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Abstract

Powered prosthetic legs are capable of improving the gait of lower limb amputees. Pattern 

recognition systems for these devices allow amputees to transition between different locomotion 

modes in a way that is seamless and transparent to the user. However, the potential of these 

systems is diminished because they require large amounts of training data that is burdensome to 

collect. To reduce the effort required to acquire these data, we developed an adaptive pattern 

recognition system that automatically learns from subject-specific data as the user is ambulating. 

We tested our proposed system with two able-bodied subjects ambulating with a powered knee and 

ankle prosthesis. Each subject initially ambulated with a pattern recognition system that was not 

trained with any data from that subject (making each subject a novel user). Initially, the pattern 

recognition system made frequent errors. With the adaptive algorithm, the error rate decreased 

over time as more subject-specific data were incorporated. When compared to a non-adaptive 

system, the adaptive system reduced the number of errors by 32.9% [8.6%], mean [standard 

deviation]. This study demonstrates the potential improvements of an adaptive pattern recognition 

system over non-adaptive systems presented in prior research.
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I. Introduction

Powered prosthetic knees and ankles provide joint power to lower limb amputees and assist 

them in completing a variety of ambulation tasks (e.g., walking on level ground, stairs, or 

inclines) [1,2]. These devices are typically programmed with different locomotion modes 

that change the behavior of the device (e.g., provide or dissipate power) as the user is 

completing the different tasks [3–6]. Finding a robust method for seamlessly and 

automatically transitioning the device between the different modes remains a challenge.

Pattern recognition algorithms have been proposed for automatically selecting the desired 

mode of the user. These algorithms can use kinetic and kinematic information from 

mechanical sensors embedded within the prosthesis to infer the user’s intent and transition 

the prosthesis into the desired mode [7–11]. One disadvantage to using pattern recognition is 

that a large amount of data must be collected to train the algorithm to learn user-specific 

patterns and recognize how a particular user completes the different mode transitions. To 

acquire these data, the user must complete a long and burdensome protocol where he or she 

uses the prosthesis to complete the mode transitions. Developing a pattern recognition 

algorithm that does not require the subject’s unique data to perform at a high level would 

eliminate the need for the demanding training protocol and improve the clinical viability of 

these devices.

A more robust pattern recognition algorithm could be developed by using training data 

collected from multiple users, obviating the need to collect training data from a novel user. 

However, previous studies have shown that these user-independent systems (i.e., those that 

are trained with data from multiple users but without the novel user’s unique data) have 

increased error rates, suggesting that subject-specific data is required for optimal 

performance [12]. One could address this limitation and improve user-independent systems 

by designing one that is adaptive. Specifically, an adaptive user-independent system could 

gather unique training data from the novel user as they are using the prosthesis to ambulate 

outside a clinical setting. This strategy would decrease error rates over time as the system 

automatically learns from unique subject patterns during daily use.

The objective of this study was to develop and evaluate an online adaptive pattern 

recognition system for a powered lower limb prosthesis. This analysis was completed with 

two able-bodied individuals using an adaptive system initially trained with data from a 

different user. The adaptive system was automatically updated with mechanical sensor data 

from the novel user as they were ambulating with the prosthesis in real-time. We 

hypothesized that users would experience fewer errors over time while using our adaptive 

system. Moreover, we highlight the benefits of using an adaptive system by comparing its 

performance to that of a system that was non-adaptive.

II. Methods

A. Adaptation Algorithm

Our proposed adaptive algorithm used supervised learning, meaning that all data used for 

training had to be paired with the correct class (in this case, the desired mode of the user). 
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Thus, our adaptive algorithm had to meet the following requirements: 1) predict the desired 

mode of the user before critical transition points (e.g., heel contact, toe-off), 2) automatically 

label new patterns used to update the system with a class that matched the user’s intent, and 

3) add the labeled pattern to the training dataset to update the system (i.e., updating 

parameters such as means, covariances, weights, etc.)

The first requirement of predicting the desired mode of the user is accomplished by 

classifying mechanical sensor information acquired before the user’s next step with the 

prosthesis, a process we term forward prediction. To accomplish the second requirement of 

automatic labeling of new prediction patterns, we use a separate pattern recognition system 

to classify mechanical sensor information acquired from the user’s entire completed stride. 

This process, which we term backwards estimation, classifies the executed gait pattern of the 

user. This has been shown to be an accurate strategy for labeling patterns that will be used to 

update the forward prediction system (Fig. 1) [13].

Consider an example where the user’s desired mode is level walking. The forward prediction 

system classifies a pattern (PFP) before the stride as level walking and the prosthesis is 

controlled in level walking mode. PFP will also be used to update the forward prediction 

system, but requires a class label that should match the desired mode of the user. The 

backwards estimator classifies the gait pattern acquired from information from the entire 

completed stride (hopefully as level walking) and provides a class label for PFP. The 

combination of PFP and the class label can be used to update the appropriate parameters of 

the forward predictor.

Included in the design of the backwards estimator is the ability to provide a correct label for 

PFP even when the forward prediction system misclassifies it (causing the user to take a 

stride in the incorrect mode). Consider again an example where the user’s desired mode is 

level walking but now the forward predictor incorrectly classifies PFP as ramp descent. In 

this case, the user takes a step on level ground while in ramp descent mode. The backwards 

estimator can recognize this executed gait pattern and still provide a class label of level 

walking for PFP. Thus, the label is correct because it matches the user’s desired mode.

B. Experimental Protocol

Two abled-bodied subjects completed the experiment, which was approved by the 

Northwestern University Institutional Review Board. Written and verbal consent was 

obtained from each subject involved.

Subjects wore a bypass socket (Fig. 2) that allowed them to ambulate with a prosthesis 

despite being able-bodied. The Center for Intelligent Mechatronics at Vanderbilt University 

designed the prosthesis used for this study [1]. A certified prosthetist attached the powered 

knee and ankle prosthesis to the subjects’ socket. Each subject had previous experience 

walking with the prosthesis and published strategies were used to tune the leg for each mode 

[4–6].

Each subject participated in a session to collect training data for a forward predictor and a 

backwards estimator. This first session was designed to capture all relevant transitions 
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between modes. Each subject completed tasks including standing, walking on level ground, 

stair ascent and descent on a 4-step and 3-step staircase, and walking on ramps. The 

experimenter used a key fob to trigger all mode transitions at specific points within the gait 

cycle (heel contact, toe-off, mid-swing, and mid-stance). The subjects were also asked to 

complete various activities while ambulating in the incorrect mode (e.g. walking down a 

ramp while in level walking mode). This was completed to provide data for the backward 

estimator so that it could recognize the true intent of the user if the prosthesis transitioned to 

the incorrect mode. Data from these experimental sessions were then used to train a forward 

predictor and a backwards estimator unique to each subject. We will refer to this session as 

the ‘offline session.’

In a second experimental session, the subjects completed a similar but shortened protocol to 

that of the offline session. In this session, an online forward prediction system trained with 
only the other subject’s data controlled the prosthesis. Therefore, each subject was a novel 

user because they were ambulating with a forward prediction system that was trained with 

data other than their own. It is important to note that the forward predictor sometimes made 

errors and transitioned the leg into the incorrect mode during this ‘online session’. As each 

subject was ambulating, the backwards estimator (also trained with the other subject’s data) 

labeled patterns used by forward predictor, and these patterns were then used to update the 

parameters of the forward predictor. In this case, class means and covariances were 

sequentially updated after every step with the prosthesis. The experimenter updated and 

saved the weights of the predictor periodically throughout the session. It should be noted 

that subject 2 completed five sets of a four-step staircase with a key fob instead of with an 

online predictor in the beginning of the online session. This was done to facilitate stair 

descent and to update the adaptive system with correctly-classified patterns. The backwards 

estimator still labeled the patterns from this offline set.

B. Signal Processing and Classifier Architecture

Kinetic and kinematic information from twenty-two embedded mechanical sensors were 

recorded at 500 Hz. These included joint angles, joint velocities, motor currents, and load 

applied through the prosthesis.

For forward prediction, data were segmented into windows of 300 ms before the 

aforementioned transition points. The mean, standard deviation, maximum, minimum, initial 

and final values of each mechanical sensor were calculated as features from each window 

[7]. The dimensionality of this feature set was reduced from 132 features down to 50 using 

principal component analysis [14]. The forward predictor was a dynamic Bayesian network, 

which incorporates the time history of the mechanical sensors into its predictions [10]. We 

used a mode specific classifier architecture for forward prediction. Thus, each mode had its 

own classifier that predicted transitions between modes. We used this architecture because it 

has been shown to improve performance for novel users [12]. The forward prediction system 

used in this study predicted transitions between the following modes: level ground walking, 

standing, stair ascent/descent, and ramp descent.

For backwards estimation, mechanical sensor data were segmented by strides (i.e., from one 

heel contact to the next heel contact). For each mechanical sensor, the same set of features as 
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those used for forward prediction were also extracted from this stride window [13]. The 

dimensionality of this feature set was reduced from 132 features down to 13 using 

uncorrelated linear discriminant analysis (ULDA) [15]. The backward estimator used linear 

discriminant analysis (LDA) classifier to classify the executed locomotion mode at every 

heel contact. The classes of the backwards estimator included standing, level ground 

walking, ramp descent, stair ascent/descent, and various classes where the user was 

ambulating in the incorrect mode (e.g., walking down a ramp in level walking mode, 

completing stair descent one step at a time instead of step-over-step stair descent).

D. System Evaluation

To evaluate the performance of the adaptive system, we calculated the number of errors 

made by the forward predictor in the online session for each subject. We also calculated the 

number of mistakes the forward predictor would have made if the system were not adapted 

throughout the online session. Comparing the number of errors of both systems revealed the 

benefits of adaptation. It is worth noting that the non-adaptive system was not tested in real-

time and that its response was determined offline.

We also determined the performance of the forward predictor before and after adaptation by 

testing the initial and final set of weights on the subject-specific data collected in the offline 

session. Error rates for this analysis are the pooled misclassification rates at the critical 

transition points of the prosthesis. Misclassifications were categorized as either steady-state 

or transitional misclassifications, where steady-state misclassifications occur when the 

prosthesis should not switch modes, and transitional errors occur when the prosthesis should 

switch modes.

III. Results

Both subjects initially had difficulty using the prosthesis to transition modes and completing 

the different ambulation tasks. For instance, subject 1 had difficulty initiating and 

completing step-over-step stair ascent/descent. The forward predictor of subject 2 would 

frequently miss transitions from level walking mode to ramp descent mode.

Fortunately, the backwards estimator correctly classified many of these steps and added 

these new patterns to the subjects’ training sets with the correct label. The result is that fewer 

mistakes were made over time (Fig. 3). If subject 1 had used a non-adaptive system, their 

predictor would have made 67 misclassifications. Instead, the adapted predictor made 49 

misclassifications (a 25% reduction). The non-adaptive predictor of subject 2 would have 

made 41 misclassifications; their adapted predictor made 25 (a 39% reduction).

The benefits of using the adaptive system were also observed when each subject’s final 

system (after all adaptation was finished) was tested on their unique dataset that was 

collected in the offline session. For transitional steps (when the leg should switch modes), 

the adapted predictor had a transitional error rate of 10.18% [3.80%], mean [standard 

deviation], whereas the initial predictor before any adaptation had a 22.92% [12.82%] 

transitional error rate. For steady-state steps, (when the leg should not switch modes) the 
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adapted predictor had an error rate of 3.26% [2.39%], mean [standard deviation], whereas 

the initial predictor before any adaptation had an error rate of 3.19% [2.68%].

IV. Discussion

This preliminary study demonstrates how an adaptive pattern recognition system that learns 

subject-specific data can prevent errors that would have normally been made by a system 

that did not use adaptation. In this study, two able-bodied individuals walked on a powered 

knee-ankle prosthesis with an online adaptive pattern recognition system. The system was 

originally trained with data from the other subject, making each subject a novel user. Both 

subjects initially experienced frequent errors made by the forward predictor. Over time, the 

adaptive system learned to incorporate new subject-specific data from the user to retrain the 

algorithm during ambulation. As a result, the forward predictor made fewer errors over time, 

and made fewer errors than the non-adaptive system would have made.

The backwards estimator was able to correctly classify gait patterns when the prosthesis was 

in the correct mode and also in the incorrect mode. For instance, subject 2’s initial forward 

predictor would frequently misclassify the mode transition from level walking to ramp 

descent. This resulted in subject 2 taking their first step on the ramp in level walking mode. 

This step generated a unique gait pattern which the backwards estimator then correctly 

classified as a step where the prosthesis should have been in ramp descent mode. The 

adaptive system then took the pattern that was originally misclassified by the forward 

predictor, and applied a corrected label of ramp descent to update the predictor. Often, only 

one or two examples of a specific transition were required to teach the forward predictor 

how to correctly initiate the transition.

The performance of the adaptive system was also observed when the final predictor was 

tested on the datasets acquired in the offline session. The final adaptive system reduced error 

rates for transition steps by 12.74% [9.02%]. It is notable that this decrease in error rate was 

achieved even though both subjects took fewer steps in the online session than they did in 

the offline session. We would expect error rates to continue to decrease as more data from 

the current user are added to the training set.

This study has several limitations. First, the subjects in this study were able-bodied, Future 

experiments will investigate whether similar results can be found with lower limb amputees. 

Moreover, the forward predictors were particularly limited because they only had data from 

one individual. Clinical implementations of this system would likely start with a training set 

composed of data from many other individuals. Also, the current adaptive system did not 

‘forget’ data from the other subject; instead, new data from the user was simply added to the 

training set, resulting in a dataset comprised of two individuals. Future implementations of 

the adaptive system will likely include a forgetting factor.

Lastly, although system parameters such as class means and covariances were sequentially 

estimated as the subjects were ambulating, our system did require that the experimenter 

manually and periodically update the weights of the forward predictor. This is because 

calculating the weights is computationally intensive and caused the leg to misbehave if done 
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during ambulation. Future studies should investigate how often the system should be 

updated, and after which activities.
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Figure 1. 
Illustration of adaptive algorithm. A forward predictor (left) classifies mechanical sensor 

patterns from data before the stride and transitions the leg into the predicted mode. After 

mechanical sensor data from the entire stride is collected, a backwards estimator classifies 

this longer window of data and determines the executed gait pattern. The output of the 

backwards estimator then provides a mode label for the pattern of data acquired before the 

stride (right). The pattern of sensor data and its given label are used to update the parameters 

of the forward predictor.
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Figure 2. 
Able-bodied subject with a bypass socket wearing the powered knee-ankle prosthesis.
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Figure 3. 
Example of number of misclassifications made by one adaptive and non-adaptive classifier 

for subject 1 in the online session. The figure shows the number of misclassifications 

(marked with red circles) made by the heel contact classifier acting in level walking mode 

throughout the course of the online session. No red mark means that no misclassification 

occurred for that particular pattern. The top line of patterns shows the decisions that the non-

adaptive classifier would have made, and the bottom line of patterns shows the decisions 

made in real-time by the online adaptive system.
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