c, d] mCCI MCI FLT EmpQ
20 13,17 0.01 [1, 20] 0.999 0.886 0.918 0.964 40 33, 37 0.01 [1, 40] 0.999 0.870 0.881 0.972
[11, 20] 0.994 0.874 0.899 0.942 [31, 40] 0.993 0.884 0.898 0.966
[16, 20] 0.898 0.840 0.860 0.918 [36, 40] 0.897 0.861 0.870 0.946
0.05 [1, 20] 1.000 0.845 0.886 0.983 0.05 [1, 40] 1.000 0.876 0.889 0.986
[11, 20] 0.948 0.849 0.872 0.950 [31, 40] 0.966 0.883 0.895 0.972
[16, 20] 0.848 0.754 0.802 0.954 [36, 40] 0.854 0.799 0.812 0.965
0.1 [1, 20] 1.000 0.802 0.850 0.971 0.1 [1, 40] 1.000 0.859 0.869 0.981
[11, 20] 0.926 0.826 0.867 0.966 [31, 40] 0.829 0.764 0.777 0.961
[16, 20] 0.790 0.699 0.742 0.961 [36, 40] 0.740 0.683 0.690 0.965
11, 17 0.01 [1, 20] 0.999 0.892 0.920 0.958 31, 37 0.01 [1, 40] 0.996 0.887 0.901 0.963
[11, 20] 0.977 0.867 0.896 0.927 [31, 40] 0.975 0.871 0.886 0.942
[16, 20] 0.916 0.852 0.880 0.916 [36, 40] 0.902 0.865 0.871 0.924
0.05 [1, 20] 0.999 0.847 0.887 0.979 0.05 [1, 40] 1.000 0.867 0.884 0.989
[11, 20] 0.920 0.826 0.857 0.939 [31, 40] 0.946 0.868 0.881 0.963
[16, 20] 0.817 0.702 0.763 0.955 [36, 40] 0.830 0.774 0.786 0.970
0.1 [1, 20] 1.000 0.810 0.855 0.975 0.1 [1, 40] 1.000 0.863 0.871 0.987
[11, 20] 0.909 0.824 0.860 0.961 [31, 40] 0.847 0.790 0.802 0.942
[16, 20] 0.818 0.713 0.772 0.966 [36, 40] 0.781 0.715 0.733 0.973
5, 17 0.01 [1, 20] 1.000 0.906 0.940 0.961 20, 37 0.01 [1, 40] 0.997 0.923 0.932 0.960
[11, 20] 0.992 0.898 0.926 0.943 [31, 40] 0.990 0.935 0.939 0.956
[16, 20] 0.950 0.884 0.906 0.928 [36, 40] 0.961 0.910 0.917 0.961
0.05 [1, 20] 0.998 0.819 0.863 0.961 0.05 [1, 40] 1.000 0.818 0.838 0.984
[11, 20] 0.901 0.790 0.838 0.939 [31, 40] 0.723 0.634 0.662 0.969
[16, 20] 0.670 0.572 0.618 0.934 [36, 40] 0.450 0.394 0.399 0.932
0.1 [1, 20] 0.999 0.778 0.836 0.955 0.1 [1, 40] 1.000 0.851 0.865 0.991
[11, 20] 0.931 0.804 0.859 0.948 [31, 40] 0.795 0.710 0.724 0.974
[16, 20] 0.812 0.686 0.758 0.951 [36, 40] 0.534 0.464 0.482 0.936
5, 13 0.01 [1, 20] 1.000 0.912 0.944 0.944 20, 33 0.01 [1, 40] 1.000 0.934 0.944 0.963
[11, 20] 0.985 0.929 0.951 0.951 [31, 40] 0.998 0.954 0.963 0.973
[16, 20] 0.941 0.912 0.938 0.938 [36, 40] 0.941 0.932 0.941 0.974
0.05 [1, 20] 0.999 0.858 0.897 0.971 0.05 [1, 40] 1.000 0.864 0.873 0.985
[11, 20] 0.930 0.831 0.870 0.949 [31, 40] 0.790 0.731 0.739 0.957
[16, 20] 0.840 0.742 0.780 0.957 [36, 40] 0.721 0.665 0.673 0.965
0.1 [1, 20] 0.999 0.806 0.859 0.960 0.1 [1, 40] 1.000 0.863 0.877 0.995
[11, 20] 0.934 0.827 0.872 0.957 [31, 40] 0.750 0.672 0.693 0.971
[16, 20] 0.874 0.761 0.820 0.963 [36, 40] 0.649 0.571 0.593 0.965
5, 11 0.01 [1, 20] 1.000 0.921 0.955 0.969 20, 31 0.01 [1, 40] 1.000 0.931 0.944 0.961
[11, 20] 0.952 0.913 0.928 0.924 [31, 40] 0.959 0.933 0.940 0.950
[16, 20] 0.939 0.916 0.934 0.962 [36, 40] 0.940 0.933 0.940 0.967
0.05 [1, 20] 0.999 0.864 0.912 0.974 0.05 [1, 40] 1.000 0.875 0.884 0.988
[11, 20] 0.916 0.820 0.862 0.952 [31, 40] 0.806 0.765 0.776 0.950
[16, 20] 0.896 0.790 0.834 0.959 [36, 40] 0.798 0.742 0.751 0.974
0.1 [1, 20] 0.999 0.812 0.866 0.962 0.1 [1, 40] 1.000 0.862 0.877 0.994
[11, 20] 0.930 0.833 0.867 0.954 [31, 40] 0.762 0.682 0.702 0.962
[16, 20] 0.910 0.804 0.852 0.963 [36, 40] 0.756 0.672 0.698 0.969
4, 8 0.01 [1, 20] 0.999 0.897 0.927 0.966 10, 20 0.01 [1, 40] 1.000 0.941 0.956 0.964
[11, 20] 0.936 0.899 0.923 0.957 [31, 40] 0.941 0.936 0.941 0.963
[16, 20] 0.934 0.888 0.918 0.959 [36, 40] 0.941 0.936 0.941 0.963
0.05 [1, 20] 0.998 0.852 0.890 0.964 0.05 [1, 40] 1.000 0.901 0.910 0.991
[11, 20] 0.948 0.842 0.887 0.948 [31, 40] 0.895 0.825 0.843 0.982
[16, 20] 0.930 0.822 0.869 0.958 [36, 40] 0.895 0.833 0.855 0.982
0.1 [1, 20] 0.999 0.808 0.859 0.955 0.1 [1, 40] 1.000 0.882 0.898 0.991
[11, 20] 0.944 0.827 0.879 0.949 [31, 40] 0.854 0.753 0.777 0.990
[16, 20] 0.921 0.812 0.862 0.961 [36, 40] 0.852 0.773 0.793 0.989

• Model: yi = β0 + β1xi + δ1(xiτ1)+ + δ2(xτ2)+ + εi, (i = 1,…, n), where a+ = max(0; a) and εi ~ N(0; σ2).

(APC1,APC2,APC3)=((eβ11)×100,(eβ21)×100,(eβ31)×100)=(1.5,1,2.5)