Skip to main content
. 2017 Oct 11;7(10):e017679. doi: 10.1136/bmjopen-2017-017679

Table 6.

Logistic multilevel, multivariate regression models with past-year externalising disorder† as the outcome among 4072 urban China residents‡

Individual-level exposures only Individual-level exposures and neighbourhood-level income Individual-level exposures and neighbourhood-level marital status
OR 95% CI lower limit 95% CI upper limit OR 95% CI lower limit 95% CI upper limit OR 95% CI lower limit 95% CI upper limit
Individual-level fixed effects
Age 35–49 0.49* 0.26 0.91 0.49* 0.26 0.92 0.53* 0.28 0.99
Age 50–64 0.17* 0.07 041 0.17* 0.07 041 0.19* 0.08 0.45
Age 65+ 0.05* 0.01 0.24 0.05* 0.01 0.24 0.06* 0.01 0.27
Female 0.40* 0.27 0.59 0.40* 0.27 0.59 0.38* 0.26 0.57
Ratio of individual income to city income 1.05* 1.00 1.09 1.04* 1.00 1.09 1.04 0.99 1.09
In top 50% of country-level education 1.78* 1.15 2.75 1.77* 1.13 2.77 1.72* 1.13 2.62
Married 1.92* 1.09 3.40 1.92* 1.08 3.42 2.23* 1.19 4.16
Migrant to megacity 0.83 0.54 1.29 0.83 0.54 1.29 0.78 0.49 1.24
Unemployed 5.01* 2.23 11.24 5.01* 2.24 11.23 5.71* 2.50 13.05
Neighbourhood-level fixed effects
Ratio of neighbourhood income to city income 1.01 0.73 1.42
Percent married in neighbourhood 0.98* 0.97 0.99
Random effects Variance estimate Zero G test χ2 p Value Variance estimate Zero G test χ2 p Value Variance estimate Zero G test χ2 p Value
Intercept 0.12 1.80 0.090 0.12 1.80 0.090 0.08 1.01 0.157

* =p<0.05.

†Externalising disorders include behavioural (intermittent explosive disorder) and substance use (alcohol and drug abuse with or without dependence) disorders.

‡Models include the above variables as well as fixed effects for city and for having a missing (‘do not know’ or refused) value on individual unemployment.