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Abstract

Better biomarkers to detect smoking are needed given the tremendous public health burden caused 

by smoking. Current biomarkers to detect smoking have significant limitations, notably a short 

half-life for detection and lack of sensitivity for light smokers. These limitations may be 

particularly problematic in populations with less accurate self-reporting. Prior epigenome-wide 

association studies indicate that methylation status at cg05575921, a CpG residue located in the 

aryl hydrocarbon receptor repressor (AHRR) gene, may be a robust indicator of smoking status in 

individuals with as little as half of a pack-year of smoking. In this study, we show that a novel 

droplet digital PCR assay for measuring methylation at cg05575921 can reliably detect smoking 

status, as confirmed by serum cotinine, in populations with different demographic characteristics, 

smoking histories, and rates of false-negative self-report of smoking behavior. Using logistic 

regression models, we show that obtaining maximum accuracy in predicting smoking status 

depends on appropriately weighting self-report and cg05575921 methylation according to the 

characteristics of the sample being tested. Furthermore, models using only cg05575921 

methylation to predict smoking perform nearly as well as those also including self-report across 

populations. In conclusion, cg05575921 has significant potential as a clinical biomarker to detect 

smoking in populations with varying rates of accuracy in self-report of smoking behavior.
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Introduction

Cigarette smoking is the leading cause of preventable morbidity and mortality in the United 

States, with the complications of smoking being responsible for nearly half a million deaths 

per year (DHHS 2014). In 2010, nearly 20 percent of all US adults were current cigarette 

smokers, with rates varying by age group, gender, and race (Centers for Disease Control and 

Prevention 2011). Smoking is more prevalent among those aged 25–44 (22%), men 

compared to women, and higher among African Americans and European Americans (both 

approximately 21%) than Hispanics (12.5%). A critical period in the trajectory of smoking 

behaviors is adolescence and early adulthood. Over the age interval of 14 to 25, the rate of 

smoking increases from 4.3% to 32.8% (SAMHSA 2011).

Accurate detection of smoking status is a high priority in multiple clinical scenarios. For 

adolescents, detection of intermittent smoking may allow targeting of preventative 

interventions in order to prevent progression to nicotine dependence and the long-term risks 

associated with regular smoking (Shadel and others 2000). In smokers who are already 

nicotine dependent, detection of current smoking status can allow clinicians to refer those 

individuals for smoking cessation treatments (Ranney and others 2006). Lastly, detection of 

smoking status is important in monitoring for relapse after smoking cessation treatment has 

been completed (Jatlow and others 2008; McClure 2001).

In current clinical practice, assessment of smoking is usually limited to self-report (Larzelere 

and Williams 2012). While self-report has been shown to be generally accurate in adults in 

epidemiologic studies (Caraballo and others 2001; Vartiainen and others 2002), there are 

important exceptions in some populations. For example, pregnant women (Britton and others 

2004), adolescents (Caraballo and others 2004; Kandel and others 2006), and African 

Americans (Wagenknecht and others 1992) have all been reported to have elevated rates of 

disagreement between self-report of smoking behavior and objective measures of recent 

smoking, such as cotinine concentration. In addition, unreliable self-report is a well-

established phenomenon in nicotine dependence treatment populations (Hilberink and others 

2011; Philibert and others 2016).

Cotinine, the major metabolite of nicotine, is typically measured in body fluids such as 

saliva, urine, or serum by enzyme-linked immunoassay (ELISA) (Benowitz and others 

2009b). Although cotinine is commonly cited as the gold standard biomarker for smoking 

detection, it has significant limitations, most notably a short half-life of approximately 20 

hours (Benowitz and others 2009a). Determination of current smoking status by cotinine 

assay can also result in false-positives in individuals who have quit smoking but are using 

nicotine replacement therapies, which limits its usefulness in populations being treated for 

nicotine dependence (Benowitz and others 2009b; Florescu and others 2009; Jatlow and 

others 2008; Matsumoto and others 2010). Exhaled carbon monoxide (CO), an alternative 

biomarker for smoking, has an even shorter half-life of 4–5 hours and requires specialized 
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equipment at the point of testing (Florescu and others 2009). Importantly, neither cotinine 

nor CO offer adequate sensitivity in the detection of the light or intermittent smoking 

patterns that characterize adolescent use, a time when preventative interventions may be able 

to interrupt progression to nicotine dependence (Flay 2009).

Epigenetic biomarkers have the potential to overcome many of the limitations of current 

biomarkers in detecting smoking. Epigenetic marks are mitotically heritable modifications to 

DNA that provide structural and regulatory functions for the genome without the presence of 

a change in base pair sequence (Goldberg and others 2007). These marks include 

methylation of the cytosine base at cytosine-phospho-guanine dinucleotide residues (CpGs), 

covalent modification of histones, and open versus closed chromatin states, all of which can 

affect the expression of genes (Jiang and others 2004). Critically, some epigenetic marks are 

responsive to environmental influences, such as tobacco smoke exposure (Bollati and 

Baccarelli 2010; Ladd-Acosta 2015). The development of array-based platforms such as 

Illumina’s Infinium HumanMethylation450 BeadChip system has allowed investigators to 

perform epigenome-wide association studies to uncover links between environmental 

exposures and epigenetic changes. As a result of these investigations, tobacco smoke has 

emerged as a paradigmatic environmental exposure with epigenetic effects (Mikeska and 

Craig 2014).

In particular, one locus, cg05575921, a CpG residue located in the gene for the aryl 

hydrocarbon receptor repressor (AHRR), is a leading candidate for translation as a clinical 

biomarker for smoking (Ladd-Acosta 2015; Mikeska and Craig 2014). In over thirty 

methylome-wide studies of smoking conducted to date using self-report and cotinine 

validation of smoking status, across a wide variety of age ranges, ethnicities, both sexes, and 

even in infants exposed prenatally, demethylation of cg05575921 has been consistently 

linked with tobacco smoke exposure (Andersen and others 2015). Studies by Fasanelli and 

Baglietto and colleagues have further demonstrated that demethylation of cg05575921 is an 

independent risk factor for lung cancer after adjusting for smoking status (Baglietto and 

others 2017; Fasanelli and others 2015).

The mechanism underlying this consistent epigenetic response to smoking is not fully 

understood, but is thought to involve activation of the xenobiotic pathway. The xenobiotic 

pathway, responsible for detoxifying harmful components of tobacco smoke including 

polyaromatic hydrocarbons and dioxins (Nguyen and Bradfield 2008), is induced by the 

binding of polyaromatic hydrocarbons to the aryl hydrocarbon receptor (AHR). 

Subsequently, AHRR expression increases to compete with AHR for binding to its nuclear 

receptor, preventing over-expression of downstream genes such as p450 enzymes that 

detoxify components of smoke. Increased AHRR expression is directly linked to 

demethylation at CpG sites in the AHRR gene, including cg05575921, and measurement of 

this change in methylation then serves as a robust indicator of both smoking and other 

exposures that upregulate the xenobiotic pathway (Philibert and others 2015).

The performance characteristics of cg05575921 in detecting smoking are excellent, with an 

AUC of 0.99 reported in one study which used serum cotinine to confirm smoking status 

(Philibert and others 2015). This excellent predictive ability appears to be driven by two key 
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factors. First, cg05575921 appears to have a fairly narrow biological “set-point”, with non-

smokers almost always having a value of 80% to 90% methylation. Second, the magnitude 

of the change in percent methylation or “delta beta” in this locus in response to smoking is 

large compared to other smoking-associated loci (Andersen and others 2015). While delta 

beta values for methylation biomarkers in non-communicable diseases are typically less than 

5% (Mikeska and Craig 2014), multiple studies have reported a delta beta of 15–20% at 

cg05575921 in response to smoking (Dogan and others 2014; Elliott and others 2014; 

Tsaprouni and others 2014; Zeilinger and others 2013). A recent meta-analysis of epigenetic 

signatures of smoking by Joehanes and colleagues reported a delta beta of 18% for 

cg05575921, the largest of 2623 CpGs associated with smoking, although it ranked only 36th 

in statistical significance (Joehanes and others 2016) whereas a 2015 review of 14 

epigenome wide studies by Brenner and colleagues showed that cg05575921 showed both 

that cg05575921 had both the largest delta beta and the smallest p-value in the epigenome.

(Gao and others 2015).

A third critical factor is that this locus is responsive even to light or intermittent smoking. In 

one study of 19 year-old smokers versus controls, smokers with less than ½ pack-year 

smoking history had a measurable delta beta at cg05575921 of 4.9% (Philibert and others 

2012).

The extent of reversion of demethylation of cg05575921 with smoking cessation is uncertain 

and in need of further study. Several studies show demethylation at this locus in subjects 

who reported quitting smoking decades earlier (Baglietto and others 2017; Fasanelli and 

others 2015; Guida and others 2015; Shenker and others 2013). However, using 

biochemically confirmed measures, we have shown average reversion of nearly 5% after one 

month of cessation whereas Bauer and colleagues show complete erasure of the 

demethylation response present in the cord blood in offspring of smoking mothers after only 

2 years.

While the epigenome-wide studies cited above used chip-based assays for discovery, the cost 

of arrays and their long turnaround time (1 week) prevent their use in routine clinical 

practice. In contrast, digital polymerase chain reaction (dPCR) methods are emerging as an 

attractive alternative for precise measurement of methylation that may be more suitable for 

translation of epigenetic biomarkers to clinical settings. Digital PCR methylation assays 

require genomic DNA that has been treated with bisulfite, a process that converts 

unmethylated cytosines to uracils, while sparing methylated cytosines (Frommer and others 

1992). Bisulfite-converted DNA is then amplified using primers specific for both the 

methylated and unmethylated alleles. The relative abundance of each allele is then measured, 

allowing for calculation of the relative abundance of methylated and unmethylated alleles in 

the original sample. Digital PCR methods differ from quantitative PCR (qPCR) techniques 

by allowing highly precise quantification of the original sample without an external 

reference (Hindson and others 2011). This is accomplished by fractionating the sample into 

a large number of separate PCR reactions, typically 15,000–20,000. The fractional 

abundance of each allele in the original sample is calculated based on the number of positive 

and negative reactions, assuming a Poisson distribution. One application of this method is to 

use hydrophobic droplets to encapsulate and fractionate the samples, a technique known as 
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droplet digital PCR (ddPCR) (Hindson and others 2011). In one study, measurement of 

methylation at a promoter CpG in the CD3Z gene was used to estimate T cell numbers in 

peripheral blood using both ddPCR and qPCR, and ddPCR was reported to offer superior 

precision, accuracy, and technical simplicity (Wiencke and others 2014).

For the detection of smoking, a clear application of methylation-specific ddPCR assays is 

the measurement of cg05575921 methylation in an individual in order to determine if it is 

lower than the population “set-point” of 80–90%. Values progressively lower than this 

population average signal an increasing probability that the person is a smoker. Indeed, 

Zhang and colleagues have demonstrated a strong linear relationship between progressive 

demethylation of cg05575921 and both cotinine and the number of cigarettes smoked per 

day (Zhang and others 2016).

In clinical practice, however, this information must also be integrated with self-report data 

and knowledge of the smoking habits characteristic of the individual’s population, given that 

neither laboratory testing nor self-report have perfect sensitivity or specificity. Thus when 

integrating information from an epigenetic biomarker such as cg05575921 with self-report, 

it is important to develop models that weight each source of information appropriately to 

guide clinical decision in different populations.

Here, we employ ddPCR to compare methylation at cg05575921 in two cotinine-validated 

samples of current smokers versus non-smokers with differing rates of false-negative self-

reporting and cumulative smoking histories. We show that cg05575921 is a robust predictor 

of cotinine positivity in both samples. We further show that logistic models trained in 

different samples vary in predictive accuracy depending on the level of false negative self-

reporting of smoking status in both training and test samples.

Materials and Methods

Samples

The Iowa Adoption Studies (IAS) is a long-running study of adoptees from the State of Iowa 

whose focus is substance use disorders and related psychopathology. The methods used in 

this study have been described previously (Philibert 2006). Briefly, 475 adoptees with a 

biological family history of substance use or antisocial personality disorder were selected 

from among 11,700 adoptees statewide, along with a matched sample of 475 controls. These 

adoptees and their families then were followed over 30 years with repeated assessments 

including semi-structured interviews including a modified version of the Semi Structured 

Assessment for the Genetics of Alcoholism, Version 2 (SSAGA-II) (Bucholz and others 

1994) administered by a trained research assistant during the most recent wave (2005–2009). 

The clinical data used in this study was extracted from the tobacco use module contained 

within the SSAGA. The biomaterials for the current study were obtained via phlebotomy 

conducted during the last wave of the study.

The Family and Community Health Study (FACHS) is a multi-site investigation of 

neighborhood and family effects on health and development, consisting of 867 African 

American families living in Georgia and Iowa. A more detailed description of the sample 
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and methods for the study is available elsewhere (Kogan and others 2013; Simons and others 

2012). Of particular relevance, each family who participated in the FACHS study included at 

least one child between the ages of 10–12 years old at the time of recruitment (1995–97). 

During the last wave of the study, wave seven, (2014–2016), each subject was interviewed 

by a trained research assistant using a custom designed structured interview, then 

phlebotomized to provide materials for the current study. The structured interview included 

assessment of subject smoking status and total number of cigarettes smoked in their lifetime. 

Of note, data to calculate the number of pack-years smoked were not available for this 

sample but participants did report on whether they had smoked 500 or more cigarettes in 

their lifetime.

All procedures and protocols used in the IAS sample were approved by the University of 

Iowa Institutional Review Board (IRB). Similarly, all procedures and protocols for the 

FACHS sample were approved by IRB panels at Iowa State University, University of Iowa or 

University of Georgia.

Biomaterials

Following phlebotomy of the FACHS subjects, whole blood DNA and sera were prepared 

according to previously published protocols (Philibert and others 2012; Philibert and others 

2013b). Similarly, for IAS subjects, whole blood DNA was obtained via the same method 

(Lahiri and Schnabel 1993) while plasma was obtained via ultrafiltration of blood samples 

frozen at −80°C.

Cotinine levels were assayed using enzyme-linked immunoassay (ELISA) with kits supplied 

by Abnova (Taiwan) as previously described (Philibert and others 2013a). To minimize the 

effects of unfiltered hemoglobin, washes conducted during processing of the plasma samples 

were conducted with phosphate buffered saline, pH 8.0, per the manufacturer’s suggestion.

Determination of methylation status at cg05575921 was conducted using ddPCR 

implementation of the previously described quantitative PCR approach (Dogan and others 

2014). First, 1 μg of DNA from each subject was bisulfite converted using an EpiTect Fast 

96 DNA Bisulfite kit (Qiagen, Germany) according to the manufacturer’s direction. The 

methylation ratio at cg05575921 (C/(C+T)) in each bisulfite treated sample was then 

determined using the Smoke Signature™ Assay (IBI Scientific, Peosta, IA) and a QX200 

Droplet Digital PCR System™ (Bio-Rad, Hercules, CA) according to the manufacturer’s 

protocols. In brief, an aliquot of the bisulfite converted DNA was pre-amplified with the 

Smoke Signature™ Pre-Amp Master Mix under high stringency conditions per the 

manufacturer’s protocol, then diluted between 1:1000 and 1:5000. Then, 5 μl of the resulting 

solution was mixed with 1.1 ul of 20X Smoke Signature Assay, 4.9 ul of water, and 11 ul of 

BioRad 2X ddPCR Supermix (no dUTP), and vortexed. The resulting mixture was then 

processed with a Bio Rad Automated Droplet Generator, which generated approximately 

20,000 micelles each containing approximately 1 nanoliter of PCR mixture, and quickly 

PCR amplified (95°C × 10′, then 40 cycles of 95°C × 15″ and 55°C × 60″, and finally 

98°C × 10′). After amplification was complete, the post-amplification allele content status 

(either C, T, C+T, or blank) of each micelle by the QX200 Droplet Reader and the percent 
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methylation status of each sample calculated using BioRad’s proprietary QuantaSoft 

software (v1.7).

Statistical analysis

All subsequent analyses were conducted with the R (Team 2014) statistical software, using 

the pROC (Robin and others 2011) and the scoring (Merkle and Steyvers 2013) packages 

Cotinine positivity was coded as 0 for individuals with 3 ng/mL or less and 1 for those above 

3 ng/mL (Benowitz and others 2009a). Positive self-report of smoking was coded as a 1 and 

negative self-report as a 0. Subjects failing quality control, defined as greater than a 5% 

confidence interval for the ddPCR assay, were excluded from further analysis (N=31 in IAS 

and N=17 in FACHS).

For the primary analysis, logistic models were fit for each sample using cotinine positivity as 

the outcome and, cg05575921 methylation only (model 1), self-report only (model 2), and 

both self-report and cg05575921 methylation (model 3) as predictors. An intercept-only 

model (model 0) was also fit with no predictors. For between-sample predictions the full 

IAS or FACHS sample was used for training and subsequent testing. For within-sample 

model fitting and prediction, 70%–30% random splits within each sample were made using 

the R package caret (Kuhn 2015). Each model was then trained on the 70% split and 

cotinine status predicted in the corresponding 30% split within each sample.

Regression coefficients were estimated via maximum likelihood methods and Akaike’s 

information criterion (AIC) was used to assess relative model fit in each of the models 

above. Each of the four logistic models trained in each sample were then used to predict the 

probability of cotinine positivity within and across samples, using the full or split samples 

for training and testing as applicable.

Predicted probabilities were used to construct receiver operating characteristic curves (Zou 

and others 2007) and calculate the area under the curve (AUC) with 95% confidence interval 

for each set of predictions. The Brier score (Redelmeier and others 1991) is a quadratic 

scoring rule that measures the accuracy of probabilistic predictions in tasks with discrete 

outcomes, in this case testing positive or negative for cotinine. Brier scores closer to 0 

indicate better accuracy. Brier scores scaled against a null model according to the equation 

(BSnull-BSfull)/BSnull are an estimate of the proportion of variation (R2) explained by the 

model, with scores closer to 1 indicating better accuracy (Gerds and others 2008; Steyerberg 

and others 2010). Brier scores for each set of predictions were calculated as the sum of 

squared distance between a participant’s smoking status as classified by cotinine and their 

predicted status based on the estimated regression coefficients (i.e., based on the linear 

predictor). Scaled Brier scores were then calculated to estimate the corresponding R2 for 

each set of predictions.

We performed an additional adjusted analysis of model 3 in the IAS sample to examine the 

effect of including pack-years and age as predictors of cg05575921 methylation and cotinine 

positivity. First, a linear model was fit using cg05575921 methylation as the outcome and 

age, pack-years, self-report and cotinine positivity as predictors, and P-values for each 

parameter were inxpected. Next, we included age and pack-years as additional predictors in 
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our full logistic model (model 3) in the IAS 70% training split. Predictions from this 

adjusted model were then made in the IAS 30% testing split and used to calculate an AUC 

and Brier score using the same methods as above. The function roc.test() in the pROC 

package was then used to compare the resulting AUC with that of the unadjusted model.

A secondary analysis was performed to examine differences in the regression coefficients 

among between samples. The goal was to test the null hypothesis of equal population 

regression coefficients for self-report and cg05575921 among the population counterparts of 

the FACHS and IAS samples. Additional logistic regression models were estimated using 

the combined data with a dummy code for sample membership (FACHS = 0, IAS = 1), 

which was included as another predictor. The interaction of the dummy code and self-report, 

and the dummy code and cg05575921 was included in the full model (Model 4) in order to 

test for invariance of the regression coefficients among FACHS and IAS. We refer to this 

secondary analysis as the sample-as-group analysis.

Results

Clinical characteristics of the two samples are given in Table 1. In brief, the IAS sample 

(n=209) was older, predominantly European American, and had reported greater cumulative 

smoke exposure, with a mean lifetime consumption of 17.9 pack years among the self-

reported current smokers. In contrast, subjects in FACHS (n=592) were younger, almost 

entirely African American, more likely to be female, and had significantly less self-reported 

smoking. Although data to calculate self-reported pack-years were not available for the 

FACHS subjects, only 15.2% of FACHS subjects reported having smoked more than 500 

cigarettes (roughly 0.07 pack-years) or more in their lifetime.

Comparison of self-reported current smoking status with biochemical evidence of current 

smoking via serum cotinine revealed distinct patterns across the two samples, as shown in 

Table 2. Self-reported rates of smoking in IAS and FACHS were 26.8% and 31.8%, 

respectively, while serum cotinine positivity was seen in 33.5% of IAS subjects and 51.7% 

of FACHS subjects. Among IAS subjects, the proportion denying current smoking but 

positive for serum cotinine was 7%, while in FACHS the corresponding proportion was 

22.6%. Only one (0.5%) of the IAS subjects self-reported current smoking but was not 

positive for serum cotinine, while 16 (2.7%) in FACHS did, and the remainder in each 

sample were negative for cotinine as well as self-report.

Mean methylation values at cg05575921 for the sample groups, broken down by self-report 

of current smoking and serum cotinine positivity, are also given in Table II and depicted in 

Figure I. In general, those with either self-reported current smoking and/or serum cotinine 

positivity had markedly lower cg05575921 methylation values than those without either 

positive self-report or cotinine. Those in IAS with both positive self-report and positive 

serum cotinine were the most demethylated, followed by the equivalent group in FACHS, 

and then those denying smoking but with serum positivity in FACHS and IAS, respectively. 

For both FACHS and IAS, those without positive self-report or cotinine positivity had 

cg05575921 methylation values clustered around 80–85%.
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Results of the primary analysis are shown in Table III, which lists the regression coefficient 

estimates for the intercept (B0), self-report of current smoking (BSR), and cg05575921 

methylation (BM) predicting cotinine smoking for each sample. In summary, those models 

trained in the FACHS sample weighted self-report less heavily and cg05575921 methylation 

more heavily, consistent with the lower accuracy of self-report in the FACHS population as 

compared to the IAS population. Models including both self-report and cg05575921 

methylation had the lowest AIC values, indicating the best fit, in both samples. In contrast, 

the best fitting single-predictor models differed among the samples. In FACHS (full and split 

samples), model 1 (cg05575921 only) had a lower AIC than model 2 (self-report only), 

while the reverse was true in IAS.

Comparisons of AUCs and Brier scores for each model, in both within-sample and across-

sample testing, are given in Table IV. In general, results indicate a high level of agreement 

across samples in the utility of cg05575921 alone as a predictor of cotinine positivity, with 

AUCs of ranging from 0.87 to 0.90. Self-report alone performed equally well or better in 

models tested in IAS, while in contrast, in models tested in FACHS, AUCs were markedly 

worse at 0.75 (external validation) and 0.78 (internal validation). Models including both self-

report and cg05575921 were the best-performing in both internal and external validation for 

both samples, with AUCs ranging from 0.90 to 0.93.

Differences in scaled Brier scores, a measure of the variation in the outcome (R2) explained 

by the predictors, were seen in within-sample and across-sample testing depending on the 

model used. For model 1 (cg05575921 only), the R2 was highest in IAS internal testing at 

0.55 and worst in IAS to FACHS testing at 0.40. For model 2 (self-report only), the R2 was 

again best in IAS internal testing at 0.75, and markedly worse in IAS to FACHS testing at 

0.24. Finally, in each set of testing, model 3 (cg05575921 + self-report) performed best, with 

the worst accuracy seen in IAS to FACHS testing, with an R2 of 0.42, whereas IAS to IAS 

gave an R2 of 0.77. For the equivalent model trained in FACHS, internal testing gave an R2 

of 0.56, while external testing gave an R2 of 0.63.

In adjusted analyses in the IAS sample, self-report and cotinine positivity were both 

significant predictors (P<0.001) of cg05575921 methylation, while pack-years was an even 

more significant (4.34e-07). Although age was not a significant predictor in this model, we 

chose to include both age and pack-years as additional covariates in an adjusted full logistic 

model (model 3) predicting cotinine positivity. Compared with predictions generated by the 

unadjusted model 3, the addition of age and pack-years as covariates did not significantly 

improve the AUC (0.925 vs 0.900, P=0.450). Additionally, the scaled Brier score for the 

adjusted model (R2=0.646) was not better than the unadjusted model than the unadjusted 

model (R2=0.773).

Results of the secondary samples-as-groups analyses showed that for model 1 (cg05575921 

only), the difference in regression coefficients for cg05575921 was not statistically 

significant (p > 0.05). For model 2 (self-report only), the coefficient for self-report was 

significantly different among FACHS and IAS (p < 0.05), and for model 3 (cg05575921 

methylation and self-report), only the cg05575921 regression coefficient was statistically 

different between FACHS and IAS (p < .001).
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Discussion

In this study, we show that cg05575921 methylation status is an excellent predictor of 

current smoking status, as ascertained by serum cotinine, in two samples with very different 

demographics, smoking histories, and rates of false self-reporting of smoking behavior. Out-

of-sample prediction was similar to in-sample prediction illustrating that cg05575921 

methylation is robust to differences in sample characteristics.

This ddPCR assay is a different measurement approach than used in prior studies 

investigating epigenetic signatures of smoking, the majority of which used the Illumina 

Infinium HumanMethylation450 BeadChip array and found methylation at cg05575921 in 

cotinine confirmed non-smokers to be between 86 and 93% (Andersen and others 2015). In 

the current study, the range for was largely between 80 and 88%. Although each of these 

approaches have their biases (Olson and others 2016; Soto and others 2016) and the results 

between the assays are highly correlated (Dogan and others 2014), we note that the normal 

range observed herein is very similar to that obtained by Novakovic and colleagues who 

used a mass spectroscopy approach (Novakovic and others 2014). Therefore, when 

comparing results obtained from the two platforms, it is important to keep in mind that while 

both of these techniques appear quite reliable, subtle differences between studies may arise 

from both sample and assay characteristics.

We focused our analyses on two complementary measures of model performance to assess 

the relative contributions of cg05575921 methylation and self-report in predicting current 

smoking status: the AUC and the Brier score. Despite some limitations, the calculation of 

overall AUCs remains the de facto method of comparing classifiers such as biomarkers (Zou 

and others 2007). The AUC values associated with cg05575921 in our study constitute a 

“good” to “excellent” level of prediction. The effect was consistent in within-sample and 

across-sample testing, and consistent with prior reports (Zhang and others 2016). Self-report 

performed equally well or better than cg05575921 methylation in testing in the IAS sample, 

whereas in FACHS the AUC of self-report would be only be classified as “fair”. The 

combination of self-report and cg05575921 methylation provided improved model fit and 

the best AUC in each train-test combination, although the magnitude of improvement over 

cg05575921 alone was modest.

Although the consistently high AUC values for cg05575921 methylation seen in this study 

help validate it as an epigenetic biomarker for current smoking status, this same consistency 

also highlights a known limitation of the AUC as a measure of model performance. 

Specifically, models with very similar AUCs may be associated with predictions with large 

differences in accuracy (Steyerberg and others 2010). For a biological relationship such as 

the one seen in the current study, a monotonic decrease in methylation at cg05575921 with 

increasing exposure to smoke, logistic models with very different parameter estimates may 

produce identical or nearly identical rankings of smoking probability. Meanwhile, the actual 

predictions derived from those parameter estimates may vary widely in terms of accuracy. 

This weakness was addressed by including the Brier score as an additional validation index 

in our analysis.
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Unlike the AUC, a rank-based non-parametric method, the Brier scores reported in our study 

are indicators of absolute differences in the accuracy of predictions based on self-report 

and/or cg05575921 methylation. Once again, a high degree of consistency was seen in 

within-sample and between-sample testing, with scaled Brier scores (R2) for the full model 

ranging from 0.56 to 0.77. The exception was a lower R2 of 0.42 seen in IAS to FACHS 

testing.

Inspection of the parameter estimates for the model trained on the full IAS sample helps 

illuminate this discrepancy. In short, the models trained in IAS weighted cg05575921 less 

strongly than those in FACHS, resulting in weaker accuracy in IAS to FACHS prediction. In 

the full model trained in IAS, the parameter estimate for cg05575921 methylation was −5.8, 

while in FACHS the corresponding value was −12.4.

As shown by our secondary, samples-as-groups analysis, this effect was driven by the large 

differences in the accuracy of self-report between our samples, rather than differences in the 

performance of cg05575921. The difference in regression coefficients between samples for 

cg05575921 methylation alone was not significant. In contrast, there was a significant 

difference in the regression coefficient for cg05575921 in the full model that including both 

cg05575921 and self-report.

Smoking history and age may both influence the accuracy of cg05575921 methylation in 

predicting current smoking status. In addition, there may be subtle age-related changes in 

cg05575921 methylation due to unmeasured environmental exposures or intrinsic biological 

processes. Therefore, we performed additional analyses to assess the impact of age and 

smoking history on cg05575921 and self-report as predictors of current smoking status. 

Because pack-year smoking history data were not available in our FACHS sample, these 

analyses were restricted to IAS.

As shown above, a logistic model relating cg05575921 methylation to age, pack-years, 

cotinine positivity, and self-report of current smoking showed significant effects for each 

predictor except for age. Further modeling did not support any improvement in predictive 

utility or accuracy with the inclusion of age and pack-years as predictors, as measured by 

AUC and Brier scores, respectively. Although these results suggest that cg05575921 alone is 

a robust predictor of current smoking status even in populations of varying ages and 

cumulative smoking histories, some limitations of this analysis are notable. First, data were 

not able to allow us to examine the effect of time since quitting on cg0557521 methylation 

as a predictor of current smoking. Additionally, these analyses were restricted to the smaller 

of our two samples, as cumulative smoking exposure data in FACHS was limited to self-

report of having smoked 500 or more cigarettes.

The lack of additional predictive utility or accuracy when including age and pack-years as 

predictors of current smoking is a surprising finding. Incomplete reversion of cg05575921 

methylation after prolonged smoking cessation has been reported in prior work and would 

be expected to influence prediction of current smoking status (Baglietto and others 2017; 

Fasanelli and others 2015; Guida and others 2015; Shenker and others 2013). One potential 

explanation of this finding is diminished recall. Diminished recall is a well-established 
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phenomenon in other forms of psychopathology including other forms of substance use 

(Giuffra and Risch 1994). Because few studies are designed to confirm longitudinal tobacco 

cessation by with validated biomarker ssuch as cotinine, some reports of incomplete 

reversion of demethylation at smoking-associated loci may actually underestimate the extent 

of reversion by including subjects who continued to smoke intermittently or have dimished 

recall. Using the multiwave data of the IAS, we are actively examining this phenomenon.

In summary, cg05575921 methylation performed well alone and in combination with self-

report as a predictor of current smoking as measured by AUC and the Brier score, two 

measures of predictive performance. Differences in logistic model parameter estimates 

between samples were largely driven by differences in the accuracy of self-report rather than 

cg05575921 methylation in predicting smoking status. Inclusion of age and smoking history 

(pack-years) did not significantly influence the utility or accuracy of predictions. Our results 

support cg05575921 methylation as an effective biomarker for current smoking in a variety 

of potential clinical scenarios, including populations of differing ages, smoking histories, 

and in which prior smoking history may or may not be known. Because cg05575921 

methylation is sensitive to even early smoking, and the extent of reversion after sustained 

heavy smoking has not been fully characterized, translational efforts investigating the use of 

cg05575921 as a clinical biomarker for smoking focusing on adolescent and young adult 

smokers may be most promising.
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Figure I. 
Boxplot showing cg05575921 methylation by cotinine status and self-report of current 

smoking (0 indicating negative, 1 indicating positive) in IAS and FACHS.
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Table I

Demographics.

Sample FACHS IAS

N 592 209

Median Age 29 44

Male (%) 254 (42.9) 101 (48.3)

Race/Ethnicity

African-American (%) 526 (88.9) 4 (1.9)

European-American (%) 33 (5.6) 192 (91.9)

Hispanic (%) 4 (0.7) 4 (1.9)

Other (%) 4 (0.7) 2 (0.9)

Smoking History

Never Smoker (%) 346 (58.4) 137 (65.6)

Former Smoker (%) 101 (17.1) 16 (7.7)

Current Smoker (%) 145 (24.5) 56 (26.8)
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