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Abstract

Diagnosis of autism spectrum disorder (ASD) currently relies on behavioral observations because brain markers
are unknown. Machine learning approaches can identify patterns in imaging data that predict diagnostic status,
but most studies using functional connectivity MRI (fcMRI) data achieved only modest accuracies of 60–80%.
We used conditional random forest (CRF), an ensemble learning technique protected against bias from feature
correlation (which exists in fcMRI matrices). We selected 252 low-motion resting-state functional MRI scans
from the Autism Brain Imaging Data Exchange, including 126 typically developing (TD) and 126 ASD partic-
ipants, matched for age, nonverbal IQ, and head motion. A matrix of functional connectivities between 220 func-
tionally defined regions of interest was used for diagnostic classification. In several runs, we achieved accuracies
of 92–99% for classifiers with >300 features (most informative connections). Features, including pericentral so-
matosensory and motor regions, were disproportionately informative. Findings differed partially from a previous
study in the same sample that used feature selection with random forest (which is biased by feature correlations).
External validation in a smaller in-house data set, however, achieved only 67–71% accuracy. The large number
of features in optimal models can be attributed to etiological heterogeneity under the clinical ASD umbrella.
Lower accuracy in external validation is expected due to differences in unknown composition of ASD variants
across samples. High accuracy in the main data set is unlikely due to noise overfitting, but rather indicates op-
timized characterization of a given cohort.

Keywords: autism spectrum disorder, resting-state fMRI, intrinsic functional connectivity, machine learning,
diagnostic prediction, conditional random forest

Introduction

Although autism spectrum disorders (ASD) are con-
sidered neurological, their diagnosis remains exclu-

sively based on behavioral criteria (American Psychiatric
Association, 2013). Despite thousands of neuroimaging stud-
ies of ASD, it is still not possible to pinpoint a brain finding
as a diagnostic indicator of ASD. Part of the problem may be
the great heterogeneity within the population, possibly
reflecting hundreds of different neurodevelopmental etiolo-
gies (Geschwind and State, 2015). It is therefore possible
that there may not be any uniquely sensitive and specific bio-
markers of ASD and that any markers approaching this goal
may be highly complex. However, given the relative speci-
ficity of diagnostic criteria primarily in the sociocommunica-
tive domain (American Psychiatric Association, 2013), it is

still probable that a well-defined set of brain features may
achieve good classification of brains with and without ASD.

Numerous studies have shown aberrant anatomical (Ismail
et al., 2016) and functional connectivity in ASD (Vissers
et al., 2012). One method of choice in connectivity research
is functional connectivity MRI (fcMRI) (Buckner et al.,
2013; Van Dijk et al., 2010). This technique has been used
for ASD diagnostic classification in several previous studies,
mostly achieving 60–80% accuracy (Abraham et al., 2017;
Anderson et al., 2011; Kassraian-Fard et al., 2016; Nielsen
et al., 2013; Uddin et al., 2013; Yahata et al., 2016). One re-
cent ASD diagnostic classification study using fcMRI
achieved an accuracy rate of 91% (Chen et al., 2015). This
study implemented random forest (RF)—a classification
and regression tree model based on an ensemble of binary
decision trees. Although the RF-based prediction model
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produced a high accuracy rate, there is concern that RF var-
iable importance measures may suffer from a variable selec-
tion bias toward correlated predictor variables (Strobl et al.,
2008). This is specifically an issue when using functional
connectivity matrices, as connectivities may be extensively
correlated. Hothorn and colleagues (2006) developed a con-
ditional random forest (CRF) method addressing the problem
of correlated predictor variables. The framework of CRF
relies on measuring the association between responses and
covariates via the conditional distribution of statistics. Theo-
retically, eliminating the variable selection bias should yield
more interpretable and reliable results.

We therefore applied CRF feature selection to data from
the Autism Brain Imaging Data Exchange (ABIDE) (Di Mar-
tino et al., 2014), which incorporates over 1100 resting-state
functional MRI (rs-fMRI) data sets from 17 sites. As in the
previous study by Chen and colleagues (2015), we only
used a subset of highest quality low-motion data. Our
study addressed four main questions: (1) Can CRF, due to
its reduced feature selection bias, improve accuracy of diag-
nostic prediction? (2) Does the reduced selection bias result
in a regional and network pattern of most informative fea-
tures that differs from those previously reported for RF?
(3) How well does CRF ‘‘out-of-bag’’ error correspond to
validation in a truly novel external data set? And (4) how
does extreme dimension reduction affect prediction accuracy
(i.e., is it possible to find relatively simple connectivity pat-
terns distinguishing ASD from TD participants)?

At the conceptual level, our study aimed to elucidate what
findings from machine learning studies may imply for the ul-
timate goal of identifying a uniquely sensitive and specific
ASD biomarker.

Materials and Methods

Data sets and participants

Data for building the model were selected from a high-
quality (low-motion) subsample from the ABIDE (Di Mar-
tino et al., 2014). They included groups of ASD and typically
developing (TD) participants, matched on head motion and
demographic variables (as described in section ‘‘Head
motion’’). Data sets showing artifacts, signal dropout, subop-
timal registration or standardization, or excessive motion
were excluded from the study. Sites acquiring fewer than
150 time points were further excluded. Based on these crite-
ria, a subset of 252 low-motion participants was selected.

Groups were matched on age and motion to yield a final sam-
ple of 126 TD and 126 ASD participants, ages 7–36 years.
The sample was identical to the one analyzed by Chen and
colleagues (2015).

The classifiers were further validated using a separate in-
house data set, with participants selected based on the same
quality control and group matching criteria used for the
ABIDE data set. Detailed information for both sample sets
is shown in Table 1 (Supplementary Table S1 for fully de-
tailed participant and site information; Supplementary Data
are available online at www.liebertpub.com/brain).

Data preprocessing

Data were preprocessed and analyzed using AFNI (Cox,
1996) (afni.nimh.nih.gov) and FSL 5.0 (Smith et al., 2004)
(www.fmrib.ox.ac.uk/fsl). The first 5 time points were dis-
carded to allow for T1 equilibration. The remaining time series
were motion, slice-time, and field-map corrected. Functional
data were aligned to anatomical images using FLIRT with six
degrees of freedom, resampled to 3.0 mm isotropic voxels
using sinc interpolation, and standardized to the MNI152
template, using the FSL nonlinear registration tool, all in a
single transformation step. Data were spatially blurred to a
full-width at half-maximum of 6 mm. As traditional filtering
approaches may cause rippling of motion confounds to neigh-
boring time points (Carp, 2013), we used a second-order
bandpass Butterworth filter (Power et al., 2013; Satterthwaite
et al., 2013) to isolate low-frequency BOLD fluctuations
(0.008 < f < 0.08 Hz) (Cordes et al., 2001). Average time
series from trimmed white matter and ventricular compart-
ments (from Freesurfer segmentation) as well as their deriv-
atives were regressed from the data. All nuisance regressors
(including motion regressors described below) were bandpass
filtered using the same procedures as for BOLD time series
(Hallquist et al., 2013). Data in the ABIDE and in-house
validation sets were preprocessed in the same way except for
regression of site, which was only applied to ABIDE data to
control variability in multisite data sets (Power et al., 2014).

Head motion

Head motion was quantified as the Euclidean distance be-
tween consecutive time points. Motion regressors, including
six rigid-body motion parameters and their derivatives, were
removed from the time series. Time points with excessive
head motion (root sum of squares ‡0.25 mm) were censored

Table 1. Participant Information for the Full Sample from ABIDE and Validation Data Set from SDSU

ASD M – SD (range) TD M – SD (range) p-value (2 sample t-test)

Full sample
N (female) 126 (18) 126 (31)
Age (years) 17.31 – 6.0 (8.2–35.7) 17.12 – 5.70 (6.5–34) 0.80
Motion (mm) 0.057 – 0.020 (0.018–0.108) 0.058 – 0.020 (0.020–0.125) 0.92
Nonverbal IQ 106.9 – 17.0 (37–149) 106.3 – 12.8 (67–155) 0.80

Validation sample
N (female) 42 (8) 30 (3)
Age (years) 13.30 – 2.6 (9.2–18.0) 13.28 – 2.9 (8.1–17.6) 0.98
Motion (mm) 0.074 – 0.03 (0.02–0.15) 0.075 – 0.05 (0.02–0.25) 0.92
Nonverbal IQ 105.1 – 17.6 (67–145) 105.1 – 9.9 (83–125) 1.00

ABIDE, Autism Brain Imaging Data Exchange; ASD, autism spectrum disorder; SDSU, San Diego State University.
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or ‘‘scrubbed’’ (Power et al., 2012), including one time point
immediately preceding and following motion. Any time
point that did not belong to a series of at least 10 consecutive
time points remaining after censoring was discarded. Partic-
ipants with fewer than 90% of time points or fewer than 150
total time points were excluded from the analysis. Runs were
then truncated at the point where 150 usable time points were
reached. Motion over the truncated run was summarized for
each participant as the average Euclidean distance between
time points (including censored segments) and was tightly
matched between groups ( p = 0.92).

Regions of interest and connectivity matrix

Our analysis implemented 220 of the 264 regions of interest
(ROIs; each 10 mm spheres) from the meta-analysis of func-
tional imaging studies by Power and colleagues (2011).
Forty-four ROIs were excluded due to missing signal in two
or more participants. For each participant, mean time courses
of each ROI were extracted and a 220 · 220 connectivity ma-
trix of Fisher-transformed Pearson correlation coefficients was
generated. A 252 · 24,090 group-level data matrix was then
generated with one row per participant and one column for
each interregional connectivity. For interpretation of results,
assignments of ROIs to functional networks were adopted
from Power and colleagues (2011).

Data discretization and dimension reduction algorithm

Data discretization was necessary to minimize computa-
tional time. Correlation values of each feature (reflecting
connections between ROIs) were sorted in descending
order and segregated into 42 equally sized bins. Each value
was then replaced by the median of its respective bin. This
process limited the amount of possible correlation values
and consequently reduced the number of possible splits to
be considered when building binary trees. Overall, data dis-
cretization decreased computation time with only a minor
loss in resolution.

We developed a CRF-based dimension reduction algorithm
to increase computational efficiency, to eliminate noisy fea-
tures, and to facilitate interpretation of results. The algorithm
randomly partitioned the set of features into equally sized sub-
sets and performed CRF, with 2001 trees on each subset. Each
feature was evaluated for its conditional permutation impor-
tance, which reflects the impact of each predictor variable on
the accuracy of the model (Strobl et al., 2008). A portion of
the features with the highest conditional permutation impor-
tance values was retained and the process was repeated. In
each run, initial dimension reductions produced many features
that were discarded due to their negative variable importance
measures. In subsequent dimension reductions, we retained be-
tween 50% and 80% of features, with higher retention rates in
later iterations to mitigate the loss of informative features.

Beginning with the original discretized data set, we con-
ducted this process three times to observe the effects of ran-
dom partitioning. To ensure that our results would be
reproducible, we used three unique seed numbers for the
pseudorandom number generator in R. In run 3, dimension
reduction was repeated until only 20 most informative fea-
tures remained. This specifically served to examine the accu-
racy of an extremely simple classifier and for comparison
with the recent study by Yahata and colleagues (2016).

Comparisons between CRF and RF

RF is an ensemble machine learning method often used for
classification and regression analyses. RF grows many deci-
sion trees at training time with the aim to increase prediction
accuracy via model averaging. The main principle behind the
ensemble approach is to average many weak learners to form
a strong classifier. In RF, training data are randomly drawn
with replacement to construct binary decision trees and ex-
cluded data—termed out-of-bag (OOB) sample—are used for
testing. As described by Breiman (2001), following Tibshirani
(1996) and Wolpert and Macready (1997), OOB estimates can
be used as an ingredient in the estimation of the generalization
error. The OOB error estimate therefore removes the need for a
set-aside test set (Breiman, 2001).

At each node, m variables are randomly selected for split-
ting, where m, for classification, is typically the square root
of the total number of all predictors. This value remains
fixed during the forest growing. After a forest is constructed,
classifications are determined by majority vote in terminal
nodes of each tree and then averaged over all trees in the for-
est. The percentage of votes for one class also represents the
predicted probability. Subsequently, the OOB samples are
run through the forest of binary decision trees and classifica-
tions are tallied. In the present study, we opted for 2001
trees to obtain reliable and unbiased OOB estimates. Mis-
classifications are averaged over all trees in the forest to as-
sess the accuracy of the model via an OOB error rate. In
addition, RF provides variable importance measures for fea-
ture selection. After training, features in the OOB sample
are permuted and OOB errors are recomputed. The permu-
tation importance is the average relative difference between
OOB prediction accuracy before and after the permutation.
Larger positive values of importance score signify greater
importance.

It has been shown that RF variable importance becomes
biased in the presence of highly correlated and continuous
variables (Strobl et al., 2008), a concern likely to apply to
fcMRI matrices. Consequently, it is important to distinguish
between variables with conditional or marginal influences.
A variable that appears marginally influential may be inde-
pendent of the response when its conditional probability on
another variable is considered. In other words, a variable that
has no effect on its own but is correlated with a relevant pre-
dictor variable can receive a high importance score (Strobl
et al., 2009). Two mechanisms are responsible for this bias:
(1) a preference for the selection of correlated predictors
in the tree building process and (2) the unconditional per-
mutation scheme used to compute variable importance mea-
sures (Strobl et al., 2008).

CRF resolves these issues by using a conditional permuta-
tion scheme to measure variable importance. This approach
more reliably reflects the impact of each predictor variable,
compared to variable importance measures in RF. Our study
used conditional variable importance to rank features after
each dimension reduction, and ultimately to rank the final
20 features. Finally, classification trees were constructed with-
out replacement to avoid the aforementioned bias and to pro-
mote accurate variable importance measures.

To examine the effects of reduced variable selection bias in
CRF, we compared our results to those of the RF ASD classi-
fier reported by Chen and colleagues (2015). Since we
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conducted three separate runs of our CRF dimension reduction
algorithm, it was necessary to consolidate results before draw-
ing comparisons. First, ROIs were categorized into functional
brain networks based on Power and colleagues (2011) to im-
prove the interpretability of the results. We then averaged the
percentages of ROIs belonging to each brain network from the
most accurate model in each run. This metric aimed to identify
the brain networks most important in classifying ASD for each
model, with percentages preferred to frequencies as the num-
ber of features varied across models.

The distribution of ROIs from Power and colleagues (2011)
in each network is not uniform, and networks may be selected
more frequently simply because they include more ROIs. We
therefore further normalized the network percentages de-
scribed above. We defined the normalized value as the percent-
age of selected ROIs belonging to a given network, divided
by the percentage of the total ROIs belonging to that net-
work. For example, if 10% of ROIs belonged to a given net-
work before dimension reduction, and 16% of the ROIs
afterward, the network would receive a normalized value
of 1.6. Values above 1 imply that the network was favored
by the dimension reduction process, while values below 1
imply that the network was disfavored.

Furthermore, we compared CRF to RF with regard to
network-to-network connections selected as most informa-
tive by the respective classifier. For each model, we gener-
ated a matrix of values corresponding to the percentage of
features connecting any two specific networks. The data for
the CRF matrix were taken from the most accurate model
(run 1, 400 features). Matrices were created for CRF and
RF (from Chen et al., 2015), as well as for the differences be-
tween CRF and RF.

In addition, we mapped ROIs to anatomical locations for
more anatomically specific comparisons between the mod-
els. For this comparison, we used the results from the CRF
model that produced the overall highest accuracy. The
most informative features for CRF were determined by con-
ditional permutation importance measurements, while infor-
mative features in RF were determined by mean decrease in
accuracy. A Circos connectogram (Krzywinski et al., 2009)
was used for visualization of similarities and differences of
most informative connections from each model.

There is tentative evidence suggesting that RF may be supe-
rior to CRF at the classification stage (Baayen, 2013), whereas
CRF is preferable for feature selection. We therefore addition-
ally performed classification with RF models, using the same
feature sets resulting from CRF dimension reduction. This was
done to compare classification accuracy between the methods
and investigate the efficacy of using CRF for dimension reduc-
tion and RF for classification.

External and cross-validation of the CRF model

External validation gauges the generalizability of a model,
testing whether features found most informative by CRF can
be predictive of diagnostic status in an entirely novel data set.
Breiman (1996) provides empirical evidence suggesting that
the OOB estimate may be as accurate as using a test set of the
same size as the training set, potentially eliminating the need
for a set aside test set (Breiman 2001). Although bootstrap-
ping in ensemble models is advantageous, it may not remove
the necessity for confirmatory testing in independent sam-

ples, as suggested in a recent RF study using fMRI data by
Ball and colleagues (2014).

Eleven different CRF models were trained using between
20 and 1254 features. The most accurate model using a spec-
ified number of features was selected for validation testing.
For example, when examining models with 400 features,
for which accuracy was 94% in run 1 and 92% in run 2,
the model from run 1 was selected for validation. In addition,
a model was trained with 100 features selected by RF dimen-
sion reduction (Chen et al., 2015). The external data set were
drawn from a smaller sample of in-house data (Table 1).

Finally, we randomly partitioned the ABIDE data set into
five separate bins, with four including 50 participants and
one 52 participants (each bin including equal numbers of
ASD and TD participants). We then created five data sets,
each using four bins for training and the remaining bin for
testing. We used the same dimension reduction algorithm
on each training set as previously used with CRF. For the fea-
ture set selected based on a training set, we then ran RF clas-
sification on the corresponding testing set.

Results

Diagnostic prediction accuracies

A series of CRF-based ASD classifiers was developed
using progressively smaller numbers of features in each iter-
ation of the dimension reduction algorithm. Depending on
the seed used to initialize the pseudorandom number gener-
ator, peak diagnostic accuracy rates based on OOB error
ranged from 91.7% to 95.6% for models with 308 to 627 fea-
tures (Fig. 1). In further dimension reductions, accuracy pla-
teaued around 90% and then decreased in models with fewer
than 150 features. For run 3, dimension reduction was con-
tinued down to 20 features to explore accuracy of simpler
models. Accuracy for this simple model was 77%.

Conditional variable importance measurements were
taken at each dimension reduction step and their distributions
are depicted in Supplementary Figure S1. The initial dimen-
sion reductions were skewed with the majority of features
showing low variable importance. As the number of features
was reduced, the distribution of variable importance shifted
toward higher values.

Informative networks

Based on frequency of ROI participation in features in-
cluded in models that reached peak accuracy, the most infor-
mative features for diagnostic prediction were from the default
mode, somatosensory-motor hand, visual, frontoparietal task
control, and salience networks, with approximately 60% of se-
lected features from these five brain networks (Supplementary
Fig. S2A, C, E). After normalization [taking into account the
variable number of ROIs per network among the total 24,090
connections adopted from Power et al. (2011)], a different pat-
tern emerged. Prominent among most informative features
were somatosensory-motor mouth and hand regions, as well
as ROIs from ventral attention, salience, and cingulo-
opercular task control networks (Supplementary Fig. S2B,
D, F). Default mode, salience, and visual networks remained
predominant in the simple model with only 20 features result-
ing from maximal dimension reduction in run 3 (Fig. 2).

As further shown in Supplementary Figures S2 and S3,
changing the seed number for the pseudorandom number
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generator in R had no major effect on the pattern of results.
The dimension reduction process was performed three times
with different seeds, but error rates and the proportion of
most informative networks selected remained largely consis-
tent between runs.

Comparisons between CRF and RF

Figure 3A shows how often a given network appeared
among the most informative connections of the CRF models

(averaged across all 3 runs), compared to RF. Before normal-
ization, default mode, somatosensory-motor hand, and visual
networks were predominant. After normalization (adjust-
ment for variable number of ROIs per network across the
entire 24,090 connections), the relative prominence of
somatosensory-motor mouth and hand regions was high-
lighted (Fig. 3B). Although CRF findings were overall sim-
ilar to RF findings, substantial differences (presumably due
to reduced bias favoring correlated features in CRF) were
also observed. The prominence of somatosensory-motor

FIG. 2. Twenty most informative
connections for predicting ASD
(from maximal dimension reduc-
tion in run 3) in (A) sagittal, (B)
coronal, and (C) axial views. The
size of each node reflects the mag-
nitude of conditional variable im-
portance. Neural networks in the
legend are sorted in descending
order by frequency of occurrence.
The majority of ROIs were selected
from the default mode, salience,
and visual networks. ASD, autism
spectrum disorder; ROI, regions of
interest. Color images available
online at www.liebertpub.com/
brain

FIG. 1. OOB error rates were recorded after each dimension reduction. DR below 100 features was only continued in run 3,
for exemplary purposes and comparison with Yahata and colleagues (2016). In all three runs, error rates decreased as the number
of features was reduced. This trend was reversed when the models incorporated fewer than 200 features, suggesting that impor-
tant diagnostic information is lost when models become oversimplified. The model that achieved the peak accuracy of 95.6%
used 400 features. OOB, out-of-bag; DR, dimensional reduction. Color images available online at www.liebertpub.com/brain
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ROIs was reduced in CRF compared to RF for the mouth re-
gion, whereas it was increased for the hand region and for the
ventral attention, frontoparietal task control, and cingulo-
opercular task control networks. Cerebellar ROIs were also
more prominent in CRF than in RF, but since the ROI scheme
from Power and colleagues (2011) includes only three cere-
bellar ROIs, this difference must be viewed with caution.

We further compared CRF to RF at the level of network con-
nections, again with respect to features remaining after the di-
mension reduction that resulted in peak accuracy. The heatmap
in Figure 4A shows slight predominance of connections within
the default mode network (DMN) and between DMN and fron-
toparietal task control, ventral attention, and visual networks.
When compared to RF (Fig. 4B), the overall distribution of
most informative features in CRF was relatively even across
the network connection matrix. In particular, the findings sug-
gest that the extremely informative value of connections be-
tween DMN and visual networks observed in RF may have
been inflated by bias due to feature correlation, as also evident
from Figure 4C, which shows the direct comparison between
CRF and RF. Connections between these two networks
comprised 13% of features in RF, but only 4.75% in CRF.
Conversely, the informative value of connections between
somatosensory-motor hand and visual networks detected
by CRF (3.0%) remained undetected by RF (0.0%).

Substantial differences between CRF and RF were also ob-
served when comparing findings at the level of unique ROI-to-
ROI connections (rather than networks). Features from the
most accurate model (run 1, 400 features) were sorted by
their conditional variable importance and the top 100 were
extracted for comparisons with RF. Among the top 100 fea-
tures, only 32 connections were shared between CRF and
RF. For comparison, the three CRF runs shared an average
of 48 unique features (45–51) out of 100 when compared pair-
wise. Among the top 20 features from CRF (shown in Fig. 2),
only 4 were shared with the top 20 from RF, again underscor-

ing the effect of selection bias due to correlated features. Addi-
tional comparisons between CRF and RF results for 100 and
20 most informative features, sorted by anatomical location,
are presented in Supplementary Figure S4.

We further tested whether RF may be preferable to CRF at
the classification stage (Baayen, 2013). RF classification was
indeed generally more accurate than CRF classification. RF
achieved an average accuracy of 97.0%, compared to
92.7% for CRF. RF peak accuracy was 98.8%, in a model
of 308 features (from CRF feature selection run 2).

External validation and cross-validation

For CRF, peak accuracy in the validation data set was
66.7%, achieved using a model of 200 features. Other diag-
nostic models that included 20–1254 features were also
tested with the validation data set. Consistently, the specific-
ity (TD accuracy rate) was much higher than sensitivity
(ASD accuracy rate). Peak accuracy for RF was 70.8%,
when using a model of 308 features. However, when all
RF models were compared with their CRF counterparts,
there was no consistent increase in classification accuracy.
The RF model comprised of the features reported by Chen
and colleagues (2015) yielded a classification accuracy of
just 55.6%, further supporting the merit of CRF for dimen-
sion reduction. Detailed results of validation tests are listed
in Supplementary Table S2.

Analyses splitting up the ABIDE data set into five bins
(with one reserved for cross-validation) resulted in a mean
accuracy of 65%, with peak accuracies per set ranging
from 62% to 71% (Supplementary Table S3).

Discussion

Using whole-brain resting-state fcMRI data from large
multisite cohorts and CRF, we were able to build classifiers
for diagnostic prediction (ASD vs. TD) with >90% accuracy,

FIG. 3. ROI participation in most informative features, separated by network (from Power et al., 2011). CRF values are the
average across all runs after dimension reduction resulted in peak accuracy (308, 400, and 627 features). RF values are taken
from Chen and colleagues (2015) in a model containing 100 features. (A) Percentage of ROIs from each network. (B) Nor-
malized percentages (adjusted for the variable numbers of ROIs per network among the total of 24,090 connections, before
dimension reduction). CRF, conditional random forest. Color images available online at www.liebertpub.com/brain
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peaking at 95.6% for one CRF classifier and at 98.8% for one
RF classifier. CRF feature selection thus resulted in very high
prediction accuracy compared to previous machine learning
studies of ASD using fcMRI data (Abraham et al., 2017;
Anderson et al., 2011; Kassraian-Fard et al., 2016; Nielsen
et al., 2013; Uddin et al., 2013). Accuracy was also higher
than in a previous study implementing RF feature selection
in the identical data set (Chen et al., 2015). This suggests
that reduced bias favoring correlated features (known to
exist in fcMRI matrices) afforded by CRF feature selection
improved results.

Many functional networks are informative,
but somatosensory regions are prominent

Based on classifiers achieving peak accuracy in each of the
three CRF runs, the percentage of informative features, includ-
ing regions from default mode, somatosensory-motor hand,
visual, frontoparietal task control, and salience networks, pre-
dominated. After normalization [adjusting for the highly var-
iable numbers of ROIs included in different networks adopted
from Power et al. (2011)], the somatosensory-motor mouth
and ventral attention networks were particularly prominent.
These patterns suggest that ASD, while diagnosed primarily
with respect to sociocommunicative symptomatology, is char-
acterized by neurofunctional features in many additional do-
mains. Nonetheless, our findings are not unexpected, given
evidence of atypical intrinsic functional connectivity of de-
fault mode (Doyle-Thomas et al., 2015; Jung et al., 2014), vi-
sual (Keown et al., 2013), and salience networks (Abbott et al.,
2016; Odriozola et al., 2016), with additional findings of atyp-
ical activation from fMRI studies for frontoparietal task con-
trol ( Just et al., 2007) and attention networks (Fitzgerald
et al., 2015; Keehn et al., 2016).

The prominence of somatosensory-motor networks (both
hand and mouth regions) was less expected from the available
fcMRI literature on ASD. While for the hand region, connec-
tions involving pre- and postcentral gyri were informative at
equal levels, this ratio was heavily tilted in favor of postcentral
somatosensory cortex for the mouth region (with 89–96% of
ROI participations among most informative features from
this network, across the three CRF feature selection runs).
There is indeed ample evidence of early-onset sensory anom-
alies in ASD (reviewed in Marco et al., 2011), which are so
frequently observed as to warrant inclusion among most re-
cent diagnostic criteria (American Psychiatric Association,
2013). These anomalies can also be observed in the somato-
sensory modality (Cascio et al., 2008; Puts et al., 2014;
Riquelme et al., 2016). Recent magnetic resonance spectros-
copy findings suggest that somatosensory impairments may
be related to reduced bulk c-aminobutyric acid (GABA) in
the somatosensory cortex (Puts et al., 2017). A few fMRI
(Cascio et al., 2012), magnetoencephalography (Khan et al.,
2015), and diffusion tensor imaging (DTI) studies (Thompson
et al., 2017) have also implicated somatosensory regions in
ASD. Direct comparison of findings from the present study
with those from Chen and colleagues (2015) in the same
high-quality ABIDE subcohort suggests, however, that selec-
tion bias favoring correlated features may have inflated the in-
formative role of the somatosensory hand region, whereas our
three runs of CRF feature selection confirmed the relative im-
portance of the somatosensory mouth region.

FIG. 4. Heatmaps showing the proportion of brain network
connections in (A) CRF model with 400 features and (B) RF
model with 100 features. (C) Heatmap showing the difference
between CRF and RF. Red values are positive and correspond
to a connection favored by CRF. Blue values are negative and
correspond to connections favored by RF. The largest differ-
ence in proportions (4.75% in CRF and 13% in RF, for a dif-
ference of �8.25%) between the two models occurred in
default mode network to visual network connections. The
CRF model favored visual to somatosensory-motor hand
and default mode to ventral attention connections more than
the RF model. TC, task control. Color images available online
at www.liebertpub.com/brain
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Best-performing classifiers include numerous features

In each CRF run, peak prediction accuracy was reached
for models with over 300 features, with patterns optimally
distinguishing ASD from TD cohorts, including connectivi-
ties across all forebrain lobes, subcortical structures, and cer-
ebellum. This is in line with theoretical perspectives that
view ASD as a disorder affecting multiple distributed brain
networks (Menon, 2011; Müller, 2007; Wass, 2011). Given
the breadth of empirical findings in the ASD neuroimaging
literature, implicating large numbers of functional networks
and brain loci (for reviews see Ismail et al., 2016; Philip
et al., 2012; Vissers et al., 2012), it is expected that best-
performing classifiers will be highly distributed, including
features from as many networks and regions.

Our finding may appear to be inconsistent with some re-
ports of relatively simple classifiers (with features from
only a few networks and regions). Uddin and colleagues
(2013) compared diagnostic prediction accuracy across mul-
tiple networks derived from independent component analysis
and found that features from salience network alone achieved
accuracy of 78–83%, with slightly lower accuracies >70%
for primary visual and dorsal attention networks alone.
Note that the sample sizes in this study were small (N = 70
for training and validation sets combined) and that the net-
work scheme differed from the one used in the current
study (Power et al., 2011).

More directly comparable to our investigation is a recent
ASD study by Yahata and colleagues (2016) who reported
85% diagnostic prediction accuracy for a classifier of
only 16 features. This classifier was dominated by features
from the cingulo-opercular network, whereas our model of
comparable simplicity (dimension reduction to 20 features)
included mostly regions from default mode, salience, and
visual networks (Fig. 2). This seeming discrepancy is easily
explained. First, the classifier in Yahata and colleagues
(2016) was trained exclusively on data from adults, whereas
our samples were dominated by children and adolescents.
Second, it is quite possible that the classifier (which used
a different ROI scheme and was therefore not directly appli-
cable to our analyses) would have reached accuracy levels
similar to the relatively modest 75% reported by Yahata
et al., if applied to an adult subsample from our selected
high-quality ABIDE data set. Yahata and colleagues
(2016) describe their classifier as ‘‘reliable’’ because it per-
formed significantly above the chance level, but this crite-
rion appears to set the bar for diagnostic classification
rather low.

The reported accuracy of 85% in Yahata and colleagues
(2016) was derived from leave-one out cross-validation
(LOOCV) in the main sample (including 74 adults with
ASD and 107 TD peers) and decreased to 75% when the clas-
sifier was applied to an external validation data set (N = 88
selected from ABIDE). The accuracy reached for the sample
drawn from ABIDE was slightly higher than the 67–71% ac-
curacy for the external validation set in the present study.
Note that a high-quality (low-motion) external validation
set was not available for the same age group in our study,
which may account for relatively modest performance of
the classifier (trained on a cohort aged 7–36 years, but vali-
dated against a cohort aged 8–18 years). Other implications
will be discussed in the following sections.

The bogeymen of machine learning: Why are we
obsessed with overfitting and external validation?

Our analyses and the discussion above relied to some ex-
tent on traditional doctrines of machine learning: to avoid
overfitting to a training data set and to develop a classifier
that will optimally perform in an external validation set.
However, as sound as these principles may be from the meth-
odological perspective, they ignore crucial challenges when
viewed under the neurobiological lens. This also applies to
the ‘‘peeking problem’’ (Kassraian-Fard et al., 2016), which
occurs when feature selection is performed on an entire data
set (including data used for validation).

The goal of optimal external validation requires that train-
ing and validation sets be matched. This may sound like a
simple step, but it is actually an almost impossible one.
Matching on easily available variables (e.g., age, sex, non-
verbal IQ, diagnostic scores) will not suffice because it is
likely that many other factors that are hard or impossible
to match quantitatively (e.g., history of environmental inter-
actions, interventions) will significantly affect the brain,
either via neurotypical plasticity or disorder-specific mecha-
nisms (Kolb and Gibb, 2014). Even if this hurdle could be
taken with extensive effort, an even more intractable one
will remain. A decade after the call ‘‘to give up on a single
explanation for autism’’ (Happé et al., 2006), the field
today agrees on the probable multitude of etiological variants
(Betancur, 2011; Geschwind and State, 2015). However, the
variants of idiopathic ASD are not known, and the growing
evidence of many hundreds of somehow implicated genes
and probably numerous additional epigenetic and environ-
mental risk factors (Grayson and Guidotti, 2016; Hallmayer
et al., 2011) suggests that they may not be well understood
for years to come. This implies that on principle, training
and validation data sets cannot be matched on one fundamen-
tally important variable (etiological variant of ASD). It is
therefore unrealistic to expect classifiers to perform opti-
mally, especially in small validation data sets (where chance
variations in subtype composition will have large effects on
the accuracy of the classifier).

The relatively modest performance of our CRF and RF
models in an external validation set of in-house data is thus
not surprising. It contrasts with the very high accuracies up
to 98.8% reached in the training data set. Our CRF approach
avoided overfitting by numerous random divisions of the large
data set into training and ‘‘out-of-bag’’ sets (each including
about one-third of the data). However, the ubiquitous question
about overfitting to a data set at hand misses a fundamental
question related to the neurobiology of ASD.

There can be no perfect classifier
for an imperfect construct

As already noted, there is consensus that the clinical construct
of ‘‘autism spectrum disorder’’ probably applies to many etiolo-
gies. While these by definition [as per the diagnostic criteria of
the DSM (American Psychiatric Association, 2013)] partially
converge onto a common set of behavioral symptoms (mostly
in the sociocommunicative domain), it is very likely that they dif-
fer heavily with respect to the underlying neurodevelopmental
disturbances. To expect that children or adults who share a few
diagnostic features would also share a specific set of anomalous
connectivities is therefore unrealistic.
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The very high accuracy reached with our CRF and RF
classifiers needs to be considered on this background.
What do the 308 features that resulted in an almost perfect
OOB accuracy of 98.8% mean? Quite certainly, they do not
imply that autistic symptomatology directly relates to each
of these 308 functional connectivities, nor that every person
with ASD will show some anomaly in each of these fea-
tures. This was shown by the much lower accuracy in our
external validation set. However, even within the large
ABIDE sample, such uniform patterns of atypical connec-
tivity cannot be expected, given etiological heterogeneity.
Instead, the classifier can be interpreted as a set of features
that in combination capture a large number of ASD vari-
ants, with each feature being affected in a subset of individ-
uals, but possibly uninformative in others. The large
number of informative features in the cohort classifier
therefore does not necessarily imply equal complexity at
the single-subject level, meaning that the set of distinctly
anomalous functional connectivities in any given ASD par-
ticipant may be much smaller.

Viewed from this perspective, it is possible that functional
connectivity matrices carry some information about etiologi-
cal variants of ASD. Although beyond the scope of the current
study, unsupervised machine learning or other data-driven
approaches may help identify variants of the disorder
characterized by functional connectivity or other brain fea-
tures that can be replicated across cohorts. However, a cat-
alog of such variants may require much richer data
(including genome, environmental risk factors, behavioral
data, and multimodal brain imaging, ideally with history
through longitudinal sampling), which are currently not
available in large samples. Each of these variants may
in turn lend itself to mechanistic etiological models and
precision medicine, which are the ultimate goals of ASD
research.

Limitations

Data included in our study were almost exclusively from
high-functioning participants because fMRI data with mini-
mal motion can rarely be acquired in lower functioning peo-
ple with ASD. Findings may thus not generalize to the entire
functional spectrum of ASD. We also did not include data
from other developmental disorders and were therefore not
able to directly test the specificity of atypical connectivities
identified by CRF.

Conclusions

Combining CRF feature selection and RF classification,
we achieved almost perfect diagnostic prediction accuracy
in a large sample of children and young adults with ASD
for models with >300 features. These models can be con-
sidered relatively accurate characterizations of the cohorts
at hand, revealing patterns that may remain undetected in
conventional statistics. However, they do not readily gen-
eralize to the population at large and to external validation
sets (for which more modest accuracies were reached) be-
cause training and validation sets cannot be matched on
crucial etiological variables. Furthermore, the large num-
ber of features in highest performing models probably re-
flects the multitude of etiological variants subsumed
under the clinical label of ASD.
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