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Abstract
Introduction  The obesity paradox in chronic obstructive 
pulmonary disease (COPD), whereby patients with higher 
body mass index (BMI) fare better, is poorly understood. 
Higher BMIs are associated with lower lung volumes and 
greater lung elastic recoil, a key determinant of expiratory 
airflow. The forced expiratory flow (25–75) (FEF25–75)/
forced vital capacity (FVC) ratio reflects effort-independent 
expiratory airflow in the context of lung volume and could 
be modulated by BMI.
Methods  We analysed data from the COPDGene study, 
an observational study of 10 192 subjects, with at least 
a 10 pack-year smoking history. Data were limited to 
subjects with BMI 20–40 kg/m2 (n=9222). Subjects were 
stratified according to forced expiratory volume in 1 s 
(FEV1) (%predicted)-quintiles. In regression analyses 
and Cox proportional hazard models, we analysed the 
association between BMI, the FEF25–75/FVC ratio, the 
imaging phenotype, COPD exacerbations, hospitalisations 
and death.
Results  There was no correlation between BMI and 
FEV1(%predicted). However, a higher BMI is correlated with 
a higher FEF25–75/FVC ratio. In CT scans, a higher BMI was 
associated with less emphysema and less air trapping. In 
risk-adjusted models, the quintile with the highest FEF25–75/
FVC ratio was associated with a 46% lower risk of COPD 
exacerbations (OR 0.54, p<0.001) and a 40% lower risk 
of death (HR 0.60, p=0.02), compared with the lowest 
quintile. BMI was not independently associated with these 
outcomes.
Conclusions  A higher BMI is associated with lower lung 
volumes and higher expiratory airflows when normalised 
for lung volume, as quantified by the FEF25–75/FVC ratio. A 
higher FEF25–75/FVC ratio is associated with a lower risk 
of COPD exacerbations and death and might quantify 
functional aspects of the paradoxical effect of higher BMIs 
on COPD.

Introduction
There exists a poorly understood obesity 
paradox in chronic obstructive pulmonary 
disease (COPD),1 where obese patients with 
COPD tend to fare better than non-obese 
patients with similar degree of airflow obstruc-
tion.2 Observational studies show that over 

time obese patients with COPD experience 
lower mortality and fewer hospital admis-
sions.3 4 Obesity has also been associated with 
lower mortality in patients with acute exacer-
bations.5 

The mechanisms underlying this obesity 
paradox in COPD are unclear. Higher body 
mass index (BMI) in patients with COPD is 
associated with lower functional residual 
capacity (FRC)) and residual volume (RV),6 
likely related to the mass effects of adipose 
tissue acting on the chest wall or abdomen.7 
In addition to affecting the chest wall, 
higher BMI is associated with greater static 
lung elastic recoil, and in some studies with 
increased expiratory flow,8–10 as lung elastic 
recoil of the lung is the key determinant of 
maximal expiratory airflow.

The ratio of mid-vital capacity expira-
tory airflow (forced expiratory flow (25–75) 
(FEF25–75)) divided by the forced vital capacity 
(FVC) corresponds to effort-independent 
expiratory airflow adjusted for lung volume. 
We hypothesised that (1) a higher BMI is 
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Key messages

►► The obesity-paradox in COPD, whereby patients 
with higher body mass index (BMI) fare better, is 
poorly understood.

►► In an ancillary study to COPDGene a higher BMI 
is associated with lower lung volumes and higher 
expiratory airflows when normalized for lung 
volume, as quantified by the FEF

25-75/FVC-ratio 
and a higher FEF25-75/FVC-ratio is independently 
associated with a lower risk of COPD exacerbations 
and death.

►► The FEF25-75/FVC-ratio quantifies functional 
aspects of the paradoxical effect of BMI 
on COPD and further understanding of the 
physiological mechanism could lead to novel 
non-pharmacological therapies based on the 
analogies to chest wall strapping.
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Figure 1  Histogram of the distribution of body mass index 
for the study population.

associated with a higher FEF25–75/FVC ratio and (2) that 
the FEF25–75/FVC ratio, as a possible functional correlate 
of the physiological effects of obesity, modulates the risk 
for COPD exacerbations and death.

Methods
We evaluated data from the COPDGene study—an 
observational cohort study of 10 192 participants across 
21 centres in the USA (2008–2011). Participants were 
non-Hispanic Whites and African-Americans with at 
least a 10 pack-year smoking history.11 Each participant 
provided informed written consent. The COPDGene 
protocol has been previously described and is available 
at www.​copdgene.​org.11 Methods pertinent to the data 
analysed in this study are as follows: subjects completed 
spirometry according to the American Thoracic Society 
standards.11 High-resolution CT scans were performed 
at full inspiration and at end exhalation. Quantitative 
measures of emphysema were defined as the percentage 
of lung volume on the inspiratory CT with attenuation 
less than −950 Hounsfield units (HU).12 Gas trapping 
was defined as the percentage of lung volume on the 
expiratory CT with attenuation less than −856 HU.12 
The data were limited in this study to subjects with a 
BMI between 20 and 40 kg/m2 (n=9222) in order to 
limit the effects of spurious values and at physiological 
extremes of the BMI spectrum. Figure 1 shows a BMI 
histogram for the entire study population.

The study subjects were stratified according to forced 
expiratory volume in 1 s (FEV1) (%predicted)-quintiles. 
The relationship between BMI, CT-imaging phenotype 
(CT volumetry, emphysema and air trapping), spirom-
etry (FEV1, FVC and FEV1/FVC) and the FEF25-75/FVC 
ratio for the entire study population and within each 
FEV1 (%predicted)-quintile was analysed by Spearman’s 
rank correlation coefficients (Spearman’s rho) and by 
using a fractional polynomial approach to evaluate for a 
possible non-linear association. We used logistic regres-
sion to evaluate the relationship between the FEF25–75/

FVC ratio, BMI and the occurrence of COPD exacer-
bations. The outcome variable, COPD exacerbation, 
was examined as a binary variable. A univariate analysis 
was performed to assess for variables that were associ-
ated with COPD exacerbation at a threshold of p=0.1 
as previously described,13 and those variables identified 
were then included in stepwise backward multivariate 
logistic models to adjust for confounders.

To evaluate the relationship between the FEF25–75/FVC 
ratio, BMI and the occurrence of COPD exacerbations 
in the study follow-up period, the COPDGene Longi-
tudinal Follow-Up (LFU) dataset was utilised.14 The 
LFU dataset consists of telephone survey data obtained 
every 3–6 months after the initial study. Information on 
subjects including COPD exacerbations and hospitalisa-
tions was obtained. Follow-up COPDGene mortality data 
were analysed to evaluate the relationship between the 
FEF25–75/FVC ratio and mortality in the follow-up period. 
Cox proportional hazard models were used for the 
mortality analysis. We tested interactions between FEF25–

75/FVC ratio and BMI, and the significance of differences 
between nested models was tested using the likelihood 
ratio test. Subjects with missing data were excluded from 
the respective analyses.

Results
Patient demographics including metrics of disease 
severity, comorbid conditions, imaging parameters and 
spirometric values is shown in the table 1 in the online 
supplementary file 1, stratified by FEV1(%predict-
ed)-quintiles. Comorbid conditions were more common 
in those with more severe COPD. BMI was not signifi-
cantly different between FEV1-quintiles. All metrics of 
disease severity correlated with FEV1(%predicted)-quin-
tiles.

No consistent relationship between FEV1(%predicted) 
and BMI were found when analysing the entire sample 
(p=0.6), or within most FEV1(%predicted)-quintiles 
(figure 2A). However, a higher BMI was associated with 
lower FVC(%predicted) (figure  2B). Consequently, 
a higher BMI was associated with higher FEV1/FVC 
ratios, both in the whole study population and in each 
FEV1(%predicted)-quintile (p<0.001) (figure  2C). A 
higher BMI was associated with higher FEF25–75, both 
in the entire study population and in each quintile of 
FEV1 (p=0.001) (figure  3A). There was a positive asso-
ciation between the FEF25–75 /FVC ratio and BMI, both 
in the entire study population and in each quintile of 
FEV1(%predicted) (p=0.001) (figure 3B).

A higher BMI was associated with lower total lung 
capacity (TLC) (%predicted) and functional residual 
capacity (FRC) (%predicted) derived from CT volum-
etry (figure  4). A higher BMI correlated inversely with 
per cent emphysema (p<0.001) within most FEV1(%pre-
dicted)-quintile and for the entire study population 
(figure 5A). The slope of the line fitting this association 
was much steeper in the FEV1(%predicted)-quintile 

www.copdgene.org
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Figure 2  The relationship between body mass index (BMI) and per cent predicted forced expiratory volume in 1 s (FEV1) (A) 
and per cent predicted forced vital capacity (FVC) (B) and the FEV1/FVC ratio (C), stratified by FEV1 quintiles and for the entire 
study population (BMI 20–40). Spearman’s rank correlation coefficients (Spearman’s rho) are shown and significance of the 
correlation is indicated by the corresponding p value.

with the lowest FEV1. This indicates that comparatively 
smaller differences in BMI correlated with much larger 
differences in emphysema in subjects with more severe 
disease than in quintiles with a more normal FEV1. A 
higher BMI correlated inversely with per cent air trap-
ping (p<0.001) on expiratory CT scans within each 

FEV1(%predicted)-quintile and for the entire study 
population (figure  5B). This reduction in air trapping 
with increasing BMI (from 20 to 40) was strongest in the 
FEV1(%predicted)-quintile with the lowest FEV1.

As the FEF25–75 /FVC ratio could reflect the physiolog-
ical impact of BMI on lung function we next evaluated 
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Figure 3  The relationship between body mass index (BMI) and forced expiratory flow (25-75) (FEF25–75) (A) and (FEF25–75)
divided by forced vital capacity (FVC) (B), stratified by forced expiratory volume in 1 s (FEV1) quintiles and for the entire 
study population (BMI 20–40). Spearman’ s rank correlation coefficients (Spearman’s rho) are shown and significance of the 
correlation is indicated by the corresponding p value.

the association between FEF25–75/FVC ratio, BMI and 
clinical outcomes in COPD. In unadjusted models a 
higher FEF25–75 /FVC ratio was associated with a lower 
risk of self-reported COPD exacerbations at study entry 
and a lower occurrence of COPD exacerbations during 
the study follow-up period (table  1A). Furthermore, a 
higher FEF25–75/FVC ratio was associated with a lower 
risk of hospitalisations and a lower risk of death during 
the study follow-up period. When adjusting for BMI the 
FEF25–75/FVC ratio remained independently associated 
with the above clinical outcomes, whereas BMI itself did 
not remain consistently associated with these outcomes 
(table  1B). In comprehensive risk-adjusted models, a 
higher FEF25–75/FVC ratio remained independently asso-
ciated with a lower risk of COPD exacerbations, hospital-
isation and mortality in the follow-up period.

Discussion
In a large cohort of current and former smokers, we found 
that that FEV1 was largely unaffected by BMI. However, 
when analysing expiratory airflow in the context of the 

corresponding lung volumes via the FEF25–75 /FVC ratio, 
a positive association between the FEF25–75/FVC ratio and 
BMI became evident. A higher FEF25–75/FVC ratio would 
either predict higher elastic recoil or greater small airway 
sizes for the same lung volume, and consistent with this 
we found higher BMI was associated with lesser emphy-
sema and less air trapping. A higher FEF25–75 /FVC ratio 
was associated with a lower risk of COPD exacerbations 
and death and might be a parameter that quantifies 
possible physiological effects associated with a higher 
BMI on COPD outcomes.

Classically, FEV1 has been used to quantify the disease 
severity in COPD. However, FEV1 was not modulated 
by obesity-related changes in lung function in previous 
studies,9 and similarly we did not find a consistent asso-
ciation between BMI and FEV1 in the current study. 
However, we found a positive correlation between BMI 
and FEF25–75 and an inverse relation between BMI and 
FVC. A misclassification of the severity of airflow obstruc-
tion by stratifying according to FEV1(%predicted) 
could have affected the study results, as a reduction of 
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Figure 4  The relationship between body mass index (BMI) and total lung capacity (TLC) (A) and functional residual capacity 
(FRC) (B), stratified by forced expiratory volume in 1 s (FEV1) quintiles and for the entire study population (BMI 20–40). 
Spearman’s rank correlation coefficients (Spearman’s rho) are shown and significance of the correlation is indicated by the 
corresponding p -value.

lung volumes due to a restrictive process, like obesity, 
can add to the reduction in FEV1 from an obstructive 
disease.15 Thus, the reduced lung volumes from obesity 
might lead to an overestimation of the severity of the 
obstructive process. We performed a sensitivity analysis 
in which we adjusted the FEV1 (%predicted) by the total 
lung capacity (TLC) (% predicted), as derived from CT 
scans at full inspiration. We created FEV1(%predicted)-

adjusted=(FEV1(%predicted)/TLC (%predicted)). We then 
restratified subjects according to quintiles of FEV1(%pre-
dicted)adjusted. This sensitivity analysis showed similar 
results (see figures 1 and 2 in the online supplementary 
file 1) and a higher BMI remained associated with a 
higher FEF25–75/FVC ratio, lesser emphysema and lesser 
air trapping.

Jere Mead developed a similar ratio (FEF25–75/FVC 
multiplied by lung elastic recoil) to reflect the size of 
the airway structure in relation to the lung volume.16 
He used this ratio to express the physiological variation 
in the geometry of the tracheobronchial tree and lung 
parenchyma due to different patterns of growth among 
both genders, which he termed dysanapsis.16 Thus, 

the higher FEF25–75/FVC ratio with increasing BMIs we 
found in this study would either predict higher elastic 
recoil or larger airway sizes for the same lung volume. 
A key finding of this study was that, as predicted by the 
association with a higher FEF25–75/FVC ratio, a higher 
BMI correlated inversely with per cent air trapping 
on expiratory CT scans (figure  5B). Air trapping is 
correlated with the closing volume of small airways and 
an isolated deflating effect of obesity should not affect 
the closing volume of small airways. Imaging studies in 
COPD have demonstrated that small conducting airways 
narrow and disappear before the onset of emphysema-
tous disease.17 If it is correct that widespread narrowing 
and loss of smaller conducting airways precedes the 
onset of emphysematous destruction, then a possible 
beneficial effect of obesity on small airway function 
could reduce the risk for progression to emphysema. 
Similar to observations made in the Multiethnic Study 
of Atherosclerosis lung study,18 we found that a higher 
BMI was associated with less emphysema (figure  5). 
This could suggest that obesity modulates small airway 
function in COPD.

https://dx.doi.org/10.1136/bmjresp-2017-000231
https://dx.doi.org/10.1136/bmjresp-2017-000231
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Figure 5  The relationship between body mass index (BMI) and per cent emphysema (A) and per cent air trapping (B), 
stratified by forced expiratory volume in 1 s (FEV1) quintiles and for the entire study population (BMI 20–40). Spearman’s rank 
correlation coefficients (Spearman’s rho) are shown and significance of the correlation is indicated by the corresponding p 
value.

The effects of obesity on pulmonary physiology have 
been carefully characterised both in healthy subjects 
and in those with COPD.9 The most prominent aspect of 
obesity-induced changes in the respiratory system is the 
reduction in expiratory reserve volume (ERV), followed 
by more modest reductions in other lung volumes.10 
Obesity also reduces lung compliance and increases lung 
elastic recoil in several studies.8 19 There are analogies 
between the effects of obesity on the respiratory system 
and chest wall strapping (CWS).20–28 CWS is a technique 
to restrict chest and abdominal wall motion during 
respiration to force the lung to operate at lower lung 
volumes.20–28 CWS causes a decrease in lung volumes, 
an increase in expiratory flows and airway conductance, 
a decrease in lung compliance and an increase in lung 
elastic recoil.20–28 CWS reduces TLC by ~35% with similar 
changes in vital capacity, FRC and similarly to obesity ERV 
is reduced the most by 50%.20–28 Lung elastic recoil is 
increased by on average 180%.20 CWS increases mid-vital 
capacity maximum expiratory flows to on average 150% 
of prestrapped rates.20 The increased lung elastic recoil 
from CWS could increase the radial traction on small 

airways via the interdependence between airways and 
parenchyma.20 29 30 This increase radial traction could 
dilate small airways resulting in lower closing volumes 
and higher airway conductance.20 29 30 Consistent with 
this possible mechanism, a study of normal subjects and 
in subjects with mild to moderate COPD showed that 
CWS increased the number of small airways detectable 
via an automated CT airway segmentation algorithm.31–33 
Furthermore, transplanting significantly oversized donor 
lungs into a recipient with a smaller chest cavity is concep-
tually similar to CWS and was associated with higher 
mid-vital capacity expiratory airflows and higher FEV1/
FVC ratios.20 34–37 The FEV1/FVC ratio is conceptually 
also a ‘dysanapsis ratio’. Similar to the FEF25–75/FVC ratio, 
the FEV1/FVC ratio varied with BMI (figure 2C). Thus, a 
higher BMI could be associated with a normal FEV1/FVC 
ratio, even in the presence of obstructive airways disease. 
This may explain some of the observations regarding 
the ‘GOLD–Unclassified Smokers’ or ‘preserved ratio 
impaired spirometry’ phenotype that is characterised 
by a reduced FEV1 with a preserved FEV1/FVC ratio.38 
Supporting this possibility, the ‘GOLD–Unclassified 



Abston E, et al. BMJ Open Resp Res 2017;4:e000231. doi:10.1136/bmjresp-2017-000231 7

Open Access

Table 1: The association of FEV 25-75 / FVC ratio and BMI with COPD outcomes 

Parameter (A) Model 1, univariate
(B) Model 2, multivariate adjusted (as 
indicated in legend)

Exacerbation* history† OR 95% p OR‡ 95% p

 FEF25–75/FVC-ratio
 Quintile 1 versus 5 

0.11 0.09 to 0.14 <0.001 0.55 0.21 to 1.40 0.2

 BMI
 Quintile 1 versus 5

1.28 1.10 to 1.50 0.002 1.08 0.65 to 1.79 0.7

Exacerbation* on follow up§ OR 95% p OR‡ 95% p

 FEF25–75/FVC ratio
 Quintile 1 versus 5

0.28 0.25 to 0.32 <0.001 0.54 0.39 to 0.73 <0.001

 BMI
 Quintile 1 versus 5

1.1 0.97 to 1.25 0.14 1.13 0.892 to 1.39 0.2

Hospitalised** OR 95% p OR¶ 95% p

 FEF25–75/FVC ratio
 Quintile 1 versus 5

0.09 0.07 to 0.21 <0.001 0.41 0.27 to 0.63 <0.001

 BMI
 Quintile 1 versus 5

0.97 0.79 to 1.19 0.8 1.30 0.94 to 1.79 0.1

Mortality†† HR 95% p HR¶ 95% p

 FEF25–75/FVC ratio
 Quintile 1 versus 5

0.17 0.13 to 0.23 <0.001 0.60 0.39 to 0.94 0.02

 BMI
 Quintile 1 versus 5

0.62 0.50 to 0.78 <0.001 0.74 0.54 to 1.01 0.06

*Exacerbation analysis is stratified according to exacerbation yes/no.
†Exacerbation data from first study visit.
‡Adjusted for: BMI, age at enrolment, history of severe exacerbations, chronic bronchitis, asthma, American Thoracic Society (ATS) pack-
year smoking, current smoking, fume exposure at work, gastro-oesophageal reflux disease, congestive heart failure, sleep apnoea, history of 
blood clots, high blood pressure, Modified Medical Research Council dyspnoea scale, St. George's Respiratory Questionnaire score, forced 
expiratory volume in 1 s (%predicted) and 6 min walk distance.
§Exacerbation data from longitudinal follow-up data set.
¶Adjusted for: BMI, pack-year smoking, current smoking, oxygen use, per cent emphysema and Body mass index, airflow Obstruction, 
Dyspnoea and Exercise score.
**Hospitalisation analysis is stratified according to yes/no.
††Complete mortality data were available for 7534 subjects.
BMI, body mass index; FEF25–75, forced expiratory flow (25–75); FVC, forced vital capacity.

Smokers’ phenotype was associated with increased 
BMIs.38

This study was limited in several aspects. Due to the 
cross-sectional nature of the study, we cannot determine a 
causal relationship between BMI and the imaging pheno-
type (lower TLC, FRC, less emphysema and air trapping). 
While the data is suggestive that obesity could have a 
CWS-like effect of increasing lung elastic recoil, we do not 
have measurements of lung elastic recoil or expiratory 
airflows at isovolume conditions. The FEF25–75/FVC ratio 
has been developed as a surrogate measure of airway size 
relative to lung size or lung dysanapsis. While FVC can be 
an appropriate surrogate of lung size in normal lungs, it 
can be reduced due to forced exhalation in subjects with 
COPD and emphysema, where FVC can be significantly 
lower than the slow vital capacity. In a sensitivity anal-
ysis, we have generated a ‘dysanapsis’ ratio that instead 
of FVC included TLC (derived from CT volumetry), as 
a measurement of lung size. There is close linear rela-
tionship between the FEF25–75/FVC ratio and the FEF25–75/
TLC ratio (Spearman’s rho was 0.97, p<0.0001, see figure 

3 in the online supplementary file 1). Also, BMI itself is 
an imperfect metric of adiposity, and different fat distri-
bution patterns can result in varying respiratory effects 
with similar BMI. As gender can affect both fat distribu-
tion patterns and airway structure, we performed a sensi-
tivity analysis stratified by gender, which showed similar 
results (see figure 4 in the online supplementary file 1). 
In this study, we limited the BMI to between 20 and 40, 
which excluded 970 subjects (approximately 10% of the 
study population). When we analysed the entire study 
cohort, the overall results were not different (see figures 
5 and 6 in the online supplementary file 1).

There appears to be a plateau effect to the obesity-in-
duced changes in lung function at the extremes of BMI. 
Mild to moderate obesity shares the greatest similarities 
with lung function changes observed with CWS, whereas 
extreme obesity, especially when FRC or ERV are reduced 
below certain thresholds can be associated with wors-
ening lung function.39 In this study, the effect of BMI on 
FEF25–75 and FEF25–75/FVC seems to be more pronounced 
from BMI 20 to 30, then from BMI 30 to 40 (figure 3). 

https://dx.doi.org/10.1136/bmjresp-2017-000231
https://dx.doi.org/10.1136/bmjresp-2017-000231
https://dx.doi.org/10.1136/bmjresp-2017-000231
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Also, obesity is a complex chronic condition with varied 
patterns of fat depositions as well as many systemic and 
behavioural associations extending beyond mechanical 
effects of adipose tissue.9 40 Finally, even though multi-
variable modelling was used to account for possible 
confounding, it is understood that variables not available 
or missing variables in this data set may result in residual 
confounding.

In conclusion, increased BMI is associated with lower 
lung volumes, lesser emphysema and air trapping. The 
FEF25–75/FVC ratio, as a dysanapsis ratio, seems to quantify 
the physiological impact of obesity on the COPD pheno-
type and is independently associated with COPD exacer-
bations and mortality. BMI affects the COPD phenotype 
in a manner that has similarities to CWS, which could 
provide a possible mechanistic basis for aspects of the 
BMI paradox seen in COPD.
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