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ABSTRACT

Accurate prediction of prognosis is critical for therapeutic decisions regarding 
cancer patients. Many previously developed prognostic scoring systems have 
limitations in reflecting recent progress in the field of cancer biology such as 
microarray, next-generation sequencing, and signaling pathways. To develop 
a new prognostic scoring system for cancer patients, we used mRNA expression 
and clinical data in various independent breast cancer cohorts (n=1214) from the 
Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and 
Gene Expression Omnibus (GEO). A new prognostic score that reflects gene network 
inherent in genomic big data was calculated using Network-Regularized high-
dimensional Cox-regression (Net-score). We compared its discriminatory power with 
those of two previously used statistical methods: stepwise variable selection via 
univariate Cox regression (Uni-score) and Cox regression via Elastic net (Enet-score). 
The Net scoring system showed better discriminatory power in prediction of disease-
specific survival (DSS) than other statistical methods (p=0 in METABRIC training 
cohort, p=0.000331, 4.58e-06 in two METABRIC validation cohorts) when accuracy 
was examined by log-rank test. Notably, comparison of C-index and AUC values 
in receiver operating characteristic analysis at 5 years showed fewer differences 
between training and validation cohorts with the Net scoring system than other 
statistical methods, suggesting minimal overfitting. The Net-based scoring system 
also successfully predicted prognosis in various independent GEO cohorts with high 
discriminatory power. In conclusion, the Net-based scoring system showed better 
discriminative power than previous statistical methods in prognostic prediction for 
breast cancer patients. This new system will mark a new era in prognosis prediction 
for cancer patients.
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INTRODUCTION

Accurate prediction of prognosis is critical for 
therapeutic decisions in cancer patients. There is a long 
history of trials for accurate prognosis prediction, dating 
back to 1958 [1, 2]. Early statistical methods for survival 
analysis (life table or Kaplan-Meier method) were 
univariate analyses [1, 2]. To incorporate various types of 
clinical information on patients into the survival analysis, 
Cox proposed a multivariate proportional hazard model 
in 1972 (Figure 1A) [1]. Recent substantial advances in 
biomedical technology, such as microarray techniques 
and next-generation sequencing, have provided the 
possibility for better prognostic prediction [3, 4]. Although 
genome-wide information from cancer tissues has been 
accumulating worldwide, the statistical methods to 
incorporate this information into survival analyses are still 
not satisfactory to fulfill the medical need.

Microarrays or next-generation sequencing provides 
many variables (number of genes, large dimensionality) 
relative to the number of patients examined (sample size). 
To enhance the accuracy and efficiency of analysis from 
such tremendous databases, it is necessary to select and 
shrink variables in a systemic statistical manner in terms 
of the principle of parsimony. For this purpose, the least 
absolute shrinkage and selection operator (Lasso, 1997) 
(Figure 1A) and Ridge regression methods have been 
introduced [2, 5]. These methods provided a smart solution 
for the multicollinearity problem by adding a degree of 
bias to the regression estimates. Moreover, the Elastic Net 
regression method combines Lasso and Ridge methods to 
use advantages of both methods and provide a better group 
effect from correlation [5–7]. However, Lasso, Ridge, and 
even Elastic Net methods do not reflect recent progresses 
in cancer biology even though they reflect expressional 
changes of genes. To overcome this limitation, a novel 
statistical method (Network-Regularized high-dimensional 
Cox-regression, or Net) was recently developed [5]. 
Although Net reflects recent progress in cancer biology 
such as signaling pathways and network of genes, it has 
not yet been tested using big databases.

To derive accurate prognostic prediction, an 
appropriate data set is mandatory. With progress in 
biomedical technology, several big genomic databases 
of good quality have been released, such as The Cancer 
Genome Atlas (TCGA), Molecular Taxonomy of Breast 
Cancer International Consortium (METABRIC) and Gene 
Expression Omnibus (GEO). In addition, the International 
Cancer Genome Consortium (ICGC) will open in 
2017. This provides a good opportunity to apply a new 
statistical method for prognostic prediction. One of the 
most important criteria to confirm the reliability of a new 
statistical method is a thorough external validation, which 
requires carefully collected independent data sets. These 
data sets should have the same clinical information and 
genomic data collected by the same experimental tool, as 

well as a large number of patients (>100). For accurate 
external validation, the following conditions must be 
met: (1) totally different cohorts, with at least one from 
a training cohort; (2) genomic data collected by the same 
technique because the absolute expression value of a gene 
can be different according to experimental methods such 
as microarray, RNAseq, and RT-PCR; (3) the cutoff value 
of risk groups used in the training cohort should also be 
applied in validation cohorts. In the current study, we used 
luminal breast cancer microarray data from METABRIC 
that satisfies the above conditions and consists of three 
independent cohorts. For the further validation of its 
versatility, we also applied it to other breast cancer cohorts 
(GSE7390, GSE42568, GSE22219 and GSE37181) from 
Gene Expression Omnibus (GEO) [8–14].

RESULTS

Variable selection

For comparison of the discriminatory accuracy of 
statistical methods, we chose five independent cohorts 
from the METABRIC database as described in “Methods”. 
Among five cohorts, we could not help excluding two 
cohorts because patients in two cohorts did not have 
clinical information like tumor stage and surgery types. 
After that, we used the cohort with the largest number of 
patients as a training set. To choose the best combination 
of variables including all examined genes, we applied three 
kinds of statistical method for disease-specific survival 
(DSS) as described in “Methods”: network-regularized 
high-dimensional Cox-regression (Net), stepwise selection 
via univariate Cox proportional hazard model, or Elastic 
net. At the process of variable selection, we included 
almost all clinical variables such as age, stage, Nottingham 
prognostic index (NPI), therapeutic modalities, hormonal 
status and tumor size. Among clinical variables, tumor size 
was always selected at the variable selection whether we 
changes the values of parameters or not. We identified 82, 
47, and 102 variables, including tumor size, respectively, 
for each statistical method. Next, we generated a scoring 
system based on regression coefficients and variables 
(∑(coefficient X value of variable)). The regression 
coefficients and name of variables scored by three 
models are listed in Supplementary Table 1. We named 
the prognostic score of each statistical method the Net-
score, Uni-score, and Enet-score. Simple explanation of 
the Net-based scoring system are described in Figure 1B 
and “Method”.

Survival analysis

After variable selection and development of 
prognostic scoring systems, we applied the three systems 
to the training set (METABRIC cohort 1, n=381) and two 
validation cohorts (METABRIC cohort 2 and 3, n=167 and 
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232) to compare their discriminatory accuracy. Using each 
scoring system, patients of training and validation cohorts 
were classified into low or high risk groups by the optimum 
cutoff value of each scoring system. The discriminatory 
accuracy of the scoring systems was examined with 
three methods: log-rank test, UNO’s C-indexes in time-
dependent AUC curve, and AUC values in ROC analysis 
at 5 years. In the training cohort, all scoring systems 

could predict patient prognosis (p=0 in all score systems) 
with good statistical significance evaluated by log-rank 
test. In two validation cohorts, Net-score (p=0.000331, 
4.58e-06) or Enet-score (p=0.0417, 0.000285) showed 
good statistical significance; however, Uni-score could 
not discriminate prognosis of patients in the second 
validation set (p=0.0416, 0.318 respectively) (Figure 2). 
To further compare the accuracy of the three methods, we 

Figure 1: Development of statistical methods for prognostic prediction of cancer patients. (A) It shows a brief history of the 
development of statistical methods for variable selection on a timeline. For more details, please refer to the description in “Results”. (B) It is 
a graphical summary for development of the Net-based scoring system. Total variables including clinical and genetic factors were assessed 
in Network Regularized High dimensional Cox-Regression (Net) with optimal parameters (gene expression correlation: α and gene network 
correlation: Ω). After variable selection, we generated a Net-score using estimated regression coefficient and variables ∑(coefficient X 
value of variable) from Net results.
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examined the C-index in time-dependent AUC curve and 
Brier score for three independent cohorts. Higher C-index 
and lower Brier score have better prognostic prediction 
accuracy. In comparison of C-index, Net-score showed 
better values (0.940, 0.745, and 0.638 in training and two 
validation cohorts respectively) than the other scores in 
the validation cohorts; Uni-score and Enet-score showed 
low values in the two validation cohorts compared to 
the training cohort (Uni-score: 0.913, 0.579, and 0.485; 
Enet-score: 0.988, 0.551, and 0.548 in training and two 
validation sets) (Figure 3A, 3D, 3G and Supplementary 
Figure 1). In addition, Net-score showed lower Brier 
score (0.11, 0.17 and 0.11 in training and two validation 
cohorts respectively) than the other scores in the validation 
cohorts; Uni-score and Enet-score showed high values in 
the two validation cohorts compared to the training cohort 
(Uni-score: 0.09, 0.23, and 0.17; Enet-score: 0.06, 0.23, 
and 0.12 in training and two validation sets) (Figure 3B, 
3E, 3H and Supplementary Figure 1). Notably, Net-score 
showed smaller differences between AUC curves and 
Brier scores of three independent cohorts than Uni-score 

or Enet-score over the entire timeline (Figure 3A, 3C, 3D, 
3F, 3G and 3I), suggesting that the overfitting problem was 
minimum in the Net-based scoring system.

Because cancer-related death usually occurs within 
5 years, and 5-year survival rate is commonly used and 
compared for prognosis prediction of cancer patients, we 
examined AUC values in ROC analysis and Brier score 
at 5 years. Net-score showed significantly better values 
at 5 years in the two validation cohorts (C-indexes: 
0.936, 0.809 and 0.713, Brier scores: 0.07, 0.08 and 0.10 
in training and two validation cohorts respectively) than 
the Uni-score (C-indexes: 0.885, 0.587 and 0.538, Brier 
score: 0.07, 0.12 and 0.14 in training and two validation 
cohorts respectively) and Enet-score (C-indexes: 0.983, 
0.695 and 0.675, Brier scores: 0.04, 0.10 and 0.11 in 
training and two validation cohorts respectively) 
(Figure 3B, 3E, 3H and Supplementary Figure 1). 
Notably, we also observed a smaller standard deviation 
in AUC values and Brier scores at 5 years between 
three independent cohorts with Net-score (AUC; 0.11 
and Brier score: 0.01) than with Uni-score (0.19 and 

Figure 2: Kaplan-Meier estimates of survival of breast cancer patients according to the risk scores (Net-score, Uni-
score, and Enet-score). Disease-specific survival (DSS) in METABRIC cohort 1 (training), METABRIC cohort 2 and 3 (validation 1 and 
2) were examined by Net-score (A, B and C), Uni-score (D, E and F), or Enet-score (G, H and I). p-value was calculated by log-rank test.
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0.04) or Enet-score (0.17 and 0.04) (Figure 3B, 3E, 3H 
and Supplementary Figure 1). Moreover, the standard 
deviation of C-indexes and Brier scores from Net-score 
(C-index: 0.15 and Brier score: 0.03) were smaller than 
those of Uni-score (0.22 and 0.07) or Enet-score (0.19 
and 0.09). These results suggest that Uni- and Enet-score 
models might be suitable for the training cohort but 
not for the validation cohorts, indicating an overfitting 
problem.

Comparison of prognostic score and 
clinicopathologic variables

To compare discriminatory power between Net-
score and other clinicopathologic variables, we plotted 
time-dependent AUC, time-dependent Brier score, ROC 
curve at 5 years (Figure 3 and 4). The Net-score showed 
significantly higher prognostic accuracy than any other 

clinical factor including age, surgery type, treatment 
modality, and tumor stage, especially at 5 years (Figure 
3 and 4). Together with Net-score, age also showed good 
prognostic power in the second validation cohort, which 
had a wider distribution of age than other cohorts in 
METABRIC (Supplementary Table 1 and Figure 6A).

Application to other cohorts (METABRIC and 
GEO)

To confirm the versatility of Net-score, we applied it 
to various other cohorts. Although we performed variable 
selection for DSS, the Net-score also could predict overall 
survival of patients in METABRIC (p=0 in training 
cohort, 0.00212, and 1.42e-05 in validation cohorts 
Figure 5A-5C). Furthermore, survival data of GSE7390 
(p=0.000274, 0.000605, and 0.00107 in OS, DFS, and 
RFS respectively), GSE42568 (p=0.000233 and 0.00279 

Figure 3: Time-dependent area under the curve (AUC), time-dependent Brier score curve and receiver operating 
characteristic (ROC) curve at 5 years according to risk scores (Net-, Uni- and Enet-score) in the training and 
validation sets. Time-dependent AUC, time-dependent Brier score curve and ROC curve at 5 years in METABRIC cohort 1 (training, 
red), METABRIC cohort 2 (validation 1, green), and METABRIC cohort 3 (validation 2, blue) cohorts according to Net-score (A, B and 
C), Uni-score (D, E and F), and Enet-score (G, H and I). C-indexes are described at the bottom right position of A, D and G. AUC value at 
5 years is described at the bottom right position of B, E, and H. Brier scores are described at the bottom right position of C, F and I.
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in OS and RFS), GSE22219 (p=2.93e-09 in DFS) and 
GSE37181 (p=0.0292 in DFS) data sets are successfully 
analyzed by Net-score (Figure 5D-5J). The optimum 
cutoff values are different from value of METABRIC, 
because their absolute gene expression values are different 
according to microarray platforms and data processing 
methods (Table 1).

Subgroup analysis

To assess the discriminatory power of Net-score 
in various subgroups, we classified patients according 
to mastectomy, menopausal status, and tumor stage. 
Table 2 summarizes the clinical information of patients 
in three independent cohorts according to Net-score. 
Net-score showed good discriminatory power in various 
subgroups according to surgery type (mastectomy or 
breast-conserving surgery), menopausal status (pre- or 
postmenopausal state), or tumor stage (Supplementary 
Figure 3).

DISCUSSION

For the better prognosis prediction of cancer 
patients using big genomic data, in the present study, we 
successfully generated a prognostic scoring system based 
on Network-regularized high-dimensional Cox-regression 
(Net). Application of Net for prognosis of breast cancer 
patients showed superiority over previous methods 
(stepwise selection via univariate Cox regression and 
Elastic net). Moreover, we showed its versatile application 
to other cohorts without overfitting problem commonly 
observed with previous statistical methods.

Overfitting in a statistical prediction system, 
characterized by high accuracy for a classifier when 
evaluated on the training cohort but low accuracy when 
evaluated in independent validation cohorts, has been 
reported as a serious problem in high-dimensional data 
[5]. Stepwise selection via univariate Cox regression 
model is the most commonly used method for developing 

Figure 4: Comparison of discriminative power between Net-score and clinicopathologic variables. Time-dependent AUC 
and ROC curve at 5 years in METABRIC cohort 1 (training, A, B and C), METABRIC cohort 2 (validation 1, D, E and F), and METABRIC 
cohort 3 (validation 2, G, H and I) cohorts according to Net-score and clinical variables (Net-score: red; age: green; breast surgery: blue; 
chemotherapy: light blue; hormone therapy: pink; radiotherapy: yellow; tumor stage: gray).
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a prognostic gene signature. However, this approach has 
a serious overfitting problem because it only considers 
individual effects of variables (Figure 2D-2F and Figure 
3G-3I). Similarly, Elastic net could not overcome the 
overfitting problem (Figure 2G-2I; Figure 3G-3I). 
Comparison of prediction accuracy analysis showed that 
Uni-score and Enet-score had larger differences between 
training and validation cohorts than Net-score (Figure 3). 
Therefore, these previous methods may not be as suitable 
for selection of a subset that can predict patient survival. 
Because we need more information on variables in order 
to reduce overfitting, we made a gene correlation matrix 
by combining six large pathway databases. We finally 
developed a Net-based scoring system that can predict 
prognosis using a new gene correlation matrix (Figure 
1B). In addition, the discriminatory power was higher than 
that of previous methods, whereas the standard deviation 
was smaller. These results suggest that a Net-based scoring 
system has minimal overfitting and high discriminatory 
power compared with previous statistical methods.

Many prognosis prediction systems for the survival 
of cancer patients that are based on clinical data for gene 
expression have been developed: 21 genes and 70 genes 
for breast cancer, 5 genes for hepatocellular carcinoma, 5 
genes for non-small cell lung cancer [15–21]. However, 
their usefulness in the treatment of cancer patients might 

be limited because selection of gene sets for the prediction 
system was not systemic or statistical and the gene sets 
were tested using univariate regression. Although great 
results have been obtained using univariate regression, 
these systems might suffer from the overfitting problem 
because they did not consider the importance of the 
grouping effect. As shown in Figure 5, Net-score is very 
useful to predict other breast cancer data sets because 
it considers gene-gene interaction with other grouping 
effects.

Breast cancer is the most common malignancy 
in women in developed countries, with luminal type 
representing approximately 60–70% of all cases [22]. 
Luminal breast cancer has varied clinical outcomes despite 
similar molecular patterns, making it difficult to predict 
prognosis [22]. The results of our advanced technique 
were highly associated with various survival data and 
had high reproducibility. This method could be useful 
in stratifying patients according to risk of luminal breast 
cancer and helpful for deciding treatment options.

Clinical and genetic information included in 
METABRIC is uniform and well-designed [8, 9] even 
though the cohorts in METABRIC were collected 
independently. For these reasons, three cohorts in 
METABRIC were the best to develop and validate 
prognostic system. At the process of variable selection, 

Figure 5: Kaplan-Meier estimates of other survival data of breast cancer patients according to the risk scores. Net-score 
examined overall Survival (OS) in METABRIC cohort 1, 2 and 3 (A-C). OS, Distant Meta Free Survival (DFS) and Relapse Free Survival 
(RFS) in GSE7390 (D-F), OS and RFS in GSE42568 (G, H), DFS in GSE22219 (I), and DFS in GSE37181 (J) were stratified by Net-score. 
p value was calculated by log-rank test.
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Table 2: Clinical characteristics of the training and validation cohorts

Characteristics High Risk Low Risk

Cohort Training Validation 1 Validation 2 Training Validation 1 Validation 2

No. of patients 146 44 66 235 123 166

Age - yrs 65.14 56.58 65.39 65.55 55.27 63.72

Breast surgery – no. of patients (%)

Conserving 60 (41%) 25 (57%) 16 (24%) 109 (46%) 60 (49%) 80 (48%)

Mastectomy 86 (59%) 19 (43%) 50 (76%) 126 (54%) 63 (51%) 86 (52%)

Tumor size (mm) 30.79 24.70 34.70 23.12 19.20 23.08

Tumor stage – no. of patients (%)

  I 24 (16%) 22 (50%) 9 (14%) 99 (42%) 89 (72%) 47 (28%)

  II 105 (72%) 19 (43%) 47 (71%) 130 (55%) 28 (23%) 115 (69%)

  III 17 (12%) 3 (7%) 10 (15%) 6 (3%) 6 (5%) 4 (3%)

Menopausal state – no. of patients (%)

  Pre- 12 (8%) 10 (23%) 11 (17%) 28 (12%) 41 (33%) 28 (17%)

  Post- 134 (92%) 34 (77%) 55 (83%) 207 (88%) 82 (67%) 138 (83%)

Table 1: Microarray platforms and cutoff values

Microarray platforms Cutoff values

METABRIC

Cohort 1 Illumina HumanWG v3.0 platform 3.811765

Cohort 2

Cohort 3

GEO databases

GSE7390 Affymetrix Human Genome U133A 
platform 8.994179

GSE42568 Affymetrix Human Genome U133 Plus 
2.0 platform 7.596133

GSE22219 Illumina humanRef-8 v1.0 platform 4.256071

GSE37181 Illumina HumanWG-6 v3.0 platform 1.51173

almost all clinical variables such as age, stage, Nottingham 
prognostic index (NPI), therapeutic modalities and 
tumor size, were examined. Among clinical variables, 
tumor size was always selected at the variable selection. 
Although some clinical or genetic variables in data set 
were previously known to be important for prognosis, they 
cannot be selected due to multicollinearity problem. If the 
variables in Net-score are highly correlated with each 
other, it will cause multicollinearity problem. For example, 
Nottingham prognostic index (NPI), which includes 
tumor size, lymph node status and histological grade 

information, and tumor stage are well-known prognostic 
factor for breast cancer, however, they were not selected 
in the current study [23, 24]. NPI or tumor stage has high 
correlation coefficients with tumor size (Supplementary 
Figure 2, NPI-tumor size: 0.55, tumor stage-tumor size: 
0.48 calculated by spearman correlation or Point-Biserial 
correlation respectively). As another example, because 
KIF20A in Net-score has high correlation with many 
other well-known prognostic genes in oncotype DX and 
MammaPrint, KIF20A may represent their prognostic 
effect (Supplementary Figure 4) [17, 21]. Although The 
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Cancer Genome Atlas (TCGA) is an excellent database 
providing information about the expressional status of 
mRNA, it does not provide information about the tumor 
size, which is the reason TCGA was not included for the 
present analysis.

The advantages of the Net-based scoring system are 
as follows: (1) the variable selection method considers 

biological network information from six large pathway 
databases. (2) It can predict other cancer cohorts well 
because it has the least overfitting with high discriminatory 
power compared with other commonly used statistical 
methods. In conclusion, we believe that Net scoring 
system is better than any other previous statistical methods 
for prognostic prediction in cancer patients.

Figure 6: Overview of the study framework.
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MATERIALS AND METHODS

Patients

The breast cancer data set was released by the 
METABRIC study (Illumina Human WG v3, n=780) 
[8, 9]. The mRNA expression and clinical data were 
downloaded from cBio Cancer Genomics Portal. This 
process was performed by using ‘cgdsr’ package in R. 
The criteria for inclusion were as follows: (1) patients with 
invasive breast cancer (n=96); (2) patients with insufficient 
information about tumor stage (n=1036), and surgery 
type (n=15); (3) patients with non-luminal type breast 
cancers (Basal, n=130; Claudin-low, n=151; Her 2, n=138; 
Normal, n=90; NC, n=3); (4) patients with unavailable 
gene expression values (NA, n=56). Although 15 patients 
in cohort 4 have all clinical and genetic data, we could not 
help excluding them due to small number of patients. All 
samples were obtained with consent from the patients and 
appropriate approval from ethical committees. We chose 
the cohort with the largest number of patients (n=381) as 
a training cohort and analyzed the two other large cohorts 
as validation sets (n=167, 232). The flowchart of this 
study are described in Figure 6. Clinical characteristics of 
patients in training and validation cohorts are summarized 
in Table 2.

Other cohorts were collected from the Gene 
Expression Omnibus (GEO). We searched all public data 
sets and then we excluded GEO data that did not have 
clinical data (survival and hormone receptor data) and 
variables in Net-score. In each data sets, we only included 
patients with hormone receptor positive because luminal 
type breast cancers are hormone positive cancers. The 
mRNA expression data with patient’s information are 
available on GEO (https://www.ncbi.nlm.nih.gov/geo), 
with accession numbers are GSE7390 (Affymetrix Human 
Genome U133A Array, n=134), GSE42568 (Affymetrix 
Human Genome U133 Plus 2.0 Array, n=67), GSE22219 
(Illumina humanRef-8 v1, n=134) and GSE37181 
(Illumina Human WG-6 v3, n=99) [10–14]. The 
expression and clinical data from GEO were downloaded 
by using ‘GEOquery’ package in R.

Network-regularized high-dimensional Cox 
regression (Net)

To obtain more significant results using Net, 
additional information about gene–gene correlation is 
required. We converted pathway topology information 
from six large databases (Biocarta, HumanCyc, KEGG, 
NCI, Panther, and Reactome) to the gene network using 
the R package ‘graphite’. This package provides gene–
gene interaction information in the form of edges that 
represent direct or indirect interactions. We made a gene 
correlation matrix from the combined six databases. This 
provided a greater grouping effect because it had more 

information on gene–gene interaction. We performed Net 
implemented in the R package ‘coxnet (version 0.2)’ to 
evaluate the association between disease-specific survival 
(DSS) and various subsets considering mRNA expressions 
of genes and clinical variables (age, tumor stage, tumor 
size, Nottingham prognostic index (NPI), therapeutic 
modalities, hormonal receptor status and grade) together 
using the ‘leave-one-out’ method for cross-validation. 
mRNA expression values, age, tumor size and NPI were 
numeric continuous values and other clinical variables 
were categorical factors. Categorical factors were 
transformed to dummy variables for Cox regression. The 
mixing parameter α, which decides the balance between 
Ridge and Lasso penalties, with minimal Cross-Validation 
(CV) error was determined.

Stepwise selection via univariate Cox regression

Variables were prepared as described above in the 
‘Network-regularized high dimensional Cox regression 
(Net)’ section. We performed univariate Cox proportional 
hazard regression to evaluate the association between DSS 
and variables including genes and clinical factors in the 
training cohort. To avoid the curse of dimensionality, we 
used stepwise variable selection for the top 100 genes/
factors that were highly correlated with survival.

Elastic net

Variables were prepared as described above in the 
‘Network-regularized high dimensional Cox regression 
(Net)’ section. We used Elastic net implemented in 
the R package ‘glmnet (version 2.0.5)’ to evaluate the 
association between DSS and variable subsets considering 
both genes and clinical variables using the “leave-one-
out” method for cross-validation. The mixing parameter 
α, which decides the balance between Ridge and Lasso 
penalties, with minimal CV error was determined.

Prognostic scoring system

We used a linear combination of the values 
of variables by regression coefficients to calculate a 
prognostic score (Supplementary Table 1). The regression 
coefficients from training set were also used to make 
prognostic score in other data sets. In each analysis we 
determined the optimum cutoff that had the maximal 
UNO’s C-index [25], which represents the discriminatory 
power average by 5-fold cross-validation. To know 
the differences of variable values in risk features, we 
compared the variable values from three models in 
METABRIC cohorts (Supplementary Table 2).

Application to other survival data

We performed survival analysis of breast cancer 
patients in other survival data by using Net prognostic 
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score. In METABRIC data set, there are two kinds of 
survival data. One is DSS and the other is overall survival 
(OS). The prognostic score from DSS was also applied to 
METABRIC (OS) and GSE7390 (OS, Distant Meta Free 
Survival (DFS), Relapse Free survival (RFS)), GSE42568 
(OS and RFS), GSE22219 (DFS) and GSE37181 (DFS).

Correlation analysis

Spearman’s correlation coefficient was used to 
analyze two continuous variables. The correlation between 
categorical variable (tumor stage) and continuous variable 
(tumor size) was analyzed by Point-Biserial correlation 
coefficient.

Discriminatory accuracy analysis

To evaluate the discriminatory accuracy of statistical 
methods, we used three methods: log-rank test; UNO’s 
C-index in the time-dependent area under the curve 
(AUC) analysis; and AUC value in receiver operating 
characteristics (ROC) analysis at 5 years. Log-rank test, 
UNO’s C-index, and AUC value were obtained using R 
package ‘survival’ and ‘survAUC’. ROC curve analysis 
showed discriminatory power of variables including 
prognostic gene sets and clinical factors. We calculated 
AUC values in ROC analysis that ranged from 0.5 to 1.0 
using R package ‘survAUC’. The value of AUC means 
were as follows:

The UNO’s C-index provides a global assessment 
of a fitted survival model for the continuous event time 
rather than focusing on the prediction of t-year survival 
for a fixed time. We used R software version 3.3.0 for all 
analyses.
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