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Abstract

Tensor factorization models offer an effective approach to convert massive electronic health 

records into meaningful clinical concepts (phenotypes) for data analysis. These models need a 

large amount of diverse samples to avoid population bias. An open challenge is how to derive 

phenotypes jointly across multiple hospitals, in which direct patient-level data sharing is not 

possible (e.g., due to institutional policies). In this paper, we developed a novel solution to enable 

federated tensor factorization for computational phenotyping without sharing patient-level data. 

We developed secure data harmonization and federated computation procedures based on 

alternating direction method of multipliers (ADMM). Using this method, the multiple hospitals 

iteratively update tensors and transfer secure summarized information to a central server, and the 

server aggregates the information to generate phenotypes. We demonstrated with real medical 

datasets that our method resembles the centralized training model (based on combined datasets) in 

terms of accuracy and phenotypes discovery while respecting privacy.
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1 INTRODUCTION

Electronic health records (EHRs) become one of most important sources of information 

about patients, which provide insight into diagnoses [19] and prognoses [11], as well as 

assist in the development of cost-effective treatment and management programs [1, 12]. But 

meaningful use of EHRs is also accompanied with many challenges, for example, diversity 

of populations, heterogeneous of information, and data sparseness. The large degree of 

missing and erroneous records also complicates the interpretation and analysis of EHRs. 

Furthermore, clinical scientists are not used to the complex and high-dimensional EHR data 

[8, 21]. Instead, they are more accustomed to reasoning based on accurate and concise 

clinical concepts (or phenotypes) such as diseases and disease subtypes. Useful phenotypes 
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should capture multiple aspects of the patients (e.g., diagnosis, medication and lab results) 

and be both sensitive and specific to the target patient population. Although some 

phenotypes can be easily concluded based on EHR data, a wide range of clinically important 

ones such as disease subtypes are not obtainable in a straightforward manner. The 

transformation from EHR data into useful phenotypes, or phenotyping is a fundamental 

challenge to learn from EHR data. Current approaches for translating EHR data into useful 

phenotypes are typically slow, manually intensive and limited in scope [4, 5]. Overcoming 

several disadvantages of the previous methods, tensor factorization methods have shown 

great potential in discovering meaningful phenotypes from complicated and heterogeneous 

health records [13, 14, 28].

Nevertheless, phenotypes developed from one hospital are often limited due to a small 

sample size and inherent population bias. Ideally, we would like to compute phenotypes on a 

large population with data combined from multiple hospitals. However, this will require 

healthcare data sharing and exchange, which are often impeded by policies due to the 

privacy concerns. For example, PCORnet data privacy guidance does not allow record-level 

research participant information sharing and it recommends a minimum count threshold 

(e.g., 10) for aggregate data sharing [25]. The same threshold is used in Informatics for 

Integrating Biology & the Bedsides (I2B2) [24], a famous system developed by National 

Center for Biomedical Computing based at Partners HealthCare. The real-world challenges 

motivate the development of a federated phenotyping method to learn phenotypes across 

multiple hospitals with mitigated privacy risks.

In the federated method, the hospitals perform most of computations, and a semi-trusted 

server supports the hospital by aggregating results from hospitals. The hospitals demand a 

certain form of summarized patient information (not patient-level data) anyhow for updating 

tensor. A challenge of the federated tensor factorization is that the summarized information 

can disclose the patient-level data. For example, an objective function of tensor factorization 

is ||  − ||2 where  is a tensor to be estimated using an observed tensor . Because the 

objective function is not linearly separable over hospitals, tensor factorization for each 

hospital inevitably demands the others patient-level data. Thus, hospitals should share 

summarized information that does not disclose the patient-level data but instead contains 

accurate phenotypes from the patient-level data.

However, sharing the summarized information raises another challenge when the data are 

distributed in many hospitals as a relatively small size, or when the data are unevenly 

distributed. Because of sampling error, noise in the summarized information can increase 

with small patient populations. Accuracy then can be decreased or unstable. Therefore, we 

need to ensure the robustness of summary information even with small sized or unevenly 

distributed samples.

In this paper, we develop federated Tensor factorization for privacy preserving 

computational phenotyping (Trip), a new federated framework for tensor factorization over 

horizontally partitioned data (i.e., data are partitioned based on rows or patients). Our major 

contributions are the following:
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i. Accurate and fast federated method: Trip is as accurate as centralized training 

model (based on combined datasets). The accuracy of Trip is robust on the 

patient size or distribution. Trip is fast compared to the centralized training 

model thanks to federated computation.

ii. Rigorous privacy and security analysis: Trip preserves the privacy of patient 

data by transferring summarized information. We prove that the summarized 

information does not disclose the patient data.

iii. Phenotype discovery from real datasets: Phenotypes that Trip discovers 

without sharing the patient-level data are the same phenotypes based on the 

combined data. Trip even discovers some phenotypes that individual hospital 

cannot discover due to biased and limited population.

2 RELATEDWORKS

Many privacy preserving data mining algorithms aim at constructing a global model only 

from aggregated statistics locally generated by participating institutions on their own data, 

without seeing others’ data at a fine-grained level [22, 27]. More rigorous privacy criteria 

like differential privacy [10], which introduces noises, have been applied for several 

classification models through parameter or objective perturbations [6]. However, this is not 

desirable for computational phenotyping applications because noise can lead to “ghost” 

phenotypes, which do not exist in the original databases and might mislead healthcare 

providers with severe consequences. In this work, we will consider privacy protection like in 

the former privacy preserving data mining methods to compute phenotypes by only 

exchanging summary statistics, calculated by local participants.

Tensor factorization emerged as a promising solution for computational phenotyping thanks 

to its interpretability and Flexibility. In the medical context, tensor factorization has been 

adapted to enforce sparsity constraints [13], model interactions among groups of the same 

modality [14], and absorbing prior medical knowledge via customized regularization terms 

[28]. Our goal is to develop a federated tensor factorization framework to compute 

phenotypes in a privacy-preserving way. This is different from distributed tensor 

factorization models [7, 16] and grid tensor factorization models [9]. The latter assumes data 

spread across different but interconnected computer systems, in which the communication 

cost is negligible and data/computation can be arbitrarily reallocated to improve 

parallelization efficiency. In contrast, our Trip framework deals with data stored in separate 

sources (hospital at different locations) and requires the ability to go through policy barriers 

using accepted practices that respect privacy.

3 PRELIMINARIES

We first describe some preliminaries of tensor factorization, and summarize the notations 

and symbols in Table 1.

Definition 3.1: Outer product of N vectors a(1) ∘ ··· ∘ a(N) makes N-order rank-one tensor .
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Definition 3.2: Kronecker product of two vectors a ∈ ℝIa×1 and b ∈ ℝIb×1 is

Definition 3.3: Kharti-Rao product of two matrices A ∈ ℝIA×R and B ∈ ℝIB×R is A ⊚ B = 

[a1 ⊗ b1 ··· aR ⊗ bR] ∈ ℝIAIB×R.

Definition 3.4: Matricization is to reshape the tensor into a matrix by unfolding elements of 

the tensor. Mode-n matricization of tensor  is denoted as O(n).

Tensor factorization is a dimensionality reduction approach that represents the original 

tensor as a lower dimensional latent matrix. The CANDECOMP/PARAFAC (CP) [3] model 

is the most common tensor factorization, which approximates the original tensor  as , a 

linear combination of R rank-one tensors that are made from outer product of N vectors. 

That is, CP tensor factorization is represented as

where A(n) (:, r) refers to the r th column of A(n). Here, A(n) is the nth factor matrix. R is 

referred as the rank of the . The columns from factor matrices represent latent concepts 

that describe the data as lower dimensions.

Tensor factorization for phenotyping is to compute a factorized tensor  that contains latent 

medical concepts from data (or observed tensor ).  consists of the R most prevalent 

phenotypes. The nth factor matrix, A(n) defines the elements from the mode n to comprise 

the phenotypes. That is, r th phenotype consists of r th column of factor matrices [13].

The objective function of the tensor factorization with regularization terms for pairwise 

distinct constraints [28] is formulated as

(1)

It is rewritten with respect to mode-n matricization

(2)
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where Π(n) = A(N) ⊚ … ⊚ A(n+1) ⊚ A(n−1) ⊚ … ⊚ A(1). This is our decomposition goal in 

the rest of this paper. Solving the problem (1) while preserving privacy is technically 

challenging because the tensor residual term  −  inherently contains other hospitals’ 

patient data that involve sensitive information.

4 FEDERATED TENSOR FACTORIZATION

We first provide a general overview of the Trip and then formulate the problem with iterative 

updating rules for optimization.

4.1 Overview

Trip is a federated tensor factorization for horizontally partitioned patient data. We assume 

the data are horizontally partitioned along patient mode, that is, hospitals have their own 

patient data on the same medical features (Figs. 1, 2). Let us assume that there are K 
hospitals and a central server, where the server distributes most decomposition computation 

to hospitals and aggregates intermediate results from them. We assume Honest-but-Curious 
adversary model, in which the server and hospitals are curious on data of others but do not 

maliciously manipulate intermediate results [18].

A local observed tensor k is the local patient data in hospital k (Fig. 2); a local factorized 

tensor k is the factorized tensor generated by local observed tensor in hospital k, k has N 
modes for the set of patient and medical features (eg. medication, diagnosis). In this case, N 
= 3 because we have modes for patient, medication, and diagnosis. The horizontally 

partitioned patient mode of each k is generated from distinct set of patients whose size is 

I1k. For simplicity, first mode (n = 1) always denotes patient mode. On the other hand, N − 1 

medical features modes that hospitals share of each k is generated from the same set of N 
− 1 medical features whose size is In, (n = 2,…, N). For example, diagnosis and medication 

can be the feature modes. The size of k is I1k × I2 × ··· × IN, ∀k.

We assume that factor matrix on feature modes of the local factorized tensor k is the same 

for all the hospitals. By assuming that, all hospitals are enforced to share the same 

phenotypes. Also, the objective function Ψ in Eq. (1) can be linearly separable on hospitals; 

consequently hospitals can update their local factorized tensor indirectly using other 

hospitals’ patient data while respecting privacy.

The local factorized tensor k is computed as following steps: first, in patient mode, 

hospital k (k = 1, …, K) computes local factor matrix independently (step 1) in Fig. 1. For 

feature modes, hospital k computes the local factor matrices (step 2) and send them together 

with the Lagrangian multipliers to the server (step 3). The server then generates harmonized 

factor matrix (global factor matrix) by combining all the local factor matrices with 

Lagrangian multipliers (step 4). After receiving the global factor matrix (step 5), hospital k 
updates the Lagrangian multipliers (step 6). Hospitals and the server repeat the procedures 

until the local factor matrices are converged. During the procedures, the global factor 

matrices can retain phenotypes from local factor matrices without directly using the local 

patient data.
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4.2 Formulation

We first formulate separable objective function on hospitals for federated tensor 

factorization. The objective function for tensor factorization, Ψ in Eq. (1) is reformulated 

with respect to the local factorized tensor.

k is decomposed into factor matrices  (patient mode) and , n 

≥ 2 (feature modes). We assume that the local factor matrices of feature modes  from all 

hospitals are equal to the global factor matrix (Fig. 2), i.e.,

(3)

This assumption is reasonable because all hospitals aim to have the same phenotypes and 

share them with others. By assuming Eq. (3), the horizontal concatenation of the local factor 

matrices of patient mode  forms the (global) factor matrix A(1) (Fig. 2):

(4)

Accordingly, we represent the global factorized tensor  in Eq. (1) with respect to the local 

factorized tensor k (Fig. 2) as

and we can make the objective function Ψ linearly separable on k as 

. The optimization problem for tensor factorization is 

reformulated with respect to local tensors:

(5)

Here, the non-convex second term  in Eq. (1) is replaced to a convex term 

 using B(n) such that A(n) = B(n). We assume that the pairwise constraint is 
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only applied to the feature modes. This assumption is reasonable because phenotypes are 

defined as only combination of medical features in feature modes.

Augmented Lagrangian function ℒ for the new optimization problem (5) is

where  and Y(n) are the Lagrangian multipliers. The penalty terms that are multiplied by 

parameter ω and μ help ℒ to improve the convergence property (i.e., method of multiplier) 
[23] during federated optimization in Section 4.3.

4.3 Federated optimization

The optimization problem (5) is then solved via consensus alternating direction method of 

multipliers (ADMM) [2], which decomposes the original problem into sub-problems using 

auxiliary variables and ensures convergence to a stationary point even with nonconvex 

problem [15]. Our problem is decomposed to sub-problems for hospitals with respect to the 

local factor matrices. Individual components of the local factor matrices are iteratively 

updated while other local factor matrices are fixed. Once all hospitals update the local factor 

matrices, server updates the global factor matrix and send it back to every hospital. Hospitals 

and server repeat this procedure until the local factor matrices converge before maximum 

iteration.

4.3.1 Patient mode—Because the factor matrix for patient mode does not need to be 

shared, each hospital updates the local factor matrix without sharing the intermediate results. 

The local matricized residual tensor on patient mode is

Horizontal concatenation of the local matricized residual tensors  from K 

hospitals becomes the global matricized residual tensor A(1)Π(1)T − O(1). To compute , 

we separate the first term in Ψ in Eq. (1) to each hospital as

(6)

By setting derivatives of Ψ with respect to  to zero, a closed form solution for updating 

 is

Kim et al. Page 7

KDD. Author manuscript; available in PMC 2017 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(7)

4.3.2 Feature modes—Hospitals update the local factor matrices using the global factor 

matrix, and server makes the global factor matrix by aggregating the intermediate local 

factor matrices from hospitals in turn.

Update the local factor matrices: The local matricized residual tensor on feature modes is

where , n ≥ 2. Contrast to patient mode, 

vertical concatenation of the local matricized residual tensors  becomes 

the global matricized residual tensor A(n)Π(n)T − O(n). The first term in Ψ becomes

(8)

with . The closed form solution for  is

(9)

This closed form solution updates the local factor matrices using the both local observed 

tensor O(n)k and global factor matrix A(n). That is, each hospital uses both their patient data 

and the common phenotypes from others to update their local phenotypes. Now, hospitals 

send the local information  and  to server for following updates on the global factor 

matrix.

Update the global factor matrix: Server updates the global factor matrix based on the local 

information. The objective function is

that also uses the pairwise constraint. A(n) is updated to be similar with  in the third 

term. That is, the global phenotypes are made to be similar with all other hospitals’ 

Kim et al. Page 8

KDD. Author manuscript; available in PMC 2017 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phenotypes. By derivatives of this function with respect to A(n), we derive the following 

closed form solution:

(10)

Now, server sends the global information A(n) to hospitals for the next iteration. Server 

updates B(n) by

(11)

Algorithm 1

Trip

1 Input: , λ, ω, μ

2

Initialize , Y(n).

3 repeat

4  // Update patient mode n = 1

5

 Hospitals set  (Eq. 7).

6  for n = 2, …, N do //Update feature modes

7

  Hospitals set and send  (Eq. 9).

8   Server sets and sends A(n) (Eq. 10).

9   Server sets B(n) and Y(n) (Eq.11, 12).

10

  Hospitals set and send  (Eq. 13).

11  end for

12 until Converged

Update Lagrangian multipliers: Finally, server updates Lagrangian multipliers as

(12)

Hospitals also updates local Lagrangian multipliers as

(13)
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to adjust the gap between local and global factor matrices. The entire procedures of updating 

the tensors are summarized in Algorithm 1.

4.4 Convergence proof

We prove that our federated tensor factorization (5) converges. Due to limited space, detailed 

proof of inequality (17) and (22) can be found in our technical report [17] or [2]. For each n 
= 2, ···, N, let us denote

(14)

for vectorized local factor matrices, global factor matrix, Lagrangian multipliers, and 

residual at iteration t, respectively. Then ℒ is rewritten as

(15)

where  and 

. Let (x*, z*, y*) be a 

saddle point, and define

(16)

Vt decreases in each iteration (proof in [17]) because

(17)

Adding the inequality (17) through t = 0 to ∞ gives

(18)

which implies rt → 0 and zt → zt+1 as t → ∞.
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Now, we define pt = f(xt) + g(zt) and show pt converges. Because (x*, z*, y*) is a saddle 

point,

(19)

That is, using x* = z* at the saddle point,

(20)

which implies that upper bound of p* − pt+1 is

(21)

Lower bound of p* − pt+1 (proof in [17]) is

(22)

The upper and lower bounds go to zero because rt → 0 and zt → zt+1 as t → ∞, i.e., 

limt→∞pt = p*. Thus, the objective function Ψ of our federated optimization converges.

4.5 Privacy analysis

In our Honest-but-Curious adversary scenario, privacy of patient data is preserved because 

patient-level data are not disclosed to the both server and hospitals. The server and hospitals 

cannot access to unintended fine-grained local information. The local data are only 

accessible to the corresponding hospital. The server also cannot indirectly learn patient data 

from the local factor matrices. After receiving , the server might try to do reverse-

engineering through Eq. (9). However, server cannot access to  because  from 

patient mode is not shared. If server accesses to  by any chance as  is leaked, 

reverse-engineering cannot still restore patient-level data. That is, the matricized unknown 

observed tensor (patient data) has an equation in form of  after removing all 

the known values in Eq. (9) for simplicity. The size of the unknown information in O(n)k is 

In × (I1k ··· In−1In+1 ··· IN), and the size of  and  is (I1k ··· In−1In+1 ··· IN) × r and In × 

r, respectively. Element-wise computation generates only In · r equations for the unknown I1 

··· IN values. Server cannot recover the unknown values from the In · r equations that is less 

than the number of unknown values (r is always selected as In · r ≪ I1 ··· IN).
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Hospitals also cannot learn other hospitals’ data from the global factor matrix. If hospital k′ 
knows all the information of Eq. (10) for global factor matrix by any chance, hospital k′ 

cannot restore other hospitals’ local factor matrix . If the hospital k′ can access to 

by any chance,  has still insufficient information to recover the data as shown in the case 

of server.

4.6 Secure alignment of feature modes

In Section 4.2, we first assume that hospitals have the same element set for each feature in 

feature modes, but in practice, hospitals may have different elements. For example, Hospital 

1 and Hospital 2 have set of diagnosis: Y1 and Y2 (Fig. 3), but each index of Y1 and Y2 

refers to a different element. In this case, before concatenating the local tensors, the index of 

feature modes should refer to the same element among hospitals. Thus, we introduce a 

secure alignment method for feature modes by which hospitals do not reveal the elements 

they have and get an integrated and sorted view on the elements of feature modes. This 

secure alignment enables hospitals to have only the position of its elements without knowing 

other hospitals’ elements as like Y1 and Y2 are aligned to make the index from two sets refer 

to the same element (Fig. 3). For each feature mode, hospital k assigns integer values to the 

set of elements Yk (eg. ICD9 codes). Hospitals use polynomial properties of set intersection 

[18]:

Lemma 4.1: A polynomial function of y that represents set of elements  at 

hospital k is . A yik is an element of Yk (yik 

∈ Yk) if and only if fk(yik) = 0.

Lemma 4.2: A polynomial function that represents intersection of Yk and Yk′ (Yk ∩ Yk′) is 
fk * r + fk′ * s where r, s are polynomial functions with gcd(r, s) = 1. Given fk * r + fk′ * s, 
one cannot learn individual elements on Y1 and Y2 other than elements in Y1 ∩ Y2.

Hospitals express Yk as a polynomial function (or in short polynomial) fk by Lemma 4.1. To 

prevent the factorization of the polynomial, hospital k multiplies a term r = (y − α) to fk (=fk 

*r), where α is a random prime number that is selected with overwhelming probability that 

the α does not represent any element from Yk. For simplicity, fk * r is denoted as fk. Because 

computing the polynomials with large |Yk| can cause computational overhead, hospitals 

compute the polynomials’ modulus (denoted as %) by a random prime number P (P > yk) 

instead of the polynomial itself, i.e., hospitals compute  by 

equivalence of modulus operation and use it instead of fk.

Then server receives fk%P from hospitals. To find a pairwise intersection between hospital k 
and k′, server computes a pairwise sum of polynomials as [fk%P + fk′%P] %P = [fk + fk′] 

%P, which refers to the polynomial for intersection between hospital k and k′. Server 

repeats this procedure for every pair of k and k′ (k′ ≠ k), and send the K − 1 polynomials to 

each hospital. Hospital k then checks whether its element yk ∈ Yk is in the pairwise 
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intersection of hospital k and other hospital k′, that is, if [fk(yk) + fk′(yk)]%P = 0, then yk ∈ 
Yk ∩ Yk′ by Lemma 4.2.

By combining all the pairwise intersection with K − 1 hospitals, hospital k checks whether 

the element yk is in the intersection of all the K hospitals. For example, combining the 

pairwise intersection of f1(y1) + f2(y1) = 0 (i.e., y1 ∈ Y1 ∩ Y2) and f1(y1) + f3(y1) ≠ 0 (i.e., 

y1 ∉ Y1 ∩ Y3) gives . After obtaining 2K−1 intersections with Yk, hospital 

k sends the size of 2K−1 intersections to server. Server collects the size of intersection from 

all the K hospitals and obtain the size of all the 2K − 1 combinations of intersections (the 

number of combinations is two cases, whether in or out, for every Yk except one case when 

). Finally, hospitals receive the size of 2K − 1 intersection, and align their 

elements according to the size information. Hospitals have the same order of these 

intersections such as Y1 ∩ Y2,  (Fig. 3). The elements within the 

intersections are sorted. Thus, all hospitals have the same size and order of elements for 

every feature mode.

5 EXPERIMENTS

We evaluate Trip by measuring computational performance (accuracy and time) and deriving 

meaningful phenotypes. We compare Trip with two baselines:

i. Central model: Ordinary tensor factorization method for phenotyping. 

Regardless of privacy problem that concerns data sharing, this model runs on a 

central server where all the patient data are combined [28].

ii. Local model: We devise an intuitive local model, by which hospitals run the 

central model at their sides and send the final factor matrices of feature modes to 

server. Server averages the factor matrices and sends the averaged factor matrices 

back to hospitals without iterative updating like Trip. Because each column in 

factor matrices can represent different phenotypes over hospitals, before 

averaging the matrices, server sorts the columns of each hospital’s factor matrix 

so that all hospitals have the same phenotypes at each column. For all feature 

modes n, server first chooses a pivot hospital kp and computes cosine similarity 

between every pair of rp th and r th column from factor matrix of hospital kp and 

other hospitals k as  where ∀k ≠ kp, ∀r ≠ 

rp. Server then finds the most similar combination of rp and r for all pairs. 

Finding the best combination that matches multiple items (columns) to multiple 

items can be solved in polynomial time by Hungarian method [20]. Finally, 

server changes the order of columns in  according to the combination so that 

each column from  and  refer to the same phenotype.

5.1 Accuracy and Time

We use a large publicly available dataset MIMIC-III containing de-identified health-related 

data associated with over forty thousand patients who stayed in critical care units of the Beth 

Israel Deaconess Medical Center between 2001 and 2012 [26]. MIMIC-III includes 
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information such as demographics, laboratory test results, procedures, medications, 

caregiver notes, imaging reports, and mortality. We construct a 3-order tensor with patients, 

laboratory test results, and medication. The tensor value is the number of co-occurrences of 

abnormal lab results and medication from the same patient within specific time window. We 

generate four datasets as setting the time window as 3 hours, 6 hours, 1 day, or 7 days, and 

have the number of nonzero values of around 15 million (M), 25M, 40M, and 50M, 

respectively. The size for 7-day-window tensor (MIMIC-III 50M) is 38,035 patients by 

3,229 medications by 304 lab results. Because duplicated co-occurrence can be counted with 

large time window, we set the maximum value of count as three, which is a median of 1-day-

window tensor (MIMIC-III 40M). The count value larger than three is truncated to three.

We evaluate accuracy and time of Trip compared to two baseline models by varying the 

number of nonzero values, hospitals, and skewness (for unevenly distributed patients). We 

measure accuracy using root mean square error (RMSE) between the factorized tensor and 

the observed tensor. We also measure time elapsed by adding time for computation, 

communication, and alignment. Because Trip and local model distribute computation of 

local tensors to hospitals, we consider the computation time on the local tensors as the 

largest computation time on one hospital. The communication time is measured as the total 

number of communicated bytes between server and hospitals divided by data transfer rate of 

15 MB/sec. The communication time for central model is time for transferring the local 

patient data to server. We repeat the evaluation ten times and average them. We run the 

models until it converges before maximum iteration 100. The rank is set to ten. λ is set to 

10−2 after trying 10−3, 10−2, 10−1, 1, and 10.

5.1.1 Number of nonzeros—We use the four MIMIC-III datasets that have 15M, 25M, 

40M, and 50M nonzero values. We assume that MIMIC-III datasets are distributed in three 

hospitals, on which the patients are randomly distributed as the same size. As a result, Trip 

has low RMSE as much as central model and resembles central model for all the four 

datasets (Fig. 4a). For MIMIC-III 15M, RMSE from central model converges to 1.4404. 

Similarly, the RMSE from Trip starts to stable at around 50 iterations and converges to 

1.4409 (Fig. 4c). Both of the RMSE from central model and Trip are significantly smaller 

than that of local model (1.5957). MIMICIII 50M dataset also shows similar convergence. 

RMSE from Trip starts to stable at around 60 iterations and converges to 1.8482, which is 

also similar to RMSE from central model, 1.8479 (Fig. 4d). MIMIC-III 25M shows the 

RMSE of 1.4955 from Trip, 1.4947 from central model, 1.6867 from local model. MIMIC-

III 40M shows the RMSE of 1.7913 from Trip, 1.7903 from central model, 2.0037 from 

local model. Convergence results on MIMIC-III 25M and 40M can be found in our technical 

report [17].

In addition, total time elapsed for Trip (and local model) is much faster (half less) than 

central model in all datasets (Fig. 4b). Trip reduces computation time by distributing 

updating procedures to de-centralized hospitals; consequently, Trip reduces total time 

elapsed although sacrificing communication and alignment time. For the datasets of 15M, 

25M, 40M, and 50M, computation time from Trip is 3,152, 4,183, 5,796, and 7,125 seconds, 

and computation time from central model is 5,266, 8,068, 11,661, and 15,105 seconds, 

which take majority of total time. Communication time from Trip is around 100.7 seconds 
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for all the cases, and communication time from central model is 30.1, 53.9, 85.0, and 114.4 

seconds. Note that Trip saves not only computation time but also communication time with 

large dataset (MIMIC-III 50M). Alignment time for Trip takes 22.6, 26.1, 29.3, and 59.0 

seconds, which is negligible compared to computation time. Based on those observations, 

we can see that Trip efficiently resembles central model without no cost for privacy even at 

reduced time owing to distributed computation.

5.1.2 Number of hospitals—Using MIMIC-III 15M dataset, we partition the patients 

evenly into one to five hospitals. RMSE with one hospital refers to RMSE of central model. 

We observed that RMSE of Trip is stable as the number of hospitals increases, and is similar 

to RMSE of central model 1.4404, whereas RMSE of local model increase (Fig. 5a) with 

large variance. That is, compared to local model, in which local factorized tensors are 

diverged, Trip is robust on the finely split data. It means that phenotypes from Trip are 

accurate and not biased even with many small sized patient data.

Total time of Trip and local model are significantly faster than that of central model. As the 

number of hospitals increases and the patient data are spread more, the total time of Trip and 

local model decrease (Fig. 5c). Specifically, computation time for Trip and local model 

decrease because more hospitals distribute the computation, and communication time for 

Trip slightly increases, whereas communication time for local model is negligibly short. 

Alignment time is negligible for both Trip and local model.

5.1.3 Skewness—We partition the patients in MIMIC-III 15M unevenly in three hospitals. 

One hospital takes 1/3 (evenly distributed), 0.5, 0.7, and 0.9 of patients, and the other two 

hospitals take the remaining patients evenly. Note that elements in feature mode are still 

overlapped enough among hospitals. We observed that RMSE of Trip is stable although 

patients are distributed unevenly, whereas RMSE of local model is higher than that of Trip 

with large variance. Factorized tensor of local model can be inaccurate because the local 

factorized tensor from a small sized hospital can be biased and far different from others’ 

results. However, the hospital can benefit from Trip by overcoming this bias and producing a 

generalized results.

Total time of Trip and local model increase (Fig. 5d) as the skewness increases. Time for 

computation increases because computational overhead occurs on one hospital with large 

data, and time for communication and alignment does not increase significantly.

5.2 Phenotype discovery

We use de-identified EHRs dataset from University of California, San Diego (UCSD) 

Medical Center with 8,022 patients by 748 medications by 299 diagnoses. Specifically, it is 

from two hospitals that have 4,703 patients (UCSD1) and 3,319 patients (UCSD2). We 

construct a 3-order tensor with patient, medication, and diagnosis mode with around 1.6 

million of non-zero elements. The value of tensor is the number of co-occurrences of 

medication and diagnosis event from the same patient at the same visit.

We discover phenotypes from Trip and compare them with phenotypes from central model 

and individual central model of two hospitals in UCSD (i.e., run central model 
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independently at UCSD1 and UCSD2). λ is set 1 to derive more distinct phenotypes than 

those from MIMIC-III. A domain expert summarizes the factorized tensor into clinically 

meaningful phenotypes. The phenotypes consist of set of diagnoses and its corresponding 

medications. Due to limited space, medication factors in phenotypes are omitted and can be 

found in our project website [17].

As a result, Trip discovers unbiased and hidden phenotypes compared to the phenotypes 

from two individual central models (UCSD1, UCSD2). The phenotypes from Trip contain 

top-ranked phenotypes from UCSD1 and UCSD2, and are similar to phenotypes from 

combined central model, UCSD1+UCSD2 (Table 2). The phenotypes from Trip consist of 

top five phenotypes from UCSD1 and top four from UCSD2. The phenotypes from Trip are 

also the same with phenotypes from central model except gastrointestinal complaints and 

neurogenic bladder. Without our federated model, the two individual hospitals could derive 

biased phenotypes that are only fitted to the local data. It means that Trip can effectively 

resemble central model without cost for privacy.

In addition, Trip discovers a new phenotype, sickle cell/chronic pain crisis, that is contained 

in neither of UCSD1 and UCSD2. This phenotype consists of diagnoses related to sickle cell 
diseases or chronic pain crisis and corresponding medications (Table 3). Based on 

physician’s judgement, this phenotype is clinically meaningful in that sickle cell disease 

usually accompanies chronic pain such as constipation, back/neck pain, headache, (pruritic 

disorder, insomnia, and wheezing. sickle cell/chronic pain crisis is not dominant in 

individual hospital but is dominant in overall perspective. Note that RMSE of Trip is low as 

much as RMSE of central model while reducing total time (Table 4), and RMSEs of two 

individual UCSD datasets are lower than others because those two use separated small local 

datasets. Also, note that communication time of the central model is due to transferring the 

data.

6 CONCLUSIONS

This paper presents Trip, a federated tensor factorization for computational phenotyping 

without sharing patient-level data. We developed secure data harmonization and privacy-

preserving computation procedures based on ADMM, and analyzed that Trip ensure the 

confidentiality of patient-level data. Experimental results on data from MIMIC-III and 

UCSD medical center demonstrated that our framework resembles the central model very 

well. Trip is also accurate even with small or skewly distributed patient data, and fast 

compared to the central model. We also showed that Trip discovers phenotypes as the central 

model with combined patient data does, which are unbiased or not discovered (hidden) 

phenotypes from each hospital. As a result, Trip can help derive useful phenotypes from 

EHR data to overcome policy barriers due to the privacy concerns. We plan to apply it to 

much larger scale datasets in the future and facilitate the discovery of novel and important 

“phenotypes” to support clinical research and precision medicine.
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Figure 1. 
Process of federated tensor factorization.
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Figure 2. 
Equivalence between tensor factorization with respect to each local tensor k and tensor 

factorization with respect to global tensor . Without , tensor factorization that is globally 

optimal across hospitals can be achieved via local tensor factorization.
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Figure 3. 
Example of secure alignment on feature mode.
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Figure 4. 
RMSE and total time over the number of nonzeros (Fig. 4a, 4b). The first, second, and third 

stacked bars in Fig. 4b refer to central model, Trip, and local model, respectively. RMSE of 

Trip, central model, and local model over iteration (Fig. 4c, 4d).
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Figure 5. 
RMSE over the number of hospitals (Fig. 5a) and skewness (Fig. 5b). Total time over the 

number of hospitals (Fig. 5c) and skewness (Fig. 5d). The former and latter stacked bars in 

Fig. 5c, 5d refer to Trip and local model, respectively.
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Table 1

Notations and symbols

∘ outer product

⊚ Khatri-Rao product

R number of ranks

N number of modes (order)

K number of hospitals

A, B matrix

, tensor

O(n) matricized tensor of  on nth mode
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Table 2

Phenotypes from Trip, central model on UCSD1+UCSD2, , and . Some phenotypes appear in 

Rank TRIP UCSD1+UCSD2 UCSD1 UCSD2

1 Coronary artery disease with diabetes & 
hypertension Diabetic with hypertension Diabetic with hypertension Cystic fibrosis with pancreatic 

involvement

2 Diabetic with hypertension Cystic fibrosis with 
pancreatic involvement

Coronary artery disease with diabetes & 
hypertension

Cystic fibrosis with pulmonary 
exacerbation

3 Chronic obstructive pulmonary disease 
(COPD) exacerbation

Coronary artery disease 
with diabetes & 
hypertension

COPD exacerbation Neurogenic bladder with abdominal 
pain

4 Constipation Hypertension Decompensated cirrhosis Non-specific gastrointestinal complaints

5 Cystic fibrosis with pancreatic 
involvement COPD exacerbation Non-specific gastrointestinal complaints Diabetes

6 Decompensated cirrhosis Constipation Non-specific complaints Constipation

7 Non-specific gastrointestinal complaints Decompensated cirrhosis COPD w/o exacerbation Anxiety with gastrointestinal 
complaints

8 Cystic fibrosis with pulmonary 
exacerbation Non-specific complaints Acute on chronic pain Cystic fibrosis with pneumonia

9 Sickle cell/chronic pain crisis Sickle cell/chronic pain 
crisis COPD with Pneumonia Non-specific complaints

10 Non-specific complaints Neurogenic bladder with 
abdominal pain Anxiety with hypertension Lymphoma
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Table 3

Detailed phenotype of sickle cell/chronic pain crisis

Diagnosis

Sickle cell disease NOS, Hb-SS disease with crisis, Constipation NOS, Pruritic disorder NOS, Generalized pain, Headache, Insomnia, Chronic 
pain syndrome, Wheezing

Medication

Hydroxyurea, Deferasirox, Docusate, Diphenhydramine, Hydromorphone, Acetaminophen, Zolpidem, Folic Acid, Baclofen
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Table 4

RMSE and time [sec] elapsed. Central model is run on UCSD1,2, UCSD1, UCSD2.

Trip UCSD1,2 UCSD1 UCSD2

RMSE 1.2304 1.2327 1.2267 1.1778

Computation 446.5 656.9 432.8 314.6

Communication 15.1196 3.4533 0 0

Alignment 1.2052 0 0 0
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 is denoted as O(n).Tensor factorization is a dimensionality reduction approach that represents the original tensor as a lower dimensional latent matrix. The CANDECOMP/PARAFAC (CP) [3] model is the most common tensor factorization, which approximates the original tensor 
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 as 
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, a linear combination of R rank-one tensors that are made from outer product of N vectors. That is, CP tensor factorization is represented as
 where A(n) (:, r) refers to the r th column of A(n). Here, A(n) is the nth factor matrix. R is referred as the rank of the 
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. The columns from factor matrices represent latent concepts that describe the data as lower dimensions.Tensor factorization for phenotyping is to compute a factorized tensor 
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 that contains latent medical concepts from data (or observed tensor 
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). 
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 consists of the R most prevalent phenotypes. The nth factor matrix, A(n) defines the elements from the mode n to comprise the phenotypes. That is, r th phenotype consists of r th column of factor matrices [13].The objective function of the tensor factorization with regularization terms for pairwise distinct constraints [28] is formulated as(1)It is rewritten with respect to mode-n matricization
(2) where Π(n) = A(N) ⊚ … ⊚ A(n+1) ⊚ A(n−1) ⊚ … ⊚ A(1). This is our decomposition goal in the rest of this paper. Solving the problem (1) while preserving privacy is technically challenging because the tensor residual term 
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 inherently contains other hospitals’ patient data that involve sensitive information.
	Definition 3.1: Outer product of N vectors a(1) ∘ ··· ∘ a(N) makes N-order rank-one tensor 
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.Definition 3.2: Kronecker product of two vectors a ∈ ℝIa×1 and b ∈ ℝIb×1 isDefinition 3.3: Kharti-Rao product of two matrices A ∈ ℝIA×R and B ∈ ℝIB×R is A ⊚ B = [a1 ⊗ b1 ··· aR ⊗ bR] ∈ ℝIAIB×R.Definition 3.4: Matricization is to reshape the tensor into a matrix by unfolding elements of the tensor. Mode-n matricization of tensor 
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 is denoted as O(n).Tensor factorization is a dimensionality reduction approach that represents the original tensor as a lower dimensional latent matrix. The CANDECOMP/PARAFAC (CP) [3] model is the most common tensor factorization, which approximates the original tensor 
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 as 
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, a linear combination of R rank-one tensors that are made from outer product of N vectors. That is, CP tensor factorization is represented as
 where A(n) (:, r) refers to the r th column of A(n). Here, A(n) is the nth factor matrix. R is referred as the rank of the 
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. The columns from factor matrices represent latent concepts that describe the data as lower dimensions.Tensor factorization for phenotyping is to compute a factorized tensor 
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 that contains latent medical concepts from data (or observed tensor 
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 consists of the R most prevalent phenotypes. The nth factor matrix, A(n) defines the elements from the mode n to comprise the phenotypes. That is, r th phenotype consists of r th column of factor matrices [13].The objective function of the tensor factorization with regularization terms for pairwise distinct constraints [28] is formulated as(1)It is rewritten with respect to mode-n matricization
(2) where Π(n) = A(N) ⊚ … ⊚ A(n+1) ⊚ A(n−1) ⊚ … ⊚ A(1). This is our decomposition goal in the rest of this paper. Solving the problem (1) while preserving privacy is technically challenging because the tensor residual term 
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 inherently contains other hospitals’ patient data that involve sensitive information.
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