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Abstract

The National Drug File – Reference Terminology (NDF-RT) is a large and complex drug 

terminology consisting of several classification hierarchies on top of an extensive collection of 

drug concepts. These hierarchies provide important information about clinical drugs, e.g., their 

chemical ingredients, mechanisms of action, dosage form and physiological effects. Within NDF-

RT such information is represented using tens of thousands of roles connecting drugs to 

classifications. In previous studies, we have introduced various kinds of Abstraction Networks to 

summarize the content and structure of terminologies in order to facilitate their visual 

comprehension, and support quality assurance of terminologies.

However, these previous kinds of Abstraction Networks are not appropriate for summarizing the 

NDF-RT classification hierarchies, due to its unique structure. In this paper, we present the novel 

Ingredient Abstraction Network (IAbN) to summarize, visualize and support the audit of NDF-

RT’s Chemical Ingredients hierarchy and its associated drugs. A common theme in our quality 

assurance framework is to use characterizations of sets of concepts, revealed by the Abstraction 

Network structure, to capture concepts, the modeling of which is more complex than for other 

concepts. For the IAbN, we characterize drug ingredient concepts as more complex if they belong 

to IAbN groups with multiple parent groups. We show that such concepts have a statistically 

significantly higher rate of errors than a control sample and identify two especially common 

patterns of errors.

Graphical abstract

Corresponding Author: Ling Zheng, Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, Tel #: 
(862) 371-0988, Fax #: (973) 596-5777, lz265@njit.edu. 

Competing interests
The authors declare that they have no competing interests.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimersthat apply to the journal pertain.

HHS Public Access
Author manuscript
J Biomed Inform. Author manuscript; available in PMC 2018 September 01.

Published in final edited form as:
J Biomed Inform. 2017 September ; 73: 30–42. doi:10.1016/j.jbi.2017.07.013.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

National Drug File – Reference Terminology; NDF-RT Quality Assurance; Auditing NDF-RT; 
Drug Terminology; Chemical Ingredients Hierarchy; Auditing Chemical Ingredients

1 Introduction

Quality assurance (QA) of biomedical terminologies is important. Errors in terminologies 

may propagate to the biomedical information systems that use them. User concerns about 

errors in terminologies have been reported, for example, by Elhanan et al. [1]. The aim of 

terminology quality assurance is to improve the modeling of a terminology (e.g., by 

identifying incorrect and/or inconsistent relationships between concepts, a process we will 

refer to as “auditing”). Zhu et al. [2] reviewed methods for quality assurance of 

terminologies, appearing in the first special issue of a journal on “auditing of biomedical 

terminologies,” edited by Geller et al. [3].

The aim of this paper is to develop a QA methodology for the National Drug File – 

Reference Terminology (NDF-RT) [4], specifically its large Chemical Ingredients (CI) 

hierarchy. NDF-RT is a drug terminology developed and maintained by the U.S. Department 

of Veterans Affairs (VA), Veterans Health Administration (VHA). NDF-RT is a formal 

representation of the VHA National Drug File (NDF) [5], which is a drug classification 

hierarchy used to group orderable drug products into one of 579 drug classes. NDF-RT is 

used to support clinical applications at the VHA’s clinical centers. NDF-RT is a large 

terminology composed of over 43,000 concepts connected by 67,000 IS-A links and 73,000 

other links (called “roles”), e.g., has_Ingredient and has mechanism of action.

The effects of drugs depend mostly on their chemical ingredients and each drug in NDF-RT 

is linked to its chemical ingredients via has_Ingredient roles (see Figure 1). Improving the 

modeling of NDF-RT’s chemical ingredient concepts will improve the modeling of NDF-

RT’s drug concepts.

In a long range research program the SABOC team [6] has developed a framework that 

combines summarization, visualization and quality assurance (SVQA) into a sequence of 

well-ordered steps. The overall aim of the SVQA paradigm is to identify sets of concepts in 
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a terminology that are expected to have a higher error rate than reference concepts. The 

identification of theses sets is based on summaries derived from the terminology’s structure 

and semantics. Limited QA resources can be applied to the concepts in such a set, improving 

the rate of error detection and correction. The aim of this paper is to develop a method 

within the SVQA paradigm for quality assurance of the NDF-RT.

We will now elaborate on the summarization component of SVQA. Our approach to 

terminology summarization is based on algorithmically processing the network of concepts 

and hierarchical IS-A links to produce a smaller network of “nodes” and child-of links. We 

refer to the resulting smaller network as an Abstraction Network [7]. We have derived 

different kinds of Abstraction Networks to support QA for various terminologies and 

ontologies (see Section 2.2). One type of Abstraction Network we previously applied for 

terminology QA is the partial-area taxonomy [8], which is derived according to the role 

relationships emanating from a hierarchy’s concepts.

However, it is impossible to derive partial-area taxonomies for large portions of NDF-RT; 

the structures of several concept hierarchies do not contain enough information to perform 

such a derivation. Seven of the NDF-RT hierarchies have no roles emanating from their 

concepts (i.e., their concepts only have hierarchical relationships). All of the roles in NDF-

RT emanate from concepts in the Pharmaceutical Preparations (PP) hierarchy to concepts in 

the other hierarchies (Figure 1). Hence, the only hierarchy of the NDF-RT that lends itself to 

deriving the partial-area taxonomy (a kind of Abstraction Network) is the PP hierarchy.

Thus, to apply the SVQA process to NDF-RT’s Chemical Ingredients (CI) hierarchy, a new 

summarization process is needed. Such a process will need to identify groups of chemically 

similar concepts that serve as targets of has_Ingredient roles. The challenge is that NDF-RT, 

in its source format, does not support the explicit identification of such concepts. Thus, as 

part of this study we have developed an Abstraction Network that groups similar chemical 

ingredient concepts together. Using this Abstraction Network we can characterize sets of 

concepts that are structurally complex. One can expect a higher rate of errors among these 

concepts, since their modeling is more challenging for a terminology designer.

In summary, in this paper: (1) We introduce an Abstraction Network called an Ingredient 
Abstraction Network (IAbN) to summarizes NDF-RT’s chemical ingredients and their 

associated drug concepts. The IAbN enables visual comprehension and quality assurance of 

NDF-RT, completing the components of our SVQA paradigm. (2) Using an IAbN we 

identify characterizations of complex concepts that can be used to support QA of NDF-RT’s 

chemical ingredient concepts. (3) We report on a consensus-based QA review of a sample of 

NDF-RT concepts that was performed by three chemistry domain experts to evaluate the 

effectiveness of the SVQA methodology when applied to NDF-RT’s Chemical Ingredients 
hierarchy, and to find errors in the NDF-RT.
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2 Background

2.1 NDF-RT

NDF-RT uses a description logic-based reference model to define drugs in the 

Pharmaceutical Preparations (PP) hierarchy according to multiple aspects [9]. These aspects 

include: the Chemical Ingredients (CI) hierarchy describing the chemical ingredients of 

drugs, the Cellular or Molecular Interactions (MoA) hierarchy describing the drug effects at 

molecular, subcellular, or cellular levels, the Physiological Effects (PE) hierarchy describing 

drug effects at tissue, organ, or system levels, the Clinical Kinetics (PK – from 
Pharmacokinetics) hierarchy describing the absorption, distribution, and elimination of 

drugs, and the Therapeutic Categories (TC) hierarchy, which is an experimental hierarchy 

exclusively used to model FDA established pharmacologic class concepts to describe 

general therapeutic intents of drugs. Two more hierarchies are the Diseases, Manifestations 
or Physiologic States (Disease) hierarchy describing the therapeutic, preventative, or 

diagnostic indications of drugs, and the Dose Forms hierarchy describing the dose forms of 

drugs.

The MoA, PE and CI hierarchies were initially created by matching VHA drug ingredient 

names to terms from the National Library of Medicine’s Medical Subject Headings (MeSH) 

[10]. Specifically, the CI hierarchy was derived from MeSH’s Chemicals and Drugs 
Category and the MoA and PE hierarchies were created by extending and restructuring 

selected Pharmacologic Actions associated with ingredients in MeSH. Concepts in the 

Disease hierarchy were included from MeSH’s Diseases Category [9, 11]. The purpose of 

developing the MeSH was to support the classification of biomedical publications in the 

PubMed system [12] of the National Library of Medicine.

NDF-RT is available for download in Apelon DTS format at the NCI’s Enterprise 

Vocabulary Services (EVS) website [13]. NDF-RT is also released as part of the UMLS [4] 

and it is available for download on the NCBO BioPortal [14]. NDF-RT organizes concepts 

around the PP hierarchy (the triangle in Figure 1), which is the largest hierarchy in NDF-RT 

with 25,759 concepts (59.4% of the 43,397 concepts in the June 2015 version). The root 

concept of the PP hierarchy is Pharmaceutical Preparations. Besides IS-A relationships, 

concepts in the PP hierarchy can have role relationships (represented by the arrows in Figure 

1) pointing to concepts in the other hierarchies (the seven rectangles in Figure 1). Role 

relationships are used to define drugs according to their various aspects. Drug-disease 

relationships were mined from co-occurrence data in the Unified Medical Language System 

(UMLS) [15] (see Figure 1). The TC hierarchy is exclusive for concepts established by the 

FDA, so there are no NDF-RT asserted roles between the PP hierarchy and the TC hierarchy 

and the arrow in Figure 1 is not labeled with any NDF-RT asserted role.

For example, in Figure 2, the drug preparation ASPIRIN in the PP hierarchy has the role 

relationship has_Ingredient pointing to a chemical ingredient Aspirin in the CI hierarchy, the 

second largest hierarchy in NDF-RT with 10,145 concepts. The role relationships of drug 

classes and drug preparations are inherited by orderable drug products, e.g., ASPIRIN 
300MG TAB (a VA Product) inherits the role relationship has_Ingredient and its target 

concept Aspirin from its parent drug preparation ASPIRIN.
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Concepts in each hierarchy are organized in a generalization hierarchy; top level concepts 

are more general than bottom level concepts. Some concepts may have multiple parents. For 

example, ASPIRIN in the PP hierarchy and Salicylates in the CI hierarchy each have two 

parents in Figure 2.

Concepts in the PP hierarchy may have different types of role relationships to concepts in 

the CI hierarchy. These role relationships are introduced at a drug class level or a drug 

preparation level. For example, the role relationship has_Chemical_Structure that describes 

the chemical structure of an FDA established pharmacologic class is introduced at a drug 

class level while the roles has_Ingredient, CI_ChemClass, and has_active_metabolites are 

introduced at a drug preparation level.

Another terminology that contains classifications of active ingredients of drugs according to 

different dimensions is the Anatomical Therapeutic Chemical (ATC) Classification System. 

The ATC classifies drugs into groups at five different levels, the anatomical main group at 

Level 1, the therapeutic main group at Level 2, the therapeutic/pharmacological subgroup at 

Level 3, the chemical/therapeutic/pharmacological subgroup at Level 4, and the chemical 

substance at Level 5. However, each drug is connected to the classifications of different 

dimensions. The difference between ATC and NDF-RT include that each classification level 

is presented as only one layer in the ATC and all levels are in one hierarchy. The NDF-RT 

has a separate whole hierarchy for each dimension.

2.2 Abstraction Networks and Terminology Auditing

It is difficult for users and even creators of a large biomedical terminology to get the “big 

picture” of the content of that terminology, due to the large number of concepts and roles. 

An Abstraction Network of a terminology [7] is a compact network, that consists of nodes 

and of links connecting the nodes, summarizing the terminology. Each node in the 

Abstraction Network summarizes a group of similar concepts from the terminology. The 

concept “grouping criterion” for a terminology is based on the internal structural 

characteristics of this terminology and is different for different terminologies. Nodes in the 

Abstraction Network are organized in a hierarchy by child-of links that are derived from the 

IS-A links of the terminology.

A well designed Abstraction Network can summarize a large terminology in a compact way, 

helping users and curators to get a “big picture” of its content. In our previous research, we 

have designed several kinds of Abstraction Networks for various terminologies and 

ontologies. We have shown that Abstraction Networks can be used to support terminology 

quality assurance by reducing the QA resources that need to be expended to uncover 

erroneous concepts.

For example, we utilized the area taxonomy and partial-area taxonomy [8, 16, 17] 

Abstraction Networks to enable QA of SNOMED CT [18], the National Cancer Institute 

thesaurus (NCIt) [19], and the Gene Ontology [20]. The disjoint partial-area taxonomy [21] 

and the tribal abstraction network [22] Abstraction Networks were also shown to support 

QA of SNOMED CT. We have used other abstraction networks [23-27] to support QA of the 

Ontology of Clinical Research (OCRe) [28], the Cancer Chemoprevention Ontology 
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(CanCo) [29], the Sleep Domain Ontology (SDO) [30], and the Drug Discovery 

Investigations Ontology [31].

2.3 NDF-RT Related Work

Extensive research has been reported on NDF-RT, e.g., on its content coverage, the adequacy 

of representation, drug normalization and classification, etc. Rosenbloom et al. [32] 

investigated the adequacy of representation in the Physiologic Effect hierarchy. Carter et al. 

[33] studied drug class names from three sources to understand how drugs were classified. 

They further evaluated NDF-RT’s semantic coverage. Zhu et al. [34] normalized drug data in 

PharmGKB [35] by mapping extracted drugs and drug classes to NDF-RT. Pathak et al. [36] 

investigated drug-disease relationships in NDF-RT and PharmGKB to make both more 

robust and integratable. Pathak et al. [37] also evaluated the applicability of RxNorm [38] 

and NDF-RT for classification of medication data extracted from electronic health records.

3 Methods

In Section 3.1 we design the Ingredient Abstraction Network (IAbN) for the CI hierarchy of 

NDF-RT. The basic approach of this study was to use IAbN support to identify concepts 

belonging to concept groups with especially complicated structural properties, as explained 

in Section 3.3 below. Then we chose samples from those groups and from a control group 

and used a two-level audit by three expert auditors to count the numbers of errors as a 

function of structural complexity. We reviewed the errors reported by the expert auditors and 

showed that the complex concepts have statistically significantly higher error rate compared 

to the control concepts.

3.1 Ingredient Abstraction Network

An Ingredient Abstraction Network (IAbN) is an Abstraction Network where the nodes 

summarize (1) the ingredients in the Chemical Ingredients hierarchy and (2) those drug 

concepts in the Pharmaceutical Preparations hierarchy that have no dosage information but 

that do have at least one has_Ingredient role to a drug ingredient in the Chemical Ingredients 
hierarchy.

Drug ingredients are chemical ingredients that are used in prescription drugs. We define five 

categories of concepts in the Chemical Ingredients (CI) hierarchy. The right side of Figure 

3(a) illustrates the following categories of drug concepts for an excerpt of 14 CI concepts.

Definition 1: A drug ingredient concept is a concept in the Chemical Ingredients (CI) 
hierarchy that is the target of has_Ingredient role(s) from concepts in the 

Pharmaceutical Preparation hierarchy.

Definition 2: A classification ingredient concept is a concept in CI that “organizes” 

other drug ingredient concepts below it. In other words, it has drug ingredient 

concepts as children. It may or may not be itself a target of a has_Ingredient role.

Definition 3: A dual ingredient concept is both a drug ingredient concept and a 

classification ingredient concept in CI. Such a concept is a target of a has_Ingredient 
role and has children that are drug ingredient concepts.
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Definition 4: A strict classification ingredient concept is a classification ingredient 

concept that is not also a drug ingredient concept. That is, it is not a target of a 

has_Ingredient role.

In other words, a classification ingredient concept is either a dual ingredient concept 

or a strict classification ingredient concept.

Definition 5: An uncategorized ingredient concept is a concept in the CI hierarchy 

that is neither a drug ingredient concept nor a classification ingredient concept. Such 

concepts are not used in the theory developed in this paper.

The design of an Abstraction Network for the CI hierarchy poses a challenge for several 

reasons: (1) A lack of roles emanating from CI concepts prevents the derivation of a 

commonly used Abstraction Network called a partial-area taxonomy [8] that can be derived 

for many other description logic-based terminologies. (2) The need to distinguish between 

drug ingredient concepts and classification ingredient concepts is further complicated by the 

existence of dual ingredient concepts. (3) To obtain a “big picture” of the Chemical 
Ingredients hierarchy there is a need to summarize the drug concepts, which in NDF-RT are 

parts of the PP hierarchy, according to their ingredient concepts in CI, as was illustrated by 

Ochs et al. [39].

The derivation algorithm for an IAbN will now be explained. It begins with identifying all of 

the drug concepts in the PP hierarchy that have a has_Ingredient role but no has_DoseForm 
role. PP concepts with dosage information are ignored since an ancestor concept, typically a 

parent (a PP generic drug ingredient) introduces the has_Ingredient role, which is inherited 

to such concepts. Hence, there is no need for direct summarization of PP concepts with 

dosage information, since such a summary is offered indirectly through the summarization 

of the other PP concepts. All the PP concepts in Figure 3(a), except Pharmaceutical 
Preparations, have one has_Ingredient role to a concept in the CI hierarchy. Different drug 

concepts in the PP hierarchy can have a has_Ingredient role to the same CI concept, e.g., 

both Aspirin and Acetylsalicylate Sodium in Figure 3(a) have the ingredient Aspirin. PP 
concepts may also have multiple has_Ingredient roles, e.g., Aspirin/Caffeine has distinct 

has_Ingredient roles to both Aspirin and Caffeine.

In the next step, drug ingredient concepts (see Definition 1 above) are identified by 

collecting the target concepts of all the has_Ingredient roles. Classification ingredient 

concepts (see Definition 2 above) are identified by analyzing the parent concept(s) of each 

drug ingredient concept. Next, for each drug ingredient concept, the lowest ancestor(s) that 

are a strict classification ingredient concept(s) (see Definition 4 above) are identified, with 

the intention of finding groups of drug ingredient concepts. (Common ancestors will be used 

in the next step to define groups.)

For example, for the Aspirin CI concept, the lowest ancestor that is a strict classification 

ingredient concept is Salicylates. Salicylates is the lowest common ancestor for Aspirin, 

Magnesium Salicylate, and Diflunisal. For Warfarin Sodium its parent concept, Warfarin, is 

a classification ingredient concept but it is also a drug ingredient concept (i.e., it is a dual 

ingredient concept; see Definition 3 above). Thus, the lowest ancestor of Warfarin Sodium 
that is a strict classification ingredient concept is Warfarin’s parent, 4-Hydroxycoumarins. 
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Many CI hierarchy concepts have multiple parents, thus, a given drug ingredient concept 

may have more than one lowest ancestor that is a strict classification ingredient concept.

In the next step of deriving the Abstraction Network, the drug ingredient concepts are 

grouped together according to their common ancestor(s) that are strict classification 

ingredient concepts. For example, Aspirin, Magnesium Salicylate, and Diflunisal share 

Salicylates as a lowest common ancestor. Similarly, Warfarin, Warfarin Sodium and 

Phenprocoumon share 4-Hydroxycoumarins as a lowest common ancestor. Figure 3(b) 

models the right side of Figure 3(a) and shows the “drug ingredient groups” induced by the 

lowest common ancestors. Color coding in Figure 3(b) helps to keep the groups apart: Every 

group has its own color.

In the following step, each strict classification ingredient concept is made into a root for its 

ingredient group. Roots of a group are shown with solid fill in Figure 3(b). Thus Salicylates 
becomes the root of the group with Aspirin, Magnesium Salicylate, and Diflunisal in it. The 

CI root concept, Chemical Ingredients, is also a root. Roots represent groups of CI concepts 

in the IAbN (Figure 3(c)). The text line “3 Ingredients” under Salicylates in Figure 3(c) 

indicates how much information is summarized by this box. Ingredient groups are not 

disjoint; drug ingredient concepts with multiple parents may be summarized by multiple 

ingredient groups. With this step we have created a summary (Figure 3(c)) of the “right side” 

(the Chemical Ingredients hierarchy) of Figure 3(a). In the next step, we include information 

from the left (PP) side of Figure 3(a) into Figure 3(c).

For each ingredient group, the PP drug concepts that have a has_Ingredient role to a drug 

ingredient concept in the ingredient group are identified. For example, the Aspirin and 

Acetylsalicylate Sodium drug concepts in PP both have Aspirin in CI as the target of their 

has_Ingredient roles. The Aspirin drug ingredient concept belongs to the Salicylates 
ingredient group, thus, the Aspirin and Acetylsalicylate Sodium drug concepts from PP are 

also summarized by the Salicylates ingredient group. This is expressed by the text line “4 

Drugs” under Salicylates in Figure 3(c). (The other two drug concepts are Magnesium 
Salicylate and Diflunisal). Since ingredients may belong to multiple ingredient groups, a 

given PP drug concept may be represented by multiple ingredient groups.

Within the IAbN, ingredient groups are organized into a hierarchy according to child-of 
links derived from the underlying IS-A hierarchy. An ingredient group A is a child-of 
another ingredient group B if A’s root has B’s root as an ancestor in the CI hierarchy and 

there are no other roots of the IAbN on any path from A’s root to B’s root in the CI 
hierarchy. An ingredient group may be a child-of multiple ingredient groups. In summary, 

Figure 3(c) shows the IAbN derived from NDF-RT excerpt in Figure 3(a).

In the visualization of an IAbN it is necessary to organize the ingredient groups in a way that 

helps the summary reflect the “big picture.” Thus, ingredient groups may be organized into 

color coded levels according to the length of the longest child-of path to the root ingredient 

group (Chemical Ingredients). This will be shown later in Figure 4. Figure 3(c) does not use 

this color level encoding.
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We note that Ethyl Biscoumacetate is an uncategorized ingredient concept (see Definition 5 

above), as shown in Figure 3(a). This occurs when an ingredient is modeled in CI but no PP 
drug concept has a has_Ingredient role to this ingredient. For the current research, such 

concepts are not summarized by any ingredient group and are not considered part of the 

IAbN. In the Discussion Section we propose methods for extending the IAbN to include 

uncategorized ingredient concepts and drug concepts with dosage information in the 

summary.

3.2 Software for Creating and Browsing IAbNs

In previous work, we created the Ontology Abstraction Framework (OAF) [40], an open 

source software system and tool for deriving Abstraction Networks. As part of this research 

project, we created an IAbN module for the OAF, enabling the derivation of IAbNs for 

NDF-RT (and other terminologies). The OAF system can create interactive IAbN displays 

that can be browsed by a user. The OAF, which includes a reference implementation of the 

IAbN derivation in Java, is available at https://njitsaboc.github.io/.

3.3 Quality Assurance Techniques for Auditing the CI Hierarchy

In this paper, we perform a QA study of the Chemical Ingredients (CI) hierarchy of NDF-

RT, which provides a chemistry-oriented classification of the drug ingredients. Such a 

classification is, for example, relevant to Drug-Drug Interactions (DDIs), since in many 

cases drugs that are chemically similar tend to have similar interactions [41]. As already 

mentioned in the Introduction, the CI hierarchy was imported into NDF-RT from MeSH.

The complication is that the CI hierarchy was designed with a chemistry orientation rather 

than a pharmacology orientation. As we will see, those two orientations do not always 

coincide, and NDF-RT is a drug terminology rather than a chemical terminology such as 

ChEBI [42]. As may be expected, such differences will play an important role when 

performing the quality assurance review of the CI hierarchy.

The Abstraction-Network-based framework we have developed can be summarized as 

follows. First, an Abstraction Network is developed to summarize the specific terminology 

[7]. An algorithm is described and implemented to computationally derive the Abstraction 

Network from the terminology. Based on the Abstraction Network, we identify 

characterizations of sets of concepts of the terminology that are expected to display a higher 

percentage of errors, compared to a control sample [24, 43]. Those sets of concepts can be 

computationally retrieved [40, 44], because the characterizations of such sets of concepts are 

based on structural features.

One of the recurring themes in such characterizations is that there are concepts that are more 

complex than “arbitrary” concepts of the terminology. Examples of characterizations of 

complex concepts include overlapping concepts [21, 45, 46] and multiple inheritance regions 

[8, 47]. Complex concepts are typically more error-prone. While those characterizations are 

based on deriving a Partial-Area Taxonomy [8, 16, 23] their complexity stems from concepts 

having multiple generalizations through multiple parents, reflecting an entity that is 

simultaneously “this and that.” Not surprisingly, the modeling of such concepts is more 

challenging and a higher ratio of errors can be expected for them.
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The characterization of concepts that we are testing in this study on the NDF-RT CI 
hierarchy is “drug ingredients belonging to only one ingredient group with multiple parent 

ingredient groups” in the IAbN. Such concepts fit the above theme of complex concepts 

being “this and that” and are expected to have higher error rates.

Hypothesis 1: Among drug ingredients belonging to only one ingredient group, those in an 

ingredient group with multiple parent ingredient groups are more likely to have errors than 

those in an ingredient group with only one parent ingredient group.

The drug ingredients from those ingredient groups that have multiple parent ingredient 
groups inherit multiple classifications. The more classifications the drug ingredients belong 

to, the more complex those ingredients are, which increases the possibility that the 

classifications may have errors. We will formulate this as Hypothesis 2.

Hypothesis 2: Among drug ingredients belonging to only one ingredient group, those in an 

ingredient group with more than two parent ingredient groups are more likely to have errors 

than those with exactly two parent ingredient groups.

To test the above hypotheses, a sample of drug ingredient concepts within only one 

ingredient group was reviewed by two chemistry domain experts, coauthors LC and HY. 

Table 1 shows the distribution of NDF-RT’s all drug ingredients appearing in exactly one 

ingredient group according to their group’s number of parent ingredient groups. We picked 

263 drug ingredients from the ingredient groups that have multiple parent ingredient groups 

as study concepts as follows. The study concepts included 118 randomly selected drug 

ingredients with two parent ingredient groups plus all drug ingredients with three (118), four 

(25) or five (2) parent ingredient groups. Thus, in total there were 263 study concepts. We 

randomly chose 170 drug ingredients from the ingredient groups that have only one parent 

ingredient group as control concepts, achieving statistical significance. Hence, the total 

number of reviewed drug ingredients in the study is 433.

LC and HY were blind to the hypotheses and the sampling methodology. The concepts were 

presented in alphabetical order. There were three steps of the review process. First, each of 

the reviewers studied the sample individually and submitted an error report that consisted of 

identified errors with corresponding corrections.

The domain experts were instructed to review the hierarchical relationships of each concept 

for correctness and to mark those they considered incorrect. The individual error reports 

from the domain experts were combined into a single anonymized list of unique errors. In 

the second step, the list of combined errors was sent back to the domain experts who had to 

obtain a consensus. Each reviewer marked ‘agree’ or ‘disagree’ for each error in the list.

In the third step, an additional evaluation of the consensus result was performed by JKU (a 

pharmacologist who is leading First DataBank’s drug vocabulary standards initiatives). Only 

the errors agreed upon by both LC and HY were sent to JKU for the third round review. JKU 

recorded those concepts for which she agreed that there was an error in a hierarchical 

relationship. Thus, in this study a concept was considered erroneous only if all three domain 

experts (LC, HY, and JKU) agreed on the error.
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If the above hypotheses are confirmed, they will guide the focus of the NDF-RT team to sets 

of concepts that are more likely to have errors. Considering the limited resources typically 

available for terminology QA, this is important, because no comprehensive QA effort for a 

terminology as the size of the NDF-RT is likely to be budgeted. Thus, the IAbN approach 

will allow NDF-RT’s curators to achieve a higher error yield, as measured by the ratio of the 

number of errors corrected to the number of concepts reviewed.

4 Results

4.1 Abstraction Networks

We derived an IAbN for the June 2015 inferred version of NDF-RT’s Chemical Ingredients 
(CI) hierarchy, which consists of 10,145 concepts. This IAbN consists of 860 ingredient 

groups which summarize 2,664 drug ingredients and 6,872 Pharmaceutical Preparation 
hierarchy drug concepts. We define the abstraction ratio of the IAbN to be the average 

number of drug ingredients per ingredient group. The abstraction ratio of the June 2015 

IAbN is 3.07 (=2,664/860). There are 813 drug ingredient concepts summarized by more 

than one ingredient group (total 535 ingredient groups), and each such drug ingredient is 

summarized by an average of 1.52 (=813/535) ingredient groups. The average number of PP 
drug concepts summarized by each ingredient group is 7.99.

Figure 4 shows an excerpt of 128 of the IAbN’s ingredient groups, as the IAbN is too large 

to fit on a single page. (In the Discussion Section we will mention methods to overcome this 

issue.) By reviewing the ingredient groups of the IAbN one can see the major types of drug 

ingredients used in NDF-RT’s drugs. For example, the Polymers group (Level 2: green) 

summarizes 26 ingredients and 81 drugs, Piperidines (Level 3: blue) summarizes 47 

ingredients and 76 drugs, Tetracyclines summarizes 17 ingredients and 35 drugs, 

Ethanolamines summarizes 45 ingredients and 231 drugs, and Penicillins summarizes 34 

ingredients and 64 drugs.

4.2 Quality Assurance

As noted above, the IAbN has 860 ingredient groups, which summarize 2,664 drug 

ingredients. Each of these drug ingredients may be summarized by either exactly one 

ingredient group or multiple ingredient groups. There are 1,851 drug ingredients appearing 

in exactly one ingredient group (total 597 ingredient groups) and 813 drug ingredients 

appearing in multiple ingredient groups (total 535 ingredient groups). Note that this is a 

partition of the drug ingredients into two disjoint sets (1,851+813=2,664), but not a partition 

of the 860 ingredient groups into disjoint sets (597+535≠860). The reason for the latter is 

that the same group may contain some ingredients belonging solely to this group and some 

ingredients belonging to multiple groups.

In this study we concentrated on the 1,851 drug ingredients appearing in exactly one 

ingredient group. From these 1,851 drug ingredients, a total of 433 drug ingredients were 

included in this study (see Table 2). The respective numbers of drug ingredients with one, 

two, three, four, and five parent ingredient group(s) are 170, 118, 118, 25, and two. The 

sample of 433 drug ingredients and their paths to the root concept Chemical Ingredients 

Zheng et al. Page 11

J Biomed Inform. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were presented to auditors LC and HY (domain experts and chemistry professors). They 

focused on auditing the hierarchical relationships of a drug ingredient concept and the 

hierarchical relationships of all of its ancestors. The complete hierarchical relationships for 

each concept were reviewed because some errors may occur due to transitivity between 

ingredient classifications, which may be further apart in the hierarchy, as illustrated in the 

following section.

In the two initial auditing reports, the two reviewers agreed on 100 erroneous drug 

ingredients; 19 drug ingredients were judged as erroneous by one reviewer. We compiled a 

new data set including all the errors reported by any of the two auditors, without the name of 

the originator of the error, and sent this new data set back to the two auditors for generating 

a consensus report. The two auditors gave their responses (agree or do not agree) to all the 

errors listed in the new dataset, which were compiled into a consensus report including 119 

errors that both reviewers agreed to. Then the consensus report was reviewed by coauthor 

JKU. Only when an error of a concept listed in the consensus report of LC and HY was 

confirmed by JKU, then this concept was labeled “erroneous,” i.e., a consensus of three 

reviewers was achieved for these concepts in this two-stage study. In fact, JKU confirmed all 

consensus errors reported by LC and HY. Appendix 1 lists all of the errors confirmed in the 

consensus study.

Table 2 shows the error distribution of the 433 audited drug ingredients. We can see that the 

percentage of erroneous concepts increases with the number of parent ingredient groups 

(except for the small number with five parents). Column 5 shows the percentage of 

erroneous concepts per parent ingredient group. The values in Column 5 are around 13% per 

parent ingredient group.1

However, one cannot interpret this result assuming independence of the errors for each 

parent ingredient group. In some cases, the errors of a concept are classification errors 

occurring at an ancestor level. Several such errors may occur at ancestors of the same parent 

ingredient group, for example, Ertapenem in Figure 5 is in the Beta-Lactams ingredient 

group with four parent ingredient groups Heterocyclic Compounds, Amides, Sulfur 
Compounds and Azabicyclo Compounds. (Only the latter two groups, related to errors, are 

shown in the figure.) The classification errors reported for Ertapenem are transitively derived 

only from the parent ingredient group Sulfur Compounds and its parent Inorganic 
Chemicals.

Table 3 shows the contingency table for the control and study concepts to calculate the P 

value for Hypothesis 1. The two-tailed P value is less than 0.0001 by Fisher’s exact test [48], 

which means that the drug ingredients from the ingredient groups that have multiple parent 

ingredient groups are statistically significantly more likely to have errors than those from the 

ingredient groups that have one parent ingredient group.

In order to test Hypothesis 2, we compared the error counts of drug ingredients from the 

ingredient groups that have more than two parent ingredient groups with those that have 

1We thank an anonymous reviewer for this observation.
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exactly two parent ingredient groups. Table 4 shows the contingency table for the concepts 

with two and more than two parent ingredient groups to calculate the P value. The two-tailed 

P value equals 0.0002 by Fisher’s exact test, which means that Hypothesis 2 was confirmed.

Overall, there are 119 concepts (119/433 =27.5%) with errors. Some errors appear at the 

parent level, while other errors were introduced at higher levels (up to several levels above 

the erroneous concept), which will be discussed in the end of the Results Section. The types 

of errors are summarized in Table 5. The sets of erroneous concepts for the different error 

types in Table 5 are not disjoint, since one concept may have multiple errors. Row 1 in Table 

5 shows that eight concepts in this study are assigned wrong parents, e.g., Loracarbef was 

erroneously defined as child of Cephalosporins, while the direct parent of Loracarbef should 

be Carbacephem.

We identified two especially prevalent error patterns in this study. Row 2 and Row 3 show 

these two most common errors in the study that cover most of the erroneous concepts. In 

Row 2 an organic (or inorganic) concept is assigned to both Organic Chemicals and 

Inorganic Chemicals due to the inheritance from its ancestor classification, which can be 

either organic or inorganic. For example, Sulfur Compounds appear as inorganic or organic 

compounds that contain sulfur as an integral part of the molecule according to the definition. 

Rabeprazole actually is an organic chemical while it is assigned under both Organic 
Chemicals and Inorganic Chemicals because the parent of its grandparent is Sulfur 
Compounds. Row 3 indicates that the specified chemical ring structures of a concept which 

is a Heterocyclic Compound[s] are contradicting each other. For example, a concept is 

assigned several classifications out of the set R = {“Heterocyclic Compounds, 1-Ring,” 
“Heterocyclic Compounds, 2-Ring,” “Heterocyclic Compounds, 3-Ring” and “Heterocyclic 
Compounds with 4 or More Rings”}. That is due to inheritance from its ancestor 

classifications, i.e., a concept may have several ancestor classifications (at a very general 

level) and each of its ancestor classifications may be under one of the four choices in R. For 

example, Alosetron is a 4-ring structure with three fused rings. Its parent is Carbolines with 

a 3-ring structure, the parents of which are, Pyridines with a 1-ring structure and Indoles 
with a 2-ring structure. Hence due to the transitivity, Alosetron is a Heterocyclic 
Compounds, 1-Ring, and also a Heterocyclic Compounds, 2-Ring, and even a Heterocyclic 
Compounds, 3-Ring.

Row 4 represents the other types of erroneous classifications, happening above the parent 

level, which cover 26 concepts (21.8%). For example, Hydrogen Peroxide does not belong to 

Electrolytes because it is a molecule without ions, and it is not an electrolyte.

We will start by discussing one specific example about Organic/Inorganic Chemical 

misclassification in detail, to illustrate the encountered modeling problems and potential 

remodeling options to overcome these problems.

As an example, in Figure 5, Ertapenem was found to be misclassified. It should be classified 

under Carbapenems, which could be solved easily. However, there are additional subtle 

problems in Figure 5, not expressed by a wrong parent, but implied by a sequence of 

relationships that, by themselves, are correct.
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1. Beta-Lactams has indeed a sulfur atom. However, in pharmacology it is not 

referred to as a “sulfur compound.” Thus, the link from Beta-Lactams to Sulfur 
Compounds is debatable.

2. Beta-Lactams is definitely not considered an inorganic chemical. However, the 

link from Beta-Lactams to Sulfur Compounds together with the link from Sulfur 
Compounds to Inorganic Chemicals leads to a wrong conclusion by transitivity, 

again making the link from Beta-Lactams to Sulfur Compounds problematic. 

The same wrong conclusion would be drawn with respect to Ertapenem.

3. The connection from Beta-Lactams to Lactams is correct. However, the class 

Lactams is of questionable use in pharmacology. A high-quality pharmacology 

ontology should not contain classes for which there is no pharmacologic use 

case. It is hard to imagine a pharmacologic situation in which a user would query 

or search for Lactams. This observation contradicts the “idealistic content notion 

of an ontology” [49] that could be expressed as “ontologies contain domain 

truths with no regard to the use and usefulness of these truths.” An ontology that 

is “cluttered up” with too many truths that are not useful will be held in low 

regard by its users.

Problem 3 above can be solved by omitting Lactams completely. Problems 1 – 2 above can 

be solved by introducing a new concept Organic Sulfur Compounds instead of the concept 

Sulfur Compounds. The latter is changed to Inorganic Sulfur Compounds. Figure 6 reflects 

these changes and solves the problems listed above. Problem 1 is solved because there is no 

more link from Beta-Lactams to (what used to be) Sulfur Compounds and is now Inorganic 
Sulfur Compounds. Problem 2 is solved because there is no more path from Beta-Lactams to 

Inorganic Chemicals.

As a more general conclusion to be drawn from this example we note that whenever a 

pharmacology ontology is audited, it is essential not to just look for pairs of concepts and the 
connection of each pair, but to start with a drug and follow the whole path towards the root 
to determine whether every assignment implied by transitivity is actually correct from the 
pharmacologic point of view.

Figure 5 is also “strange” from a knowledge representation point of view. Figure 5 reads as 

“Every instance of Sulfur Compund(s) is an instance of Organic Chemical(s)” and “Every 

instance of Sulfur Compund(s) is an instance of Inorganic Chemical(s).” However, 

chemicals are assumed to be either organic or inorganic, but not both. Thus, independent of 

pharmacological considerations, Figure 6 also solves a formal knowledge representation 

issue of Figure 5.

5 Discussion

The development of the IAbN (Ingredient Abstraction Network) enables the summarization 

of NDF-RT’s drug concepts according to their various classifications. The IAbN makes it 

possible to compactly visualize the major types of ingredients, and the drugs that contain 

them, as they currently exist in NDF-RT. One reason that the IAbN derivation methodology 
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works well for the CI hierarchy is that the majority of drug ingredient concepts (refer back to 

Definition 1) in NDF-RT are leaves (i.e., have no children) (see Table 6).

Not every distinction between more complex concepts and less complex concepts 

necessarily indicates a higher rate of errors in the former group. In the IAbN there are 1,851 

concepts that appear in exactly one ingredient group in 597 such ingredient groups. In 

contrast, there are 813 concepts that appear in multiple ingredient groups in 535 such 

ingredient groups. It would seem that concepts that appear in multiple ingredient groups are 

more complex due to the duality of their groupings and therefore have higher error rates. 

However, in an auxiliary study we found that the error rates of concepts in these two sets 

were indistinguishable. In hindsight, the errors we reported for the Chemical Ingredients 
hierarchy of NDF-RT are mostly between ingredient groups rather than between an 

ingredient drug and its group. Hence, the distinction that matters for the error rate is the one 

we reported in this study, namely between ingredient groups with one parent ingredient 

group and ingredient groups with multiple parent ingredient groups.

5.1 Limitations

One limitation of the IAbN-based QA methodology is the amount of initial manual effort 

required to evaluate the effectiveness of the methodology. Two domain experts had to 

manually review several hundred NDF-RT concepts and another round of consensus 

building was required to confirm the results, involving a third domain expert. However, once 

the initial evaluation study was completed, and the methodology was shown to identify sets 

of concepts that are statistically significantly more erroneous than other concepts, it can then 

be applied to other concepts. Additionally, if the methodology is applied by a curator of 

NDF-RT, it may reduce the overall amount of effort, as he or she may be familiar with the 

modeling of the concepts.

As stated above, the aim of our work is to provide a compact summary of the NDF-RT. 

While the IAbN is significantly smaller than the CI hierarchy that it summarizes, (860 nodes 

versus 10,145 concepts), it is a limitation of this work that the IAbN is still large and the size 

impedes a useful visualization. In previous work, Ochs et al. [39] introduced the Aggregate 

IAbN, which provides a secondary summarization mechanism. This mechanism gives the 

user a certain degree of control over the size of the final Abstraction Network. However, for 

the purpose of QA of the NDF-RT CI hierarchy, we are not using the Aggregate IAbN, and 

thus it is not relevant to the current paper.

A third limitation is that not every concept in the CI hierarchy is summarized by an 

ingredient group. In our previous Abstraction Networks, each concept was always 

summarized by at least one Abstraction Network node [7]. However, if a CI hierarchy 

concept is an uncategorized ingredient concept (Definition 5), e.g., Ethyl Biscoumacetate in 

Figure 3, it is not reflected at all in the IAbN. In fact, the majority (7,481; 73.7%) of 

concepts in the CI hierarchy are not summarized by any ingredient group. This situation 

occurs for several reasons. The CI hierarchy was primarily imported from MeSH and many 

of the concepts from MeSH are very general and do not represent ingredients that are used in 

drugs. Other ingredient concepts may not be relevant to the drugs in NDF-RT, as no drug in 

the PP hierarchy of NDF-RT includes them as an ingredient.
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Lastly, we note that drug concepts with dosage information are not associated with any 

ingredient group, i.e., not summarized. If the need arises, these drug concepts can also be 

summarized by the implied ingredient group(s).

5.2 Future Work

There are several ways to improve the effectiveness of our methodology. As shown in the 

Results section, errors typically occurred at a general level (i.e., close to the root concept 

Chemical Ingredients). If these general concepts are audited first then the corrections to 

errors would propagate down the hierarchy. In a future study, we will review these general 

concepts when they are summarized by only one ingredient group that has multiple parent 

ingredient groups. In a recent study [50] we showed that a similar methodology, based on a 

different Abstraction Network, was effective for the NCIt’s Neoplasm subhierarchy. We will 

also evaluate the effectiveness of “group-based auditing” [50] in the Chemical Ingredients 
hierarchy. In group-based auditing, when a single concept in an ingredient group is found to 

be erroneous, all other concepts in the ingredient group will also be reviewed for errors. The 

other concepts in the ingredient group may have the same, or similar, errors. Hence, more 

errors could be uncovered with minimal extra work.

The IAbN derivation approach is applicable beyond the CI hierarchy. For example, it is 

possible to apply the IAbN derivation methodology to the Cellular or Molecular Interactions 
(MOA) hierarchy, summarizing NDF-RT’s drugs according to their mechanisms of action, 

rather than their chemical ingredients. In a future study, we will investigate the structural 

properties of IAbNs derived from NDF-RT’s other classification hierarchies.

In a future study, we will investigate ways of summarizing uncategorized ingredient 

concepts (see limitations above). One idea is to associate each such concept with the closest 

classification ingredient above it. Using such an approach, Ethyl Biscoumacetate, for 

example, would be summarized by the 4-Hydroxycoumarins ingredient group. An IAbN 

with drug concepts including dosage information is a potential extension of this work.

In Summer 2016, the VA announced plans to replace NDF-RT by the Medication Reference 

Terminology (MED-RT) [51]. The various classification hierarchies will be preserved in 

different ways. For example, instead of importing the Chemical Ingredients (CI) hierarchy 

from MeSH, as in NDF-RT, the Chemical Ingredient roles from the PP hierarchy of MED-

RT will point to the corresponding concepts in MeSH. This change is in line with the trend 

of referring to concepts in the hierarchies of other terminologies (e.g., GO Plus [52, 53] has 

relationships to classes in external ontologies, e.g., the ChEBI ontology).

The transition to MED-RT creates challenges for correcting errors in CI, since the 

corrections would need to be applied to MeSH. This is made difficult by the structure, 

orientation and ownership of MeSH: MeSH uses hierarchical relationships that do not 

always conform to the ontological rules for IS-A links. MeSH was not designed with the 

pharmacology viewpoint in mind. The purpose of MeSH is to support the categorization of 

scientific papers in PubMed and, in the case of the CI component, the categorization of 

chemistry-oriented publications. Hence, errors reported in this study for CI may not be 
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considered errors in MeSH. Lastly, MeSH is not owned by the Veteran’s Health 

Administration, which creates additional barriers to implementing corrections.

The preferred solution would be for the VA to create a pharmacology-oriented hierarchy of 

chemical ingredients and their classifications for MED-RT. Given that, as mentioned above, 

7481 (73.1%) of the CI hierarchy concepts are uncategorized in the IAbN, since no drug 

contains them as a chemical ingredient, it appears that MeSH, with its chemistry orientation, 

is improper for representing chemical ingredients in a drug terminology. The design of such 

a new hierarchy, which will likely include a significantly smaller number of relevant 

chemicals, should involve domain experts (pharmacologists), who would provide the needed 

pharmacology viewpoint for such a CI hierarchy within MED-RT.

We are currently preparing to submit our error report to the NDF-RT editorial team for 

feedback. We plan to coordinate with the NDF-RT team in future studies to improve the 

modeling of NDF-RT using IAbN-based auditing techniques.

6 Conclusions

In this paper, we introduced the application of the Ingredient Abstraction Network (IAbN) to 

summarize the concepts in NDF-RT’s Chemical Ingredients hierarchy. The IAbN summary 

was used for visualizing the contents of the NDF-RT and for quality assurance of NDF-RT’s 

chemical ingredient concepts. The IAbN was shown to highlight sets of concepts that are 

more likely to have errors. The most common errors involved incorrect direct classifications 

(= wrong parents), erroneous organic/inorganic classifications and Heterocyclic Compounds 
with rings: Concepts were erroneously assigned to several different, contradictory atomic 

ring structures. Several concepts that were correct and even correctly placed were proposed 

for elimination from NDF-RT, because they are not useful from the point of view of 

pharmacology experts.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A new Ingredient Abstraction Network to summarize NDF-RT’s Chemical 

Ingredients

• A new quality assurance methodology based on the Ingredient Abstraction 

Network

• Concepts in chemical ingredient groups with multiple parent groups have 

more errors

• Complex chemical ingredient groups have a higher error rate

• Two common patterns of errors were found for chemical ingredient concepts 

in NDF-RT
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Figure 1. 
Content Model of NDF-RT [9] (The “CI” in role names means contraindicated, not 

Chemical Ingredient)
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Figure 2. 
An excerpt from NDF-RT’s Pharmaceutical Preparations and Chemical Ingredients 
hierarchies. Concepts are shown as blue boxes and hierarchical relationships are shown as 

upward directed blue arrows. The has_Ingredient roles linking the concepts in the two 

hierarchies are shown as labeled blue arrows.
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Figure 3. 
(a) An excerpt of concepts from NDF-RT’s Pharmaceutical Preparations (PP) and Chemical 
Ingredients (CI) hierarchies. On the left, drug concepts in the PP hierarchy with no dosage 

information have a shaded background. On the right, nine drug ingredient concepts have red 

borders and five classification ingredient concepts have a pink background. Two concepts, 

Aminosalicylic Acid and Warfarin, are both drug ingredient concepts and classification 

ingredient concepts, i.e., they are dual ingredient concepts. Ethyl Biscoumacetate is neither a 

drug ingredient concept nor a classification ingredient concept, i.e., it is an uncategorized 

ingredient concept. (b) CI grouped. Drug ingredient concepts are not shaded and their lowest 

common ancestor classification ingredient concepts are shaded. Each drug ingredient 

concept is color-framed according to its lowest common ancestor classification ingredient 

concept. (c) The IAbN for Figure 3(a). Ingredient groups are shown as boxes that are labeled 

with the name of the lowest common ancestor from 3(b). In each box are the total number of 

ingredient concepts summarized by the group, and the total number of drug concepts 

(without dosage information!) with has_Ingredient roles pointing to the CI hierarchy. Child-
of links between ingredient groups are shown as upward directed bold arrows.
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Figure 4. 
An excerpt of 128 (15%) ingredient groups from the IAbN for June 2015 version of the CI 
hierarchy. The smaller ingredient groups have been hidden as follows. We show as many 

groups as possible in each level, in decreasing order by the number of ingredients in each 

group, while keeping the group names readable. Child-of links are hidden for readability. 

The number of ingredients and drugs summarized by each ingredient group is shown in 

parentheses and prepended with I: and D:, respectively. Salicylates and Aminosalicylic 
Acids, from Figure 3(c), are highlighted in yellow.
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Figure 5. 
A structure from NDF-RT that is problematic from a pharmacological point of view. 

Lactams is not a useful concept in pharmacology. Furthermore, even though Beta-Lactams 
contains a sulfur atom, it is not referred to as a “sulfur compound” in pharmacology and 

Beta-Lactams is not an Inorganic Chemical(s). Lastly, Ertapenem is misclassified.
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Figure 6. 
The problems from Figure 5 are eliminated here. Lactams has been removed and two new 

concepts, Inorganic Sulfur Compounds and Organic Sulfur Compounds, are introduced. A 

new IS-A link from Beta-Lactams to Organic Sulfur Compounds is added. This avoids the 

wrong conclusion that Beta-Lactams is an Inorganic Chemical. The location of Ertapenem in 

the hierarchy has also been corrected.
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Table 1

The distribution of the drug ingredients in exactly one ingredient group based on their number of parent 

ingredient groups

# of parent ingredient groups # of drug ingredients Percentage (Column 2/1851)

0 1 0.05%

1 1136 61.37%

2 569 30.74%

3 118 6.37%

4 25 1.35%

5 2 0.11%

Total: 1851 100.00%
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Table 2

The statistical analysis of the auditing results of the 433 drug ingredients

# of parent ingredient 
groups

# of audited concepts # of erroneous 
concepts

Percentage of erroneous 
concepts

Percentage of erroneous 
concepts per parent 

ingredient group

1 170 22 12.9% 12.9%

2 118 29 24.6% 12.3%

3 118 55 46.6% 15.5%

4 25 13 52.0% 13.0%

5 2 0 0.0% 0.0%

Total: 433 119 27.5%
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Table 3

The 2×2 contingency table for the control and study concepts

# of parent ingredient groups # of erroneous concepts # of concepts without errors

1 22 148

>1 97 166
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Table 4

The 2×2 contingency table for the concepts with two and more than two parent ingredient groups

# of parent ingredient groups # of erroneous concepts # of concepts without errors

2 29 89

>2 68 77
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Table 5

Examples of error types with counts

Error type # of 
erroneous 

concepts

Percentage (Column 2/119) Examples

1 Incorrect direct classification (= wrong 
parent)

8 6.7% Bisacodyl, Ertapenem, Loracarbef

2 Organic/Inorganic Chemicals classification 81 68.1% Cyclomethicone, Oxyphenonium, Rabeprazole

3 Heterocyclic Compounds, X-Ring(s) (X is 
one of {1, 2, 3, 4 or more})

34 28.6% Alosetron, Bilirubin, Ramipril

4 Other types of erroneous classifications 26 21.8% Hydrogen Peroxide, Loracarbef, Levodopa
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Table 6

Level distribution of drug ingredient concepts going upwards from the leaf level

Level (In this Table Level 0 Represents Leaves) # of Drug Ingredient Concepts

Level 0 2020

Level 1 623

Level 2 20

Level 3 1
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