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Abstract

Powered lower limb prostheses have the ability to provide greater mobility for amputee patients. 

Such prostheses often have pre-programmed modes which can allow activities such as climbing 

stairs and descending ramps, something which many amputees struggle with when using non-

powered limbs. Previous literature has shown how pattern classification can allow seamless 

transitions between modes with a high accuracy and without any user interaction. Although 

accurate, training and testing each subject with their own dependent data is time consuming. By 

using subject independent datasets, whereby a unique subject is tested against a pooled dataset of 

other subjects, we believe subject training time can be reduced while still achieving an accurate 

classification. We present here an intent recognition system using an artificial neural network 

(ANN) with a scaled conjugate gradient learning algorithm to classify gait intention with user-

dependent and independent datasets for six unilateral lower limb amputees. We compare these 

results against a linear discriminant analysis (LDA) classifier. The ANN was found to have 

significantly lower classification error (P<0.05) than LDA with all user-dependent step-types, as 

well as transitional steps for user-independent datasets. Both types of classifiers are capable of 

making fast decisions; 1.29 and 2.83 ms for the LDA and ANN respectively. These results suggest 

that ANNs can provide suitable and accurate offline classification in prosthesis gait prediction.

I. INTRODUCTION

By 2020 it is estimated that there will be over 2.2 million people living with limb loss in the 

United States, 879,000 of which will have a major (excluding toes) lower limb amputation 

[1]. Powered knee and ankle prostheses are assistive devices that have shown great promise 

in treating above knee amputation. These devices use motors to provide positive mechanical 
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work at both joints, and often contain pre-programmed locomotive modes to assist in 

navigating environmental obstacles such as stairs and inclines. These programmed modes 

can alleviate some of the difficulties encountered with passive or microprocessor controlled 

prostheses [2]. However, switching between modes requires manual intervention such as 

compensatory movement, physical prosthesis interaction, or use of a smartphone interface 

[3], all of which are slow, cumbersome, and create a cognitive burden for the user. An 

optimal system would recognise and change the locomotive mode based on the upcoming 

obstacle, without any user input.

In previous studies, our group has applied machine learning techniques to powered 

prostheses in order to automatically predict the required locomotive mode for level walking 

and stairs/ramp ascent/descent. Using feature information from mechanical sensors on-board 

the prosthesis, and linear discriminant analysis (LDA) classification methods, results have 

shown promising offline and real-time application [4]–[6].

Although suitable results have been demonstrated with these techniques, they require 

lengthy data collection sessions in which the user navigates a controlled environment. Their 

data is then used in training the learning algorithm. An alternative method, where the 

learning algorithm is trained on a pooled dataset of multiple other users and is tested against 

a unique user, has been previously applied with promising initial results [7]. This ‘user-

independent’ training methodology can reduce individual user training times substantially. 

However, pooling data across multiple users has resulted in lower classification accuracies.

It is possible that user-independent classification involves learning a more complicated and 

perhaps non-linear feature space. If so, then a non-linear artificial neural network (ANN) 

classifier would be better suited for this application. The objective of this study was to 

evaluate the performance of an ANN intent recognition system to classify four locomotive 

modes; level walking, stairs ascent, stairs descent, and ramp descent. The performance was 

compared to a previously used LDA classifier for both user-dependent and user-independent 

classification. Furthermore, both the feed-forward operations of the ANN and LDA were 

timed while classifying on our embedded system to determine their computational efficiency 

and suitability in future real-time applications.

II. METHODOLOGY

A. Experimental Protocol

Six unilateral lower limb amputees (five male and one female, five transfemoral and one 

knee disarticulation, four with left and two with right leg amputation, aged between 23 and 

65, height between 1.6 and 1.93 m, and weight between 52 and 96 kg) participated in this 

study, with approval from the Northwestern University Institutional Review Board. Written 

and verbal consent was obtained from each subject involved.

All subjects were fitted with a powered knee and ankle prosthesis, developed by Vanderbilt 

University [8]. Each subject was trained to use the leg and their impedance parameters were 

hand-tuned using a previously described method prior to the data collection [9]. During a 

single collection session, the subjects were asked to perform a number of repeated activities 
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including level walking and ascending/descending stairs/ramps. The protocol of this 

procedure has been described in detail in a previous study [10]. Briefly, an experimenter 

used a key-fob to automatically transition the leg between activities and label the activity 

that the user was performing. Data from mechanical sensors were also collected and 

included: relative knee and ankle positions, velocities, and commanded joint torques. Other 

sensors included a six degree of freedom load cell and a six degree of freedom IMU, both 

mounted midway through the shank. A complimentary filter was used to compute the angle 

of the thigh and the angle of the shank relative to the vertical.

B. Signal Processing

All data were collected and stored on-board an embedded system on the prosthesis, and 

signal processing was performed offline using MATLAB. The data were normalised 

between subjects to account for the side of amputation. Subjects with a right leg amputation 

had the appropriate mechanical channels transformed (reversed sign) prior to processing.

The axial load through the prosthesis was used to segment gait phases into a stance and 

swing phase. The time points where the device transitioned from stance to swing was 

labelled as toe-off and the time point where the device transitioned from swing to stance was 

labelled as heel-contact. The device was allowed to transition between different activities at 

only these discrete events. The mechanical sensor data were segmented into a 300 ms 

window prior to a transition point, and six features were extracted from the window 

including mean, standard deviation, min, max, initial, and final value of each sensor channel, 

producing a one by 120 feature vector per window [10], [11].

Each feature vector had a corresponding ground-truth locomotion mode (level walking 

(LW), stairs ascent (SA), stairs descent (SD), or ramp descent (RD)) and the step-type, 

which provides information on whether the step changed from one mode to another 

(transitional (T)) or remained in the same mode (steady-state (SS)). The prosthesis uses the 

same impedance parameters for ramp ascent as level walking, and therefore all ramp ascent 

triggers were reassigned as LW. Each subject’s features were split into heel-contact or toe-

off, based on when each of the triggers were fired.

C. Classifiers

The ANN had one hidden layer and 20 hidden neurons and was trained using a scaled 

conjugate gradient learning algorithm [12] and a hyperbolic tangent activation function. 

Each classifier was trained over 1000 epochs with a break clause once the training error 

improvement plateaued at a precision of 0.001. Weights were initialised randomly between a 

range of:

(1)

Where fv represents the number of inputs, which in this case is 120, resulting in initial 

weights between ±0.091. The LDA has no initialisation of weights and no iterative process, 
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and therefore has a simpler topology. Training consists of a single iteration with no error 

feedback or learning process.

D. Performance Evaluation

Validation was performed using a randomised 75/25% training and test dataset split, 

respectively. In order to reduce discrepancies seen in the results produced by the randomised 

validation sets and weights, the classifiers were run ten times for each subject/classifier 

group, and the mean error (%) was taken and processed.

This study investigated two classification methods:

1. Dependent Classification: Each subject was trained and tested using their own 

data in order to obtain a dependent accuracy in learning.

2. Independent Classification: The feature/output datasets were pooled between 

subjects. Using a leave-one-out method, six groups were produced using the data 

from five subjects. The sixth subject had their data tested against the grouped 

classifier data of the remaining five subjects in order to obtain an independent 

accuracy in learning.

The average intent recognition error, across all subjects and classifier groups, was used as 

our primary performance metric for both the dependent and independent tests. Error rates 

are presented in a combined form (both SS and T together), as well as individual SS and T. 

ANN and LDA results are presented side by side, with a paired t-test analysis to determine 

significant differences between classification methods. Confusion matrices are also 

presented, displaying individual locomotive mode accuracies for ANN and LDA results, in 

both dependent and independent test sets.

Finally, to determine the ANN’s future suitability for real-time classification, its 

computational processing time was recorded while classifying on-board our embedded 

system; a Texas Instruments DM3730 processor running at 600 MHz. To determine 

classifier times this evaluation was run without any classifier to calculate a baseline, and 

then again individually with the ANN and LDA classifiers to determine added time required 

for classification. An average time was calculated by running this test on five independent 

subject datasets, three times each, for the baseline, ANN, and LDA classifiers.

II. RESULTS

Classification error percentages using subject dependent and independent data can be seen 

represented in Fig. 1 and Table I, as well as corresponding standard error of the mean (SEM) 

values.

Table II shows the confusion matrices of the dependent and independent tests, where a value 

in row i and column j represents the prediction known to be in mode i but predicted to be in 

mode j. Values displayed in bold indicate the accuracy of a correct prediction.

Differences between ANN and LDA results were found to be significant (P<0.05) in all 

dependent sets, however, only significant in the transitional independent set.
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Online computational times for the entire control system process (feature extraction, state-

machine progression, and construction of motor command outputs) were found to be 12.42 

[1.06], 13.70 [0.45], and 15.25 [0.56] ms [standard deviation] for the baseline, LDA, and 

ANN classifiers respectively. LDA and ANN times were subtracted from the baseline to 

obtain individual classifier processing times of 1.29 and 2.83 ms, respectively.

III. DISCUSSION

These results indicate that the ANN yields lower classification errors than that produced by 

the LDA, in both dependent and independent data sets. Error rates are expectedly higher in 

transitional classification than steady-state, due to the added complexities in classifying a 

change in locomotive mode, as opposed to classification of no change in mode seen in the 

SS results. However, transitional steps make up only 11% of the total steps across all 

subjects and therefore this has a smaller impact on the average error rate. Furthermore in 

prior work we have found that even steady-state errors are capable of causing moderate or 

substantial perturbations to the user [13]. Consequently it is important to reduce both error 

types as much as possible. Likewise, error rates are higher in the independent dataset 

analysis when compared against the dependent results as the variability seen in each 

subject’s gait technique is expected to affect classification.

Other than the dependent transitional results, the LDA classifier had larger SEM values than 

the ANN (Fig. 1, Table I). This is particularly interesting for the independent subject 

datasets, as this would indicate better classification adaption for each individual subject 

when using an ANN.

Correct locomotive mode classification, as seen in the diagonal columns of Table II show 

that the LDA has better classification than the ANN in all locomotive modes other than LW, 

for both dependent and independent datasets. However, as LW makes up 79% of the total 

gait activity (SA, 5%; SD, 8%; RD 8%) the ANN achieves a higher weighted accuracy 

overall.

Real-time classification times show that the LDA performs faster than the ANN. However, it 

is worth noting that while the LDA classifies in a single iteration, the ANN has to propagate 

the data/weights through each layer, resulting in a three-stage classification process. In 

previous work resulting in real-time ambulation, we allowed for a control system processing 

time of up to 30 ms which was not noted by the user [13], [14]. Both the ANN (15.25 ms) 

and LDA (13.70 ms) comfortably allow for operation within this time window.

This preliminary evaluation has some limitations. Firstly, we evaluated only six subjects. 

With more subjects it may be possible to match the user-independent subjects with a subset 

of overall subjects based on weight, height, side of amputation, and residual limb length. 

This would likely allow for better user-independent classification performance. Secondly, 

this was an offline study meaning that a member of the research team transitioned the 

prosthesis for the subject using a key-fob.

However, in previous work we have found a strong correlation between offline classification 

error and real-time performance [13] suggesting that our results will extend to online testing.
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IV. CONCLUSION

The results presented here demonstrate that an ANN with a scaled conjugate gradient 

learning algorithm can produce suitable results in offline prosthetic classification when 

compared against an LDA classifier. In future work, we will investigate adapting the ANN in 

real-time to determine if it is possible to automatically converge from user-independent 

error-rates to user-dependent error-rates using an online learning algorithm.
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Figure 1. 
Classification results for ANN and LDA classifiers for subject dependent (left) and 

independent (right) datasets (error bars represent SEM, asterisk indicates significant 

difference (P<0.05)). Avg. represents the combined weighted average across SS and T
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