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A B S T R A C T

Purpose
Adoptive transfer of genetically modified T cells is being explored as a treatment for patients with
metastatic cancer. Most current strategies use genes that encodemajor histocompatibility complex
(MHC) class I–restricted T-cell receptors (TCRs) or chimeric antigen receptors to genetically modify
CD8+ T cells or bulk T cells for treatment. Here, we evaluated the safety and efficacy of an adoptive
CD4+ T-cell therapy using an MHC class II–restricted, HLA-DPB1*0401–restricted TCR that recog-
nized the cancer germline antigen, MAGE-A3 (melanoma-associated antigen-A3).

Patients and Methods
Patients received a lymphodepleting preparative regimen, followed by adoptive transfer of purified
CD4+ T cells, retrovirally transduced with MAGE-A3 TCR plus systemic high-dose IL-2. A cell dose
escalation was conducted, starting at 107 total cells and escalating at half-log increments to ap-
proximately 1011 cells. Nine patients were treated at the highest dose level (0.78 to 1.23 3 1011

cells).

Results
Seventeen patients were treated. During the cell dose-escalation phase, an objective complete
response was observed in a patient with metastatic cervical cancer who received 2.7 3 109 cells
(ongoing at $ 29 months). Among nine patients who were treated at the highest dose level, ob-
jective partial responses were observed in a patient with esophageal cancer (duration, 4 months),
a patient with urothelial cancer (ongoing at$ 19months), and a patient with osteosarcoma (duration,
4months). Most patients experienced transient fevers and the expected hematologic toxicities from
lymphodepletion pretreatment. Two patients experienced transient grade 3 and 4 transaminase
elevations. There were no treatment-related deaths.

Conclusion
These results demonstrate the safety and efficacy of administering autologous CD4+ T cells that are
genetically engineered to express an MHC class II–restricted antitumor TCR that targets MAGE-A3.
This clinical trial extends the reach of TCR gene therapy for patients with metastatic cancer.

J Clin Oncol 35:3322-3329. © 2017 by American Society of Clinical Oncology

INTRODUCTION

Adoptive cell transfer (ACT) is a personalized
cancer immunotherapy that involves the ad-
ministration of a patient’s own autologous im-
mune cells.1 Transferred T cells can be genetically
modified with a T-cell receptor (TCR) or a chi-
meric antigen receptor (CAR) to redirect them to
attack the tumor. Administration of CAR-modified
T cells that target B-cell lineage differentiation
antigen CD19 can lead to objective responses in

patients with B-cell cancers2-11; however, thus far,
it has been challenging to extend CAR T-cell
therapy to patients with solid tumors. In large
part, this has been because solid cancers generally
lack suitable cell-surface targets that only express
on tumor cells but not on normal cells. Recog-
nition of normal tissues by CAR T cells can po-
tentially trigger unacceptable toxicities.12

In contrast to CARs, TCRs are capable of
recognizing antigens that are derived from in-
tracellular proteins. Most current TCR therapies
use major histocompatibility complex (MHC)
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class I–restricted TCRs to genetically modify CD8+ T cells or bulk
T cells for patient treatment; however, some evidence has suggested
that CD4+ T cells alone could induce tumor regressions. In mice,
established B16 melanoma could be eradicated by tumor-specific
CD4+ T cells, whose activities could be further enhanced by either
cytotoxic T-cell lymphocyte-4 blockade, OX40 stimulation, or
Th17 polarization.13-15 In humans, a durable clinical response was
observed in a patient with metastatic melanoma who was treated
with an autologous HLA-DP4–restricted NY-ESO-1–specific CD4+

T-cell clone, as well as in a patient with metastatic chol-
angiocarcinoma who was treated with mutated ERBB2IP-reactive
CD4+ T cells that were grown from tumor-infiltrating lymphocytes.16,17

These clinical studies indicate that transferring CD4+ T cells can induce
long-term tumor regression in humans.

Cancer germline (CG) antigens, a class of tumor-associated
antigens, show limited expression in normal adult tissues, except
for germline-derived tissues. Of importance, germ cells lack ex-
pression of MHC molecules and are therefore protected from
T cell–mediated immune surveillance. Conversely, CG antigens
can show high levels of expression in a variety of cancer types.18,19

Among these antigens, MAGE-A3 (melanoma-associated antigen-
A3) is the most frequently expressed CG antigen in a variety of
cancer types and has been targeted by cancer immunotherapies,
including ACT therapies.20-31 In a previous preclinical study, an
MHC class II–restricted, HLA-DPB1*0401–restricted TCR that
recognized MAGE-A3/A6 was isolated from the peripheral blood
of a patient who received a MAGE-A3 peptide vaccine.32 The
human constant regions of TCRa/b chains were replaced by
mouse constant regions to enhance TCR pairing and reactivity.33

This TCR was demonstrated to recognize MAGE-A3 and its closest
family member, MAGE-A6, which has 95.9% homology with
MAGE-A3. Expression of MAGE-A3 and MAGE-A6 was not
observed in any normal tissues, except testes.34 A clinical trial was
thus designed and conducted to test whether ACT that used ge-
netically modified CD4+ T cells targeting MAGE-A3 could induce
tumor regression in patients with a variety of metastatic solid
cancers. Previous animal studies indicated that IL-2 administration
could significantly enhance T cell–mediated antitumor activity. As
a result, our previous ACT clinical trials included high-dose IL-2
therapy; therefore, this clinical trial was designed to incorporate
high-dose IL-2 therapy in patients after cell infusion.35-38

PATIENTS AND METHODS

Study Design
This clinical trial was designed to determine the maximum safe dose

of the administration of autologous CD4+ cells that were retrovirally
transduced with an HLA-DPB*0401–restricted MAGE-A3 TCR and
whether this approach could result in clinical tumor regression in patients
with metastatic cancer.

Before therapy, peripheral blood lymphocytes (PBLs) were isolated
from patients by leukapheresis and separated by centrifugation on
a lymphocyte separation medium cushion. CD8+ lymphocytes were la-
beled with clinical-grade CD8 antibody–coated magnetic particles, then
depleted by using a CliniMACS clinical-scale cell separation apparatus
(Miltenyi Biotec, Bergisch Gladbach, Germany). CD8+ T cell–depleted
PBLs were stimulated by OKT3 antibody (50 ng/mL) and transduced with
a g-retroviral vector that encodes the HLA-DPB*0401–restricted MAGE-
A3 TCR, as previously described.32 National Institutes of Health Guidelines

for Research Involving Recombinant or Synthetic Nucleic Acid Molecules
were followed. In the final cell products that were used for patient
treatment, the median percentage of CD4+ T cells was 99% (range, 94% to
100%), and the median percentage of transduced CD4+ T cells was 90%
(range, 77% to 92%).

Patients were treated with a nonmyeloablative chemotherapy pre-
parative regimen (cyclophosphamide 60 mg/kg per day for 2 days and
fludarabine 25 mg/m2 per day for 5 days), followed by a single intravenous
infusion of autologous TCR-transduced CD4+ T cells. A cell dose escalation
was conducted, treating one patient in each cohort, starting at 107 total
cells and escalating at half-log increments. Nine patients were treated at the
highest dose level (approximately 1011 cells). After cell infusion, patients
received high-dose IL-2 intravenously at 720,000 IU/kg every 8 hours to
physiologic tolerance.

Patients
Patients 18 to 70 years of age with a pathologically confirmed di-

agnosis of metastatic or locally advanced refractory/recurrent cancer were
eligible for this clinical trial. All patients had progressive disease after at
least one standard first-line therapy. Patients were required to have an
Eastern Cooperative Oncology Group performance status of 0 or 1. In
addition, to be eligible, patients must be HLA-DPB1*0401 positive and
with tumors that contained . 50% MAGE-A–positive tumor cells. Im-
munohistochemistry of tumor specimens was performed and scored by
the Laboratory of Pathology at the National Cancer Institute using an
anti–MAGE-A antibody (6C1; Santa Cruz Biotechnologies, Santa Cruz,
CA).34 Responses of patients to therapy were assessed by using Response
Evaluation Criteria in Solid Tumors (RECIST version 1.0) guidelines
and evaluated starting 1 month after cell administration and proceeding
at regular intervals thereafter.

Immunologic Assay
Serum samples were obtained daily from patients during hospital-

ization. To determine the cytokine concentrations in serum samples,
enzyme-linked immunosorbent assay for interferon gamma (IFN-g), IL-6,
IL-10, and TNF were performed according to manufacturer instructions
(Thermo Fisher Scientific Life Sciences, Waltham, MA; and R&D Systems,
Bio-Techne Corp, Minneapolis, MN). Before therapy and approximately
1 month after therapy, PBLs were isolated from patients by leukapheresis
for flow cytometric analyses. Patients 7, 13, 14, and 17 did not undergo
leukapheresis after therapy, rather, patients’ peripheral blood was collected
into Vacutainer Cell Preparation Tubes (CPTs) (BD Bioscience, San Jose,
CA), then tubes were spun down to isolate patients’ lymphocytes according
to manufacturer instruction. PBL samples from patient 4 were unavailable.
Anti-FOXP3 (236A/E7) and mouse anti-TCRb (H57-597) antibodies
were obtained from Thermo Fisher Scientific Life Sciences. Fixation/
permeabilization and staining were performed according to manufacturer
instructions (Thermo Fisher Scientific Life Sciences). Flow cytometric
analyses were performed by using FACSCanto (BD Bioscience) and an-
alyzed with FlowJo software (FlowJo, Ashland, OR).

Statistical Analysis
Mann-Whitney U test was used to test for correlations between T-cell

persistence and cell doses (Prism; GraphPad Software, La Jolla, CA).
Reported P values were two-tailed, and P, .05 were considered statistically
significant.

RESULTS

Patient Characteristics
Seventeen patients with metastatic cancer were treated with

TCR-transduced CD4+ T cells in this protocol (Table 1). One
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additional patient with metastatic bladder cancer did not re-
ceive any T cells or IL-2 as a result of toxicities after two doses of
cyclophosphamide and two doses of fludarabine. All patients
had measurable distant metastatic disease and had been pre-
viously treated with at least one standard first-line therapy.
Because no unexpected dose-limiting toxicities—grade 3 and
4—were observed during the cell dose-escalation phase (dose
cohort 1 to 8), the last nine patients (patient 9 to 17) were
treated at the highest dose level (dose cohort 9). The median
cell dose for dose cohort 9 was 1.003 1011 T cells (range, 0.6 to
1.23 3 1011 T cells). Because of the patient’s poor pulmonary
function, patient 15 received a split dose of T cells with 33 1010

cells on day 0, then 33 1010 cells the next day. After cell infusion,
patients also received high-dose IL-2, with the exception of three
patients who had poor pulmonary function. Most patients were
discharged after their whole blood cell counts were back to
normal range. Because most patients were not local to the Na-
tional Institutes of Health, they were hospitalized for the entire
chemotherapy. Most patients were hospitalized for 13 days after
cell infusion (range, 10 to 40 days).

Clinical Responses
Eight patients were treated during the cell dose-escalation

phase (low dose). Patient 6 with cervical cancer had been treated
with radiation therapy and six cycles of cisplatin for primary
cervical cancer and lymph node metastases; however, the patient
later developed disease progression in the supraclavicular lymph
nodes, which were positron emission tomography positive and
biopsy proven to be recurrent cancer. The patient received 2.7 3
109 TCR-transduced CD4+ T cells and subsequently experienced
an objective complete response in metastatic supraclavicular
lymph nodes that is ongoing at 29 months (Fig 1A). Her remaining
lymph node was positron emission tomography negative and less
than 1 cm.

Among nine patients who received the highest dose level of TCR-
transduced CD4+ T cells (high dose), three patients experienced
objective responses. Patient 9 with esophageal cancer was previously
treatedwith radiation, FOLFOX (folinic acid-fluororuracil-oxaliplatin),
and capecitabine. The patient experienced an objective partial response
in mediastinal and paraesophageal lymph nodes, but experienced
disease progression at 4 months with a new parasternal lesion (Ap-
pendix Fig A1, online only). Patient 11 with urothelial cancer had
a primary tumor that involved his left ureter withmetastases to the liver
and intra-abdominal lymph nodes. The patient experienced disease
progression through surgery and chemotherapy before T-cell therapy.
ACT treatment resulted in an objective partial response that is ongoing
for 19months, with small residual disease in the periaortic lymph node
and liver (Fig 1B). Lastly, Patient 16 with osteosarcoma was heavily
pretreated, including surgery, chemotherapy, L-MTP-PE (liposomal
muramyl tripeptide phosphatidyl ethanolamine), sorafenib, and ra-
diation therapy. The patient experienced an objective partial response
of metastatic lung lesions that lasted 4 months, at which time the
growth of nontarget pulmonary lesions was observed (Fig 1C).

Adverse Events
All patients experienced the expected transient grade 3 and 4

adverse events that resulted from nonmyeloablative chemotherapy

preparative regimen and high-dose IL-2. Of note, 10 of 17 treated
patients experienced prolongedhigh fever (. 39.0°C to 40.0°C, grade 2)
after cell infusion (Appendix Table A1, online only). A 65-year-old
patient with metastatic breast cancer received the nonmyeloablatve
chemotherapy preparative regimen, 93 1010 cells, and one dose of IL-2.
After therapy, the patient experienced grade 4 toxicities, including el-
evated ALT, AST, and creatinine. The patient subsequently developed
respiratory failure and was hospitalized for more than 1 month before
recovering. One additional patient experienced transient grade 3 tox-
icities in elevated ALT, AST, and creatinine that lasted 2 days.

Elevated Serum Cytokine Levels After Cell Infusion
Patients’ serum samples were collected during hospitalization,

and serum cytokine concentrations of IL-6, IL-10, IFN-g, and TNF
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Fig 1. Clinical responses of patients 6, 11, and 16. (A) Computed tomography
(CT) scans of the neck of patient 6 with metastatic cervical cancer before (left) and
29 months after (right) T-cell therapy. (B) Magnetic resonance imaging scans of
patient 11 with metastatic urothelial cancer before (left) and 18 months after (right)
T-cell therapy. (C) CT scans of the chest of patient 16 with metastatic osteosar-
coma before (left) and approximately 4 months after (right) T-cell therapy. Arrows
indicate the locations of metastatic lesions before and after therapy.
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were determined by using enzyme-linked immunosorbent assay.
Elevated serum cytokines levels were detected 1 to 2 days after cell
infusion (Appendix Fig A2, online only). Maximum cytokine levels
are summarized in Fig 2. High levels of IL-6 were detected in all
patients (range, 491 pg/mL to 9,686 pg/mL), and elevated IL-10
levels (. 100 pg/mL) were detected in 12 of 17 patients. In ad-
dition, elevated IFN-g and TNF levels (. 100 pg/mL) were de-
tected in nine patients and three patients, respectively. Of note,
high levels of IFN-g were detected in three patients (range, 4,898
pg/mL to 12,911 pg/mL); however, the levels of serum cytokines
did not seem to correlate with clinical responses or symptoms,
such as fevers.

Persistence of Genetically Modified T Cells in Peripheral
Blood

Patients’ PBLs were collected approximately 1 month after
cell infusion, and the frequency of TCR-transduced T cells was
detected by antibody against the mouse TCRb constant region. As
shown in Figure 3, both the percentage and total number of TCR-
transduced T cells were significantly higher in peripheral blood of
patients who received the high cell dose compared with patients
who received the low cell dose (P = .0002 and .0007, respectively;
Figs 3B and 3C). In this small study, no relationship was observed
between cell persistence and clinical response. Of note, both
patient 9 and patient 16 experienced short-term clinical re-
sponses for 4 months. Infused genetically modified T cells still
persisted well in the peripheral blood at the time of progression
(223 cells/mL [20.1%] and 73 cells/mL [14.4%], respectively).
These results suggest that tumors in patient 9 and patient 16
might have developed resistance to this T-cell therapy, such as
loss of antigens or dysfunction of components in the antigen
process and presentation pathways.

DISCUSSION

Immune checkpoint blockade therapies can induce objective re-
sponses in a subset of patients with melanoma, renal cell carci-
noma, non–small-cell lung cancer, and urothelial cancer, as well as
tumors with mismatch-repair deficiency39-49; however, to date,
these immunotherapies have had little impact in patients with
other types of solid cancer. One alternative immunotherapy ap-
proach is the adoptive transfer of CAR or TCR-modified T cells;
however, previous T-cell therapies targeting MAGE-A3 have failed.
A clinical trial that used an HLA-A*01–restricted, affinity-
enhanced TCR targeting MAGE-A3 led to lethal toxicity be-
cause of the recognition of a muscle protein, TTN (titin), in the
heart by the altered TCR.50,51 In a different trial, ACTof T cells
that were genetically engineered to express an HLA-A*0201–
restricted TCR targeting MAGE-A3/9 recognized an HLA-
A*0201–restricted MAGE-A12 epitope expressed in brain and
led to lethal neurologic toxicity.34

In prior studies, cell transfer using cells that were engineered
to express HLA-A*0201–restricted NY-ESO-1 TCR mediated
a 55% objective response rate for patients with melanoma and
a 61% objective response rate for patients with synovial
sarcoma.52,53 In a recent study, the protein expression of MAGE-A
and NY-ESO-1 in 3,668 tumor specimens was assessed by im-
munohistochemistry. The frequency of MAGE-A–positive tumor
specimens was significantly higher than NY-ESO-1 in several
common epithelial carcinomas, including cutaneous squamous
cell carcinomas (SCCs; 52.8% v 2.8%), esophageal SCC (50% v
0%), head and neck SCC (41.1% v 0.65%), bladder urothelial
cancer (40.4% v 8.3%), and cervical/anal SCC (37.5% v 0%).31 In
addition, HLA-DPB1*0401 is present in 57% of the Caucasian
population compared with a 47% incidence of HLA-A*0201.54
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Thus, MAGE-A3 TCR immunotherapy described here could
potentially be applicable for additional patients with solid
cancers.

Our study provides direct evidence that objective tumor
regressions can be mediated by MAGE-A3–specific CD4+ T cells
in a variety of cancer types; however, additional studies are
needed to understand the detailed mechanisms by which human
CD4+ T cells mediate tumor regressions. Previous studies in the
B16 melanoma mouse model suggested that tumor regressions
were dependent on IFN-g secreted by CD4+ T cells, as well as
MHC class II molecules expressed on B16 melanoma after
in vivo IFN-g stimulation.13,15 Tumor regressions in mice were
not dependent on endogenous CD8+ T cells, B cells, NK cells, or
NK T cells.15,55 Thus, MAGE-A3–specific CD4+ T cells could
possibly recognize tumor cells directly in vivo and kill tumor
cells via IFN-g or other pathways. Alternatively, MAGE-A3–
specific CD4+ T cells might recognize MAGE-A3 cross-presented
by antigen-presenting cells and secrete therapeutic cytokines or
promote CD8+ T cell–mediated tumor regression by epitope
spreading.56

The MAGE-A3 TCR used in this study was originally isolated
from a T-cell clone with a regulatory T-cell (Treg) phenotype. In
addition to being a naturally occurring and thymically selected
TCR, this TCR was selected for clinical development because it

had a higher affinity compared with another TCR that was
isolated from an effector T-cell clone.32 This raised a potential
possibility that genetically modified CD4+ T cells might convert
to Tregs after adoptive transfer of CD4+ T cells into patients, and
that Tregs might subsequently inhibit T-cell activity in vivo.
Furthermore, previous studies in mice have suggested that high-
affinity TCRs promoted the differentiation of both thymus-
derived and peripherally derived Tregs.57 Despite these con-
cerns, we were unable to detect any significant mTCR+FOXP3+

T cells in any patient’s peripheral blood 1 month after cell in-
fusion, which suggested that transduced T cells did not convert to
Tregs (Appendix Fig A3, online only). Data presented here
suggested that other factors, such as the context of the tissue
microenvironment, might play important roles in the conversion
of Tregs.

In conclusion, this study demonstrated the safety of the
adoptive transfer of genetically engineered CD4+ T cells tar-
geting MAGE-A3 and demonstrated evidence of efficacy. Future
clinical trials are needed to study the efficacy of this therapy in
different types of cancer. Additional modifications may help to
improve the efficacy of this therapy, such as manufacturing less-
differentiated or Th17-polarized T cells by modifying the cell
production process, and combining T-cell therapy with immune
checkpoint blockade to prevent T-cell exhaustion.11,13,58,59
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Combining multiple targets, such as neoantigen targets, at
the same time may help overcome the challenge of tumor
heterogeneity.60,61 Finally, clinical studies have demonstrated
that tumors can also escape T cell–based immunotherapies by
the loss of critical processing and presentation components of
MHC class I, such as the deletion of b2-microglobulin. The
ability to transfer MHC class II–restricted tumor-reactive
T cells may be an effective way to prevent this demon-
strated mechanism of tumor escape.62
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Fig A1. Computed tomography scans of patient 9 with metastatic esophageal
cancer before and 4 months after T-cell therapy.
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Fig A2. Serum cytokine levels before and after cell infusion. Patients 5 and 8 had elevated interferon gamma (IFN-g) levels before cell infusion (approximately 500 pg/mL
and 4,000 pg/mL, respectively), and the IFN-g levels remained at similar levels after cell infusion (data not shown). CR, complete response; PR, partial response.
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Fig A2. (Continued).
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Fig A3. MAGE-A3 (melanoma-associated antigen-A3) T-cell receptor (TCR)–transduced CD4+ T cells did not convert to regulatory T cells after cell infusion. (A) Intracellular
staining for FOXP3 antibody was performed for peripheral blood lymphocyte samples before (top) and approximately 1 month after (bottom) T-cell therapy. (B) Percentage
of CD4+mTCRb+FOXP3+ cells in lymphocyte populations before (top) and 1month after (bottom) cell infusion. (C) Percentage of CD4+mTCRb2FOXP3+ cells in lymphocyte
populations before (top) and 1 month after (bottom) cell infusion. Statistical significance was determined by Mann-Whitney U test.

Table A1. Unexpected Adverse Events

CTCAE Term Grade 2 Grade 3 Grade 4

AST/ALT/ bilirubin 0 1 1
Supraventricular/nodal arrhythmia: Atrial fibrillation 0 1 0
Creatinine 0 1 1
Hypoxia 0 0 1
Dyspnea 0 0 1
Rash/desquamation 1 0 0
Renal Failure 0 1 0
Confusion 0 1 0
Hypotension 0 0 0
Fever* 10 0 0

Abbreviation: CTCAE, Common Terminology Criteria for Adverse Events.
*Occurring on or after day 8 and not associated with infection.
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