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Abstract

Powered lower limb prostheses can assist users in a variety of ambulation modes by providing 

knee and/or ankle joint power. This study's goal was to develop a flexible control system to allow 

users to perform a variety of tasks in a natural, accurate, and reliable way. Six transfemoral 

amputees used a powered knee-ankle prosthesis to ascend/descend a ramp, climb a 3- and 4-step 

staircase, perform walking and standing transitions to and from the staircase, and ambulate at 

various speeds. A mode-specific classification architecture was developed to allow seamless 

transitions at four discrete gait events. Prosthesis mode transitions (i.e., the prosthesis' mechanical 

response) were delayed by 90 ms. Overall, users were not affected by this small delay. Offline 
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classification results demonstrate significantly reduced error rates with the delayed system 

compared to the non-delayed system (p<0.001). The average error rate for all heel contact 

decisions was 1.65% [0.99%] for the non-delayed system and 0.43% [0.23%] for the delayed 

system. The average error rate for all toe off decisions was 0.47% [0.16%] for the non-delayed 

system and 0.13% [0.05%] for the delayed system. The results are encouraging and provide 

another step towards a clinically viable intent recognition system for a powered knee-ankle 

prosthesis.

Index Terms

Above-knee amputation; Intent recognition; Robotic leg control; Signal processing

I. Introduction

A new generation of lower limb prosthetic devices has emerged to restore function and 

mobility to individuals with a major lower limb amputation. Powered prosthetic knees and 

ankles can provide amputees with near physiological joint power at the knee and/or ankle 

[1-4] and assist them in performing a variety of ambulation modes. Novel control strategies 

have been developed to assist amputee users during steady-state level-ground walking, 

inclined-surface walking, stair climbing, and standing up from a seated position. Control of 

these powered devices within an ambulation mode is often achieved through finite state 

machines; mechanical sensors embedded into the prosthesis can be used to identify different 

portions of the gait cycle (e.g., swing or stance phase) and modify the device's response 

(e.g., provide resistance, generate power, etc.) [1, 2, 5-10].

A challenge exists as to how to best transition these devices from one mode to another. 

Ideally, users should be able to transition between ambulation modes in a natural, seamless, 

and reliable way. The most basic, albeit cumbersome, ways include pressing a button on a 

key fob or performing an exaggerated motion with the residual limb [3, 11]. Recently, 

pattern recognition algorithms have been used for ambulation mode classification in lower 

limb prostheses; these systems predict an upcoming mode transition and transition the 

prosthesis appropriately. Studies have reported results using a range of mechanical sensors 

(e.g., goniometers, load cells, inertial measurement units) [12-14], electrophysiological 

sensors (e.g., electromyography) [1, 15, 16], environment sensors (e.g., vision) [17, 18], 

classification methods (e.g., support vector machine, linear discriminant analysis, dynamic 

Bayesian network) [16, 19-21], and classifier training mechanisms [14, 22, 23] for lower 

limb pattern recognition systems. Data classification has been performed at discrete points 

during each gait cycle (e.g., at heel contact or toe off) [15, 21] or continuously throughout 

the gait cycle [16, 22]. While these system results are promising, error rates with 

transfemoral amputee users remain relatively high when predicting mode transition steps 

compared to steady-state steps.

Investigations into ambulation mode transition steps highlight a critical timing window [16, 

24] in which the prosthesis can safely switch from one ambulation mode to another. The 

more recent study [24] identified four to five gait phases (e.g., terminal double support, 
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swing flexion, swing extension prior to the surface transition or initial double support after 

the surface transition) where a powered prosthesis could transition between level-ground 

walking and inclined-surface walking and not disrupt the user's balance. This new research 

suggests that delaying the ambulation mode transition by a small window of time may not 

affect user performance. Another study, which tested the effects of ambulation mode 

prediction system errors (i.e., misclassifications) on real-time performance of amputee users, 

demonstrated that depending on the ambulation mode and gait phase of the error, 

transfemoral amputee users either did not notice some errors or noticed them but still felt 

stable [25]. However, errors during other mode transitions, such as the transitions between 

level-ground walking and stair climbing, may result in more noticeable or substantial errors 

[19, 21]; the critical timing window for these transitions is not yet defined. These findings 

are important because delaying the timing of ambulation mode transitions by a small 

window may improve ambulation mode prediction accuracy without noticeably affecting the 

user's performance.

To further improve lower limb powered prosthesis control systems, studies need to account 

for wider variability within the collected data set. Many of the previously described systems 

required amputee users to be fairly deliberate in their ambulation during data collection. 

Multiple trials were recorded of users performing the same ambulation task in a similar way 

each time [14]. While these exemplars help to create a more accurate system representing 

the data collected, it may not translate to a more reliable system when the amputee user 

leaves the laboratory. System architectures need to be updated to account for user 

preferences in speed, various approaches to obstacles, and variability in the environment.

The goal of this study was to create a flexible and more accurate lower limb intent 

recognition system for powered knee-ankle prostheses. We refined our existing system [21] 

by incorporating a standing mode, a mode-specific classifier system [23], and additional 

prosthesis transitions that allowed users to ascend and descend even- and odd-numbered 

staircases from standing or walking at various approach angles. We investigated the effect 

that a 90 ms delay in ambulation mode transitions had on the accuracy of each mode-specific 

classifier which allowed transfemoral amputee users to transition between six modes 

(standing, level-ground walking, ramp ascent, ramp descent, stair ascent, and stair descent) 

at various discrete time points during the gait cycle. We hypothesized that the delayed 

system would result in fewer errors than a non-delayed system.

II. Methods

Powered Knee-Ankle Prosthesis Control

A third generation powered knee-ankle prosthesis designed by Vanderbilt University [2, 26] 

was used in this study. Joint torques, τi, were modulated according to an impedance-based 

model:

(1)
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where i corresponded to the knee or ankle joint, θ was the joint angle, and θ̇ was the joint 

angular velocity. Impedance parameters, stiffness, k, equilibrium angle, θe, and damping 

coefficient, b, were modified according to a finite state machine. Relative joint angles and 

velocities were measured from a subset of the sensors embedded within the prosthesis. A 

complete list of sensors is available in Section II.C.

The finite state machine, refined from previous versions [2, 6-8, 21], included a standing 

mode and five ambulation modes (i.e., level-ground walking, ramp ascent, ramp descent, 

stair ascent, and stair descent). Knee and ankle impedance parameters were modulated 

within each state according to previously defined control strategies [5, 8], and sensor data, 

evaluated in 30 ms increment windows, transitioned the prosthesis between states within a 

mode. The enhanced state machine architecture allowed the prosthesis to transition between 

modes at discrete time points during the gait cycle including heel contact, mid-stance, toe 

off, and mid-swing. Most between-mode transitions were initially governed by key fob input 

from the experimenter; however, some between-mode transitions were executed based on 

mechanical sensor data and/or timers, including transitions from:

• standing to level-ground walking based on axial shank force, prosthesis ankle 

angle, and shank inclination angle (Fig. 1);

• level-ground walking to standing based on a timer or to standing swing phase 

based on axial shank force (Fig. 1); and

• stair ascent to standing based on axial shank force and prosthesis knee velocity.

With this system, users had the ability to freely ambulate about a laboratory environment 

consisting of a level-ground walking surface, a 10 degree inclined surface, a 4-step staircase, 

and a 3-step staircase. When ascending and descending the 4-step staircase, only heel 

contact and toe off transitions were necessary to provide a seamless transition to and from 

level-ground walking. When ascending and descending the 3-step staircase, additional mode 

transitions (i.e., mid-swing and mid-stance, respectively) were necessary for the transitions 

from stair ascent or stair descent to level-ground walking. Users were also able to ascend or 

descend both staircases using a standing or a walking approach; previous systems had only 

allowed for a walking approach [14, 20].

B. Experimental Protocol

Six individuals with a unilateral transfemoral or knee disarticulation amputation gave written 

informed consent to participate in this study (Table I). All users were capable of community 

ambulation with Medicare functional classification levels K3 or K4. Users were fitted to the 

powered knee-ankle prosthesis by a certified prosthetist and had previous experience 

(minimum of 5 hours) ambulating on the device (Fig. 2).

Users were allowed to practice using the powered prosthesis for all ambulation modes prior 

to data collection. A physical therapist was present to assist them and ensure safety. Once 

users were comfortable and the device was properly configured for each mode [8], they 

performed a series of in-laboratory ambulation tasks while an experimenter manually 

triggered the powered prosthesis into the correct mode. In order to investigate both a delayed 

mode transition system and a non-delayed mode transition system, steady-state and 
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between-mode transitions were delayed by 90 ms during data collection. Pilot tests revealed 

that users' performance and stability was not affected by delaying these transitions by 90 ms 

[27]. The tasks included:

• a circuit of level-ground walking approaches to and from ramp ascent and 

descent on a 10 degree inclined surface and stair ascent and descent on either a 

4-step staircase (10 trials) or a 3-step staircase (10 trials);

• climbing stairs in a stairwell (4 flights);

• climbing up two steps, standing, climbing up two steps, standing, turning around, 

descending the steps in the same manner (20 trials);

• walking at various speeds, straight-line walking, and walking in circles (10 trials 

total); and

• standing including shuffle steps, turning, and quiet standing (5 trials).

Users led with their sound side for all stair ascent approaches, with their prosthesis side for 

all stair descent approaches, and with either side for ramp ascent and ramp descent 

approaches. To increase variability for all circuit trials, users approached the ramp and 

staircase from various angles (i.e., straight, 45 degrees, or 90 degrees). This protocol allowed 

for the collection of both the steady-state ambulation tasks and seamless mode transitions 

required to train a lower limb intent recognition system [14].

C. Pattern Recognition System Configuration and Evaluation

Data from 18 mechanical sensors embedded on the prosthesis were recorded at 500 Hz 

including: knee and ankle joint angles and velocities, motor currents, prosthesis acceleration 

and rotational velocity, calculated thigh and shank inclination angles, and 6-Degree Of 

Freedom (DOF) forces and moments. The mode and state of the powered prosthesis were 

also recorded to serve as labels for the data.

A mode-specific classifier system was trained to predict transitions between ambulation 

modes (Table II, Fig. 1, and Fig. 3) [23]. Level-ground walking and ramp ascent data were 

treated as one class. This data grouping was chosen because these two modes had similar 

impedance parameter settings [8], and previous systems have shown that ramp ascent mode 

can be incorporated into the walking class mode [6, 28]. The Toe Off (TO) classifier was not 

mode-specific (i.e., the same classifier was used at toe off during level-ground walking, 

ramp descent, and stair descent) because there were no trained mode transition examples at 

toe off from stair/ramp descent back to level-ground walking. Since the data were collected 

with a 90 ms delay for all ambulation mode transitions, simple post- processing was 

necessary to evaluate a non-delayed system using the same data set. For the non-delayed 

system, data were segmented into 300 ms windows immediately preceding gait events (e.g., 

from 300 ms before heel contact to heel contact). For the delayed system, data were 

segmented into 300 ms windows starting 210 ms before gait events (e.g., from 210 ms 

before heel contact to 90 ms after heel contact). A feature set including mean, standard 

deviation, maximum and minimum values and initial and final values was extracted from the 

data in each analysis window [22]. The dimensionality of this feature set was reduced from 

120 features to 50 features using Principal Component Analysis [29]. Dynamic Bayesian 
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Network (DBN) classifiers, which take into account the time history of signals over the 

entire stride, were trained [20] and evaluated according to their definitions in Table II using 

leave-one-out cross validation. Figure 3 shows an overview of the system architecture 

including trained mode transitions. Mode transitions which were highly unlikely to be 

encountered in real-time use (e.g., mode transition between ramp descent and stair ascent) 

were not allowed.

Classifier performance in both the non-delayed and delayed system was evaluated using 

offline classification error. Classification error rates for each of the eight classifiers were 

calculated and averaged for each of the four main gait events (heel contact, mid-stance, toe 

off, mid-swing). Average error rates were then separated into steady state error—the 

percentage of steps that were misclassified when the user was not changing ambulation 

modes, and transition error—the percentage of steps that were misclassified when the user 

was transitioning between two ambulation modes. We performed a two-factor ANOVA to 

test for significant differences in error rates at each gait event. For each test, classification 

error rate was the independent measurement, subject was a random factor, and the delay 

condition (non-delayed, delayed) and type of error (steady-state, or transition) were fixed 

factors. An interaction term between delay condition and type of error was also included in 

the model.

System performance was evaluated by grouping the effect of each classification error. Since 

this study involved offline testing only, errors were grouped based on the effect they would 

have on user performance during an online test [25]. Errors that would have been noticeable 

but likely not impede ambulation (e.g., misclassifications at heel contact to ramp or stair 

descent during level-ground walking) were categorized as moderate perturbations and errors 

that would have greatly affected users' stability and would have required the experimenter to 

manually correct the error (e.g., misclassification at toe off to stair ascent during level-

ground walking or misclassification at mid-stance to level-ground walking during stair 

descent) were categorized as substantial perturbations.

III. Results

All users were successful performing the instructed activities including climbing even- and 

odd-numbered step staircases, climbing stairs from a standing or walking approach, and 

approaching the ramp and staircase at various angles and walking speeds. Users did not 

notice the 90 ms mode transition delay at heel contact while transitioning between standing, 

level ground walking, ramp descent, and stair descent. There was a small noticeable delay 

for transitions that occurred at toe off (e.g., Stand to Stair Ascent), but this did not impede 

use of the powered prosthesis. Average stride time (i.e., heel contact to heel contact of the 

prosthesis) across all users and all modes was 1.97s [0.17s]. Therefore the 90 ms mode 

transition delay represented approximately 4.6% of the stride time. Figure 4 provides an 

example of the different data windows for a non-delayed vs. delayed system for a select 

number of mechanical sensors. There was additional class separation of mechanical sensor 

trajectories during the 90 ms delay window.
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For the Non-Delayed System, the complete system average error rate was 0.98% (Table III). 

The majority of error rates for the individual classifiers were below 2% except for the heel 

contact classifiers, of which the HC_RD classifier had an overall error rate of 6.8%. For the 

Delayed System, the complete system average error rate was 0.30%. All overall error rates 

for the individual classifiers were below 2%, The HC_RD classifier error rate was reduced to 

0.86% in the Delayed System. The level-ground walking and ramp descent heel contact 

classifiers (HC_LW and HC_RD) showed the largest decreases in classification error for the 

delayed system compared to the non-delayed system, particularly due to the decrease in 

transitional errors.

Comparing across gait events, delaying classification decisions by 90 ms significantly 

reduced the mode-specific classification errors compared to the non-delayed system for 

decisions made at heel contact and toe off (p<0.001) (Table III). Transitional error rates were 

statistically higher than steady state error rates (p<0.001) (Figure 5). There was an 

interaction effect (p<0.01) indicating that there is a particular improvement for transitional 

error with the delayed system. No significant differences were found at mid-stance or mid-

swing. The average error rate for all heel contact decisions (i.e., average of the HC_LW, 

HC_SD, HC_RD, and HC_ST classifiers) was 1.65% [0.99%] for the non-delayed system 

and 0.43% [0.23%] for the delayed system. The average error rate for all toe off decisions 

(i.e., the average of the TO and TO_ST classifiers) was 0.47% [0.16%] for the non-delayed 

system and 0.13% [0.05%] for the delayed system.

In terms of potential impact on the user, evaluating the system as a whole (i.e., the combined 

effect of all eight classifiers in combination with allowable mode transitions in the state 

machine) indicated that the majority of errors would have been of moderate consequence 

(i.e., users would notice them but did not considerably affect their balance) for both systems) 

(Table IV). The delayed system reduced errors that would have caused moderate or 

substantial perturbations compared to the non-delayed system.

IV. Discussion

Users were able to successfully transition between all ambulation modes with ease and 

perform a wider variety of ambulation tasks than previously collected [14, 21] due to the 

enhanced state machine. With the addition of standing mode, all users could shift their 

weight with ease and remain confident that the knee will be stable and not buckle. Users 

transitioned between standing and walking mode when they desired on mechanical sensor 

data alone. This transition was not included as a separate class to the pattern recognition 

system because mechanical sensor thresholds and timers were sufficient to provide this 

seamless transition. With the addition of the standing mode heel contact and toe off 

classifiers, users could transition to stair ascent and stair descent from standing mode 

(something not available in our previous systems [20, 21]). Users could, if necessary, come 

to a stop before ascending/descending stairs or stop on a stair and then continue. Users 

commented on how they did not feel forced to approach the staircase in a certain way. They 

liked the flexibility to approach the staircase with a fast or slow speed, take long or short 

steps, and did not have to pace out their steps before reaching the first stair. The addition of 

the stair descent mid-stance and stair ascent mid-swing classifiers allowed users to 
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successfully transition (ascending or descending) from an odd-numbered staircase to level-

ground walking. Finally, with this flexible system, users were able to vary their speed and 

approach angles while still maintaining seamless transitions throughout the trials in the 

laboratory, hallway, and stairwell.

Even with increased variability, this data set with a non-delayed system resulted in improved 

accuracy rates compared to previous systems. Previous literature reports average error rates 

across five ambulation modes (level-ground walking, ramp ascent, ramp descent, stair 

ascent, stair descent), at 4.2% when using a DBN classifier with mechanical sensor data 

[21], 2% for steady-state and 20% for mode transitions in another similar study [20], and 

2.1% for steady-state and 8.0% for mode transitions when a mode-specific classifier was 

incorporated [23]. This study's improved overall error rate for the non-delayed system of 

0.99% (0.8% for steady-state and 2.7% for mode transitions) across five modes (standing, 

level-ground walking/ramp ascent, ramp descent, stair ascent, stair descent) was likely due 

to a few factors. This study included additional mechanical sensor data, specifically the 6-

DOF load cell mounted between the knee and ankle and calculated thigh and shank 

inclination angles. The addition of these signals has been shown to significantly reduce error 

rates [13]. Also, in the previous systems there were a large number of misclassifications 

between the level-ground and incline walking classes. In this study they were treated as one 

class [28]. The mode-specific classification structure [23] has been shown to reduce errors 

over these previous systems. Another possibility for a reduction in error rate for our non-

delayed system is the inclusion of feature reduction. Even with these improvements, 

transitional errors at heel contact for the non-delayed system remained high at an average 

over 5% (Figure 5).

Delaying classifier decisions by 90 ms following a gait event provided a significant 

reduction in errors over the non-delayed system's results. Overall classification error rates 

were reduced from 2.7% to 0.5% for transitions and 0.99% to 0.30% for steady state. To our 

knowledge, this is the first lower limb intent recognition system to reduce transitional errors 

for a powered knee-ankle prosthesis to under 1% for five modes. The reduction in error rates 

for the delayed system is likely due to further discriminating sensor data that appears 

immediately following a gait event (i.e., heel contact or toe off). Figure 4 demonstrates this 

qualitatively, as some of the mechanical sensor trajectories change following a gait event. 

Users and the prosthesis respond differently at heel contact during steady state walking, 

during the level ground walking transition to ramp descent, and during the level ground 

walking transition to stair descent. This small, 90 ms window of new data assisted in further 

separating the ambulation modes. While it is possible that delaying these decisions by more 

than 90 ms may further reduce error rates, much longer delays likely will have a negative 

impact on performance. Increased delays may be perceived by users as a functional delay 

(the 90 ms delay for toe off transitions was noticeable but did not impede users) or be past 

the critical timing in which the user's walking balance may be affected [24].

The delayed system reduced the amount of moderate and substantial system error rate (i.e., 

the errors that would have affected user performance if tested during real-time). The 

combination of the transitions allowed in the state machine and the mode-specific classifier 

architecture only allowed the relevant transitions out of the current locomotion. Therefore, 

Simon et al. Page 8

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2017 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



misclassifications from ramp descent to any other mode except for level-ground walking 

(e.g., stair descent, stair ascent) were not possible in this system. Moderate errors, or errors 

that would be noticeable but not impede ambulation such as misclassifications between 

level-ground walking and ramp/stair descent (heel contact classifiers) and missed mode 

transitions from level-ground walking to stair ascent (toe off classifier) were reduced by a 

factor of 3. Substantial errors, or errors that had the potential to significantly affect users' 

stability such as misclassifications to stair ascent during steady-state level-ground walking 

(toe off classifier) and to level-ground walking during steady-state stair descent (mid-stance 

classifier) or steady-state stair ascent (mid-swing classifier), were also reduced by a factor of 

3 with the delayed system compared to the non-delayed system. With the new addition of 

the mid-stance and mid-swing classifiers, these system errors likely affect users' stability in 

different ways than previously reported [19, 21, 25].

Although this study reports encouraging results for lower limb intent recognition of a 

powered knee-ankle prosthesis, there are limitations. The system still needs to be tested in 

real-time. We expect similar improvements for an online system since lower limb intent 

recognition systems have been shown to have carry over from offline to online performance 

[21]. Real-time results will allow us to evaluate how errors propagate through a delayed 

mode transition system. Previous work with a non-delayed mode transition system reported 

that when a step was misclassified, the subsequent steps were more likely to be incorrectly 

classified [21]. Future work may also include incorporating neural information from 

electromyography (EMG) data [15, 16, 19, 21]. In this study, error rates likely were already 

reduced due to the addition of mechanical sensors (6-DOF load cell, shank and thigh 

inclination angles) and a mode transition delay. EMG data may have the potential to further 

reduce these error rates, although to what extent is still unknown.

V. Conclusion

This study developed a flexible and more accurate lower limb intent recognition system by 

incorporating a mode-specific classifier with delayed mode transitions. Individuals with a 

transfemoral amputation successfully used a powered knee-ankle prosthesis to seamlessly 

transition between standing, level-ground walking, ascending/descending a ramp, and 

ascending/descending even- and odd-numbered staircases using a variety of approaches and 

speeds. The results demonstrate that delaying ambulation mode decisions (and thus delaying 

the prosthesis' mechanical response while transitioning between two different modes) by 90 

ms significantly decreased prediction errors. Furthermore, this delay significantly reduced 

the amount of moderate and substantial system errors, thereby reducing the number of times 

a user's stability would be affected. The results of this study are encouraging and provide 

another step towards a clinically viable lower limb intent recognition system for a powered 

knee-ankle prosthesis.
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Fig.1. 
A portion of the finite state machine is shown for walking mode only. Within-mode 

transitions that occurred based on mechanical sensor data are shown with black arrows. 

Between-mode transitions that occurred based on mechanical sensors are shown with blue 

arrows. Between-mode transitions that occur based on the execution of a key fob or a pattern 

recognition classifier are shown with green arrows. Walking mode transitions are displayed 

with solid lines and all outgoing ambulation mode transitions from walking mode are 

displayed with dashed lines.
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Fig. 2. 
A transfemoral amputee wearing the powered knee-ankle prosthesis demonstrating various 

transitions from stair descent to level-ground walking.
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Fig. 3. 
An overview of the mode-specific classifier architecture. State machine prosthesis modes are 

shown indicating the corresponding classifier (see Table 2 for descriptions) or mechanical 

trigger associated with each transition. Mechanical transitions are labeled in black, heel 

contact classifiers are in red, mid-stance classifier in green, toe off classifiers are in blue, and 

mid-swing classifier in purple. Ramp ascent data was grouped together with walking data.
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Fig. 4. 
Example mechanical sensor data for the HC_LW classifier. The heel contact data window is 

shown for both the non-delayed and delayed system window for steady-state level-ground 

walking, level-ground walking to ramp descent transition and level-ground walking to stair 

descent transition. The delayed data window provides additional data after heel contact that 

is beneficial for separating classes.
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Fig. 5. 
Average effect of non-delayed vs. delayed system on steady-state (left) and transitional 

(right) classification error. Heel contact error rates are the average of the HC_LW, HC_SD, 

HC_RD, and HC_ST classifiers. Toe off error rates are the average of the TO and TO_ST 

classifiers. Error bars indicate standard deviation. Note different vertical axis scaling 

between the left and right figures.
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Table II
Ambulation mode classifier descriptions

Gait Phase Classifier Active in Description Number of Classes

Heel Contact HC_LW Level-ground Walking Predicted steady state and the transitions from level-
ground walking to stair and ramp descent

3 (LW, RD, SD)

HC_SD Stair Descent Predicted steady state and the transitions from stair descent 
to level-ground walking

2 (LW, SD)

HC_RD Ramp Descent Predicted steady state and the transitions from ramp 
descent to level-ground walking

2 (LW, RD)

HC_ST Standing Predicted steady state and the transition from standing to 
stair descent

2 (ST, SD)

Mid-Stance MST_SD Stair Descent Predicted the transition from stair descent to level-ground 
walking when the first step on level ground was with the 
prosthesis (e.g., on 3-step staircase)

2 (LW, SD)

Toe Off TO Level-ground Walking, 
Ramp Descent, Stair 

Descent

Predicted steady state and the transitions from level-
ground walking to stair ascent and between level-ground 
walking and ramp/stair descent

4 (LW, RD, SA, SD)

TO_ST Standing Predicted steady state and the transition from standing to 
stair ascent

2 (ST, SA)

Mid-Swing MSW_SA Stair Ascent Predicted steady state and the transition from stair ascent 
to level-ground walking when the first step on level ground 
was with the sound side (e.g., on 3-step staircase)

2 (LW, SA)

Gait Events, HC: heel contact; MST: mid-stance; TO: toe off; MSW: mid-swing;
Ambulation Modes, LW: level-ground walking; SD: stair descent; SA: stair ascent; RD: ramp descent, ST: stand
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