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Abstract

Purpose of review—HOXA9 is a homeodomain transcription factor that plays an essential role 

in normal hematopoiesis and acute leukemia, where its over expression is strongly correlated with 

poor prognosis. This review highlights recent advances in the understanding of genetic alterations 

leading to deregulation of HOXA9 and the downstream mechanisms of HOXA9-mediated 

transformation.

Recent findings—A variety of genetic alterations including MLL-translocations, NUP98-

fusions, NPM1 mutations, CDX deregulation, and MOZ-fusions lead to high level HOXA9 
expression in acute leukemias. The mechanisms resulting in HOXA9 over expression are 

beginning to be defined and represent attractive therapeutic targets. Small molecules targeting 

MLL-fusion protein complex members, such as DOT1L and menin, have shown promising results 

in animal models, and a DOT1L inhibitor is currently being tested in clinical trials. Essential 

HOXA9 cofactors and collaborators are also being identified, including transcription factors PU.1 

and C/EBPα, which are required for HOXA9-driven leukemia. HOXA9 targets including IGF1, 
CDX4, INK4A/INK4B/ARF, mir-21 and mir-196b and many others provide another avenue for 

potential drug development.

Summary—HOXA9 deregulation underlies a large subset of aggressive acute leukemias. 

Understanding the mechanisms regulating the expression and activity of HOXA9, along with its 

critical downstream targets, shows promise for the development of more selective and effective 

leukemia therapies.
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INTRODUCTION

Homeobox proteins are a family of homeodomain-containing transcription factors, first 

identified in Drosophila, that control cell fate and segmental identity during development (1, 

2). In mammals the 39 class 1 homeobox, or HOX genes, are arranged into four parologous 

clusters (A, B, C and D) on separate chromosomes (3, 4). In addition to their role in 

regulating development, a subset of A and B cluster HOX genes also play crucial roles in 

regulating hematopoiesis and leukemogenesis (5–7). Of these, HOXA9 has been most 

intensively studied as it is over expressed in more than 50% of acute myeloid leukemias and 

in a subset of B and T acute lymphoblastic leukemias (8–10). Understanding the HOXA9 

axis—how its expression is regulated in normal and neoplastic states, how it regulates 

transcription and which downstream targets are essential for transformation—may lead to 

new therapies in leukemia and other hematologic malignances.

DEREGULATION OF HOXA9 IN ACUTE LEUKEMIA

HOXA9 is expressed in high levels in hematopoietic stem cells (HSCs) and early 

progenitors, and its expression is down regulated with further differentiation (Figure 1a) 

(11). Hoxa9-deficient mice show mild pancytopenia and decreased spleen and thymus 

cellularity (12). Conversely, over expression of Hoxa9 in mice leads to HSC expansion and a 

myeloproliferative disorder that progresses to AML (5). The onset of these leukemias is 

rapidly accelerated by coexpression of HOX cofactors, MEIS1 and PBX3, which are often 

coexpressed at high levels with HOXA9 in human leukemias (13–16).

A variety of upstream genetic alterations can lead to deregulation of HOXA9, including 

MLL1-translocations, NUP98-fusions, NPM1 mutations, CDX deregulation, MOZ-fusions 

as well as translocations involving HOXA9 itself (17). Regardless of the mechanism of 

deregulation, high-level HOXA9 expression appears to be a strong independent adverse 

prognostic factor in acute leukemia (8, 9, 18).

MLL1-Fusion Proteins

Chromosomal translocations involving the mixed lineage leukemia gene MLL1 at 

chromosome 11q23 occur in about 10% of AML (19, 20). MLL1 (also known as KMT2A) 

is a large protein of nearly 4000 amino acids, which is one of five mammalian MLL proteins 

that are homologous to the Drosophila protein Trithorax, a positive regulator of homeobox 

gene expression in the fly. All MLL proteins share a C terminal SET domain that has 

methyltransferase activity specific for histone H3 lysine 4. MLL family members antagonize 

the action of Polycomb group proteins, which form multi-subunit complexes that have 

histone H3 lysine 27 methyltransferase activity. MLL1 has been shown to be required for 

normal hematopoiesis at least in part due to its ability to regulate HOX gene expression 

(Figure 1b) (21). Increasing evidence suggest this involves not only histone methylation, but 

also recruitment of the histone acetyltransferase MOF (22).

Leukemia associated MLL1-translocations result in fusion of MLL1 to one of over 60 

different translocation partners and deletion of the coding regions for the central PHD 

domains and C terminal SET domain. Nine translocation partners AF1p, AF4, AF6, AF7, 
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AF10, AF17, ENL, ELL, and SEPT7 comprise 90% of MLL translocations (23). These 

include both nuclear factors (such as AF4, AF9 and ENL) and less common cytoplasmic 

partners, such as AF1p and SEPT7 (24). MLL-fusion proteins enforce high-level HOXA9 
expression, which is required for transformation in most experimental models (25, 26). This 

mechanism involves recruitment of at least two complexes important for transcriptional 

regulation. One, the super elongation complex (SEC), contains common MLL-translocation 

partners ELL, ENL or AF9, AF4 and positive transcription elongation factor b (P-TEFb), 

which includes the cyclin-dependent kinases CDK9 and Cyclin-T (27). The other complex 

includes the histone methyltransferase DOT1L, which specifically methylates histone H3 

lysine 79, and the MLL-translocation partners AF10, AF17 AF9 and ENL. MLL-fusion 

proteins either directly or indirectly recruit the P-TEFb and DOT1L complexes to the HOXA 
locus, resulting in large increases in histone H3 lysine 79 methylation and high level 

transcription (Figure 1c) (28). DOT1L inhibitors have been shown to have efficacy for MLL-

rearranged leukemias and are currently being tested in clinical trials (29, 30).

Partial tandem duplications involving the sequence encoding the N-terminus of MLL are 

observed in about 10% of cytogenetically normal AML and are also associated with HOXA9 
over expression (31). Interestingly, these have been shown to be sensitive to DOT1L 

inhibition, despite the fact that they do not involve fusion with partners that interact with 

DOT1L (32).

Another attractive therapeutic target for MLL-rearranged leukemias is menin, which 

interacts with the amino terminus of both MLL and MLL-fusion proteins and is required for 

their recruitment to specific chromosomal sites (Figure 1b). Small molecule inhibitors of the 

MLL-menin interaction, which are under active development, show considerable efficacy in 

killing AML cells in vitro as well as in animal models (33).

Nucleoporin-fusion proteins

Nucleoporins are members of the nuclear pore complex (NPC), which facilitates shuttling of 

metabolites and molecules between the cytoplasm and nucleus and also plays a role in 

promoting euchromatic transcription (34, 35). NUP98 and less commonly NUP214, are 

involved in a number of chromosomal translocations in acute leukemia (reviewed in more 

detail in (36)). NUP98-translocations include fusions with clustered HOX genes (A9, A11, 

A13, C11, C13, D11 and D13), non-clustered HOX genes (HHEX, PRRX1, PRRX2), and 

non-HOX genes such as NSD1 and JARID1A (37). These fusions result in HOX gene up 

regulation, which contributes to leukemogenesis (38). AML and AMKL cases harboring 

NUP98-translocations show consistent HOXA and HOXB cluster up regulation, with an 

overall gene expression signature that is distinct from MLL-rearranged leukemias (39, 40).

NPM1 mutation

Mutations of the chaperone protein nucleophosmin1 (NPM1) are common, occurring in 

about 50–60% of AMLs (41, 42). Leukemia-associated NPM1 mutations create an 

additional nuclear export signal resulting in relocalization of NPM1 from the nucleus to the 

cytoplasm (43). Cytoplasmic NPM1 (NPM1c) up regulates the expression of HOXA9, 
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HOXA10 and MEIS1, possibility as a result of cytoplasmic sequestration of HEXIM1 by 

NPM1c, which subsequently activates P-TEFb (44–46).

Other mechanisms of HOXA9 deregulation

Many additional upstream genetic alterations lead to HOXA9 deregulation in acute leukemia 

(17). Deletions or decreased expression of the polycomb protein EZH2 leads to leukemia 

with up regulation of HOXA9 (47). Similarly mutations in the polycomb gene ASLX1 are 

common in myelodysplastic syndromes and are associated with high expression of HOXA9 
(48). In addition, fusion of CDX2 and ETV6 (ETV6-CDX2) is seen in rare cases of AML, 

resulting in high level CDX2 expression, which promotes HOXA9 expression (49, 50). 

Chromosomal translocations generating the CALM-AF10 (PICALM-MLLT10) fusion leads 

to HOXA cluster up regulation in T-ALL and some AML cases (38, 51). The MYST-
CREBBP (MOZ-CBP) is seen in de novo and therapy-related AML cases and is also 

associated with HOXA9 and MEIS1 up regulation (52). Finally, rare cases of T-ALL harbor 

translocations involving the HOXA9 locus with the T cell receptor β locus, which results in 

high-level HOXA9 expression (53).

TRANSCRIPTIONAL REGULATION AND TRANSFORMATION BY H/M

The mechanisms through which HOXA9 regulates downstream gene expression and specific 

targets that are essential to transformation are areas of active investigation. It is clear that 

HOXA9 is a member of both activating and repressive transcriptional regulatory complexes, 

which include cofactor and collaborator proteins that provide target specificity and 

stabilization on the DNA, as well as epigenetic modifiers and transcriptional machinery 

(Figure 2) (54–56). Early studies with small molecules disrupting protein interactions in 

HOXA9-complexes have been successful at killing leukemia cells both in vitro and in 

murine studies (16, 57–59). In addition, critical downstream targets of HOXA9 in leukemia 

are being more rapidly identified, providing another avenue for targeted therapies in AML. 

Two comprehensive review articles were recently published discussing HOX protein 

function (60, 61). In the following section, we will highlight the latest publications related to 

HOXA9 and its cofactors in leukemia.

Cofactors

HOX proteins regulate downstream gene expression through direct binding at cis-regulatory 

elements via their highly conserved homeodomains. These 60-amino acid domains are 

responsible for binding to DNA and for providing an interface mediating protein-protein 

interactions (62, 63). While homeodomains are highly conserved across the 39 mammalian 

HOX proteins, multiple studies suggest that homeodomains confer unique properties via 

their small differences (64, 65). For example, swapping the homeodomains of HOXA9 and 

HOXA1 abolishes the leukemogenic properties of HOXA9 while conferring those properties 

to HOXA1 (66).

HOXA9 binds DNA along with a small subset of cofactors, many of which are members of 

the Three-amino-acid-loop-extension (TALE) family. The best characterized of these 

cofactors is MEIS1, which plays a synergistic causative role in leukemia with HOXA9 (14, 

Collins and Hess Page 4

Curr Opin Hematol. Author manuscript; available in PMC 2017 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15). A recent study with Meis1 knockout/MLL-AF9 knockin murine model established that 

Meis1 is required for development of MLL-AF9 driven leukemias (67). This requirement is 

partially mediated through promoting a low oxidative environment established by direct 

regulation of HLF by Meis1. In addition, MEIS1 is responsible for recruiting CREB and 

CBP to HOXA9 binding sites in a GSK-3 dependent manner, which is required for 

maintaining the MLL leukemia stem cell transcriptional program (58). This interaction can 

be targeted using GSK-3 inhibitors, leading to growth inhibition of cells transformed by 

either HOXA9/MEIS1 or MLL-fusion proteins (57–59). The oncogenic properties of MEIS1 

are antagonistically regulated by PREP1, another TALE family protein, through direct 

competition for binding sites (68). PREP1 also competitively heterodimerizes and sequesters 

PBX proteins, thereby decreasing stability of MEIS1 and preventing the MEIS1-DDX3x/

DDX5 interactions that are required for tumorigenesis (69, 70). Furthermore, in vivo 
leukemogenesis studies with HOXA9/MEIS1 in PREP1-deficient cells showed more 

aggressive leukemias compared to wild-type (69).

Recent work has characterized the requirement of a second TALE cofactor, PBX3, in the 

setting of leukemia with high expression of HOXA9. PBX3, and not PBX1 or PBX2, was 

found to be essential for MLL-fusion protein mediated transformation. Disruption of the 

PBX3/HOXA9 interaction with the small molecule HXR9 selectively kills leukemic cells, 

providing a promising strategy for developing future therapies (16). PBX3 also dimerizes 

with MEIS1 and inhibits its ubiquitination and degradation, thereby increasing the half-life 

of MEIS1 and enhancing the proliferation and colony forming ability of primary cells 

transduced by HOXA9 (71). This MEIS1/PBX3 dimerization is required for expression of 

HOXA9/MEIS1 target genes such as FLT3 and TRIB2 (71). Moreover, coexpression of 

MEIS1/PBX3 is sufficient to transform cells in culture and lead to formation of leukemia in 
vivo with similar latency to that of MLL-AF9 (72). Expression patterns in cells transformed 

by MEIS1/PBX3 are consistent with that of the MLL-AF9 core transcriptome, including 

upregulation of HOXA9 (72).

Collaborators

It is likely that tissue specific collaborator proteins provide a final level of binding 

specificity to HOX complexes (73). Recent work has shown that collaborators establish 

areas of chromatin accessibility, provide stability in DNA binding and help modulate the 

downstream activity of HOX complexes (74). Two such collaborators are the lineage-

specific transcription factors, PU.1 and C/EBPα, which are known to establish areas of 

relaxed chromatin and allow for signal-dependant recruitment of additional proteins (75). 

PU.1 was recently found to be essential for MLL-induced leukemias and was shown to 

directly regulate key genes in the HOX/MEIS signature, including FLT3 and c-KIT (76). 

Taken together with previously published work, which found that HOXA9 and PU.1 

physically interact and that the PU.1 binding motif is enriched at HOXA9 binding sites, 

these findings suggest PU.1 may be an essential member of a HOXA9 transcriptional 

regulatory complex (54). PU.1 also plays a role in leukemias without MLL-translocations, 

potentially through direct activation of MEIS1 via binding at the MEIS1 promoter (77).

Collins and Hess Page 5

Curr Opin Hematol. Author manuscript; available in PMC 2017 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Multiple recent publications have established that C/EBPα is required for MLL-fusion 

protein and HOXA9-driven leukemias. Initial studies found that the initiation of MLL-ENL 

transformed leukemias required C/EBPα, whereas it was not required for maintenance of 

transformation (78). Loss of C/EBPα in MLL-ENL transformed cells also resulted in 

decreased expression of HOXA9/MEIS1, however expression of HOXA9/MEIS1 could not 

rescue transformation in these cells. Work from our lab found that loss of C/EBPα 
significantly improved survival in murine in vivo leukemogenesis models of HOXA9/
MEIS1-driven AML (10). We also established that C/EBPα and HOXA9 physically interact 

and colocalize at over 50% of HOXA9 binding sites, raising the possibility that C/EBPα is 

an essential member of the HOXA9-transcriptional regulatory complex. More recent work 

also suggests that C/EBPα-driven myeloid differentiation, rather than C/EBPα itself, is 

required for initiation of MLL-rearranged leukemia (79). The failed transformation of MLL-

AF9 in C/EBPα deleted cells could be rescued with cytokine induction of GMP formation. 

It is possible that this requirement is due to the need for myeloid specific enhancers for 

proper downstream HOXA9 function. Similarly, it is likely that collaborators such as PU.1 

and C/EBPα are cell type-specific and that HOXA9 would have different collaborators in B 

and T-cell leukemias.

Targets in leukemia

Considerable progress has been made towards understanding HOXA9-mediated 

leukemogenesis through the identification of proleukemic targets with cis-regulatory regions 

bound by HOXA9 and MEIS1 (54). Many of these targets have been studied individually 

and found to play important roles in leukemic transformation (comprehensively reviewed in 

(60)). Recently additional critical targets have been identified and mechanistically studied. 

HOXA9 was shown to regulate IGF1 expression through binding at an upstream putative 

promoter and DNA hypersensitive region in intron 1 (80). IGF1-null cells transformed by 

HOXA9 have reduced leukemogenic potential and increased apoptosis in response to serum 

starvation. HOXA9 is also involved in a feedback loop along with HOXA10 that directly 

regulates CDX4 expression during normal hematopoietic differentiation (81). In the context 

of leukemia, MLL-ELL cooperates with constitutively activated SHP2 mutants to block the 

tyrosine phosphorylation of HOXA9/10 that is required for repression of CDX4, thereby 

contributing to the sustained expression of CDX4 and leukemic transformation (81).

Multiple studies have implicated a role for HOXA9 in the regulation of INK4A/B 
expression, critical mediators of HSC self-renewal, apoptosis and oncogene-induced 

senescence whose expression leads to a block in cell cycle at the G1 phase (82). Hoxa9 

represses Ink4a expression to overcome oncogene-induced senescence during transformation 

by AML1-ETO in Bmi1−/− cells, as well as in Hoxa9/Meis1 transformed cells (10, 83). This 

repression may be the result of direct recruitment of EZH2 by Hoxa9, however recent work 

suggests that EZH2 may also regulate p16 in HOXA9-independent fashion in MLL-

rearranged leukemias (84, 85).

Finally, HOXA9 is involved in antagonistic regulation of GFI-1 target microRNAs, mir-21 
and mir-196b, whereby direct binding of HOXA9 to cis-regulatory regions increases 

expression of these microRNAs (86). Targeting mir-21 and mir-196b with antagomirs results 
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in specific inhibition of colony forming activity and leukemia-initiating cell activity in 

HOXA9, NUP98-HOXA9, and MLL-AF9, and also leads to leukemia-free survival in MLL-

AF9 murine leukemogenesis studies. Furthermore, samples from patients with MLL-

translocated and NPM1 mutant leukemias showed specific growth inhibition in colony 

forming assays when treated with the antagomirs, providing a promising therapeutic 

approach for HOXA9 driven AML (86).

CONCLUSION

While significant progress has been made towards our understanding of the genetic 

alterations leading to deregulation of HOXA9 and the mechanisms of HOXA9-mediated 

transformation, many answered questions remain. It will be important to identify the 

cofactors, interactions and downstream activities of HOXA9 that are essential for 

leukemogenesis. HOXA9 is associated with both activation and repression of transcription, 

with the latter being particularly poorly understood. In addition, the downstream targets that 

are essential for leukemogenesis are only beginning to be defined using genome-wide 

screening. Given the central role of HOXA9 proteins in development and oncogenesis, 

further work is warranted which may have broad applicability towards the development of 

more potent and selective therapies.
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KEY POINTS

• HOXA9 is highly expressed in a variety of hematopoietic malignancies and is 

generally associated with poor prognosis.

• A variety of upstream genetic alterations lead to high expression of HOXA9 
including MLL1-translocations, NUP98-fusions, NPM1c mutations, CDX 
dysregulation, MOZ-fusions and translocations of HOXA9 itself.

• Small molecules inhibitors targeting DOT1L and menin are showing efficacy 

in HOXA9-driven leukemia models.

• HOXA9 regulates gene expression through binding at cis-regulatory elements 

with a subset of essential cofactors (MEIS1 and PBX3) and cell-type specific 

collaborators (PU.1, C/EBPα).

• Further study of HOXA9-mediated leukemogenesis is warranted given its 

central role in development and oncogenesis.
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Figure 1. 
Regulation of HOXA9 expression in normal and malignant hematopoiesis. (a) During 

normal hematopoiesis, HOXA9 is expressed most highly in early progenitor cells and its 

expression is subsequently down regulated as cells become terminally differentiated. (b) In 

normal hematopoiesis, HOXA9 expression is regulated by the MLL histone 

methytransferase, which deposits activating histone 3, lysine 4 trimethylation (H3K4me3) 

along the HOXA9 locus. This process requires interaction with menin and its cofactor 

LEDGF. (c) In approximately 50% of acute leukemias, HOXA9 is highly expressed as the 

result of a variety of upstream genetic alterations. These include MLL1-fusions, NUP98-

fusions, MOZ-CBP fusions, NPM1c mutations and ASXL1 mutations. In the case of MLL1-
fusions, one of 60 translocations partners is fused to the C-terminus of MLL, resulting in 

recruitment of the SEC (including DOT1L) and PTEF-b complexes. DOT1L is responsible 

for depositing activating histone 3 lysine 79 methylation, leading to high HOXA9 expression 

and malignant transformation. The other genetic abnormalities also result in high HOXA9 
expression, though the mechanisms are less well understood.
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Figure 2. 
Model for HOXA9-mediated leukemogenesis. (a) A variety of upstream genetic 

abnormalities are associated with high expression of HOXA9 and its cofactor MEIS1, both 

of which are known to play an essential role in acute leukemias. (b) HOXA9 and MEIS1 

promote malignant transformation through binding at cis-regulatory elements throughout the 

genome, whereby they activate and repress downstream gene expression. The targeting and 

stabilization of HOXA9/MEIS1 at specific loci is likely mediated by cell-type specific 

collaborator proteins, such as PU.1 and C/EBPα. Upon binding at loci along with the 

additional cofactor PBX3, HOXA9/MEIS1 recruit coactivating and corepressing histone 

modifying complexes, such as CREB1/CBP and EZH2 respectively. Recently established 

activated targets include IGF-1, CDX4, mir-21 and mir-196b. Recently established repressed 

targets include INK4A, INK4B and ARF.
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