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SYNOPSIS

With the coming of the “Silver Tsunami,” expanding our knowledge about how a variety of 

intrinsic and extrinsic factors affect the immune system in the elderly is both timely and of 

immediate clinical need. It is clear that the global population is increasing in age. By the year 

2030, over 20% of the population of the United States will be over 65 years of age. In this chapter, 

we will focus on how advanced age alters the immune systems and how this, in turn, modulates 

the ability of the aging lung to deal with the infectious challenges from both the outside world and 

from within the host.
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Introduction

With advanced age, there are changes in multiple biologic systems 1, including the immune 

system. Alterations in both innate and adaptive immune cells in the aged have been 

noted 2,3. In brief, the age-dependent effects on the innate immune response include 

diminished pathogen recognition, chemotaxis, and phagocytosis, and in adaptive immunity, 

declining numbers of naïve T lymphocytes and reduced cytotoxicity and antibody quality 

and quantity 2. Vaccine efficacy is reduced in the elderly, as are increases in autoimmunity 

and cancer 2. Overall, these immune defects, referred to collectively as immunosenescence, 

render the host less able to withstand injury or infection relative to younger individuals.

Among the hallmarks of the aging immune system is the persistent low-grade pro-

inflammatory state characterized by heightened basal levels of pro-inflammatory mediators 

in the blood 4. Because of this association of advanced age and inflammation, Claudio 

Franceschi coined the term “inflamm-aging” in ~2000 4. Franceschi and others have 

reported that, even in healthy aged subjects without confirmed ailments, there is an elevated 

basal level of pro-inflammatory mediators, including interleukin-1 beta (IL-1®), 

interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF〈) 4. The elevated levels of these 

and other pro-inflammatory factors in the aged can have both local and systemic 

consequences, none of which are ultimately beneficial to the host. This rise in circulating 

levels of pro-inflammatory cytokines and other factors is thought by some to be a driving 

factor in the development and maintenance of immunosenescence 4,5 and contribute to 

chronic diseases of the lung and other organs 6–8. In this review, we will focus on inflamm-

aging, immunosenescence, and the lung, but it should be noted that 1) many of the age-

dependent changes are neither limited to nor likely to be caused by changes in the aging 

lung itself and 2) the majority of these changes are not observed unless the host is 

challenged by some form of stressor, such as an injury or infection.

Changes in the lung with advanced age

A wide range of pulmonary parameters that influence lung immunity are altered with 

advanced age as described in Table 1.

Innate immune cells of the lung and changes with advanced age

Macrophages

The primary resident innate immune cell in the airway is the alveolar macrophage. This 

multifaceted cell serves as the first line of defense against invading pathogens and plays a 

critical role in lung immunologic homeostasis. Macrophages are capable of both initiating 

and resolving an inflammatory response 30–32. This ability to play divergent roles is due to 

macrophage plasticity. Macrophages can adapt and even change phenotype in response to 

environmental cues, enabling them to adapt to varying conditions and perform a plethora of 

diverse functions 33–36. Historically, this stimulus-induced shift in macrophage phenotype 

was referred to as M1 and M2 phenotypes with M1 being pro-inflammatory and M2 anti-

inflammatory. 37,38 However, because of poor definition and inconsistencies in the cell 

surface markers defining these two phenotypes, a group of expert macrophage research 
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investigators recently redefined macrophage classification terminology so that they are more 

narrowly classified based on the source of the macrophages and activation stimuli, as well as 

the specific group of markers associated with the particular activation phenotype 39. 

Regardless of nomenclature, under resting conditions, alveolar macrophages maintain an 

anti-inflammatory profile to keep the pulmonary airway in check and are capable of rapidly 

springing into action, becoming strongly pro-inflammatory when alerted by the presence of 

foreign material (Figure 1). After pathogen clearance, the ability of alveolar macrophages to 

promote resolution and return to an anti-inflammatory resting phenotype is equally 

important for maintenance of lung homeostasis.

Multiple factors are involved in the resolution of inflammation in the lung. These include but 

are not limited to 1) clearance of the pathogen or debris, 2) reduced production of neutrophil 

chemokines and 3) removal of apoptotic cells, including effete neutrophils. All of these 

processes are orchestrated by alveolar macrophages 40. It should be noted that the inability 

of macrophages to perform these functions can result in prolonged inflammation which, if 

left unchecked, can result in damage to lung tissue 41. Central to the restoration of 

pulmonary homeostasis is the removal of neutrophils which is associated with a shift in 

alveolar macrophages phenotype to an anti-inflammatory profile 40.

With advanced age, it is clear that the ability of macrophages to perform their normal 

functions is impaired and that inflamm-aging plays a role in this altered response despite the 

lack of change in macrophage number. A comprehensive review of macrophage function and 

aging is available.37. In brief, both in vivo and in vitro studies conducted in humans and in 

various animal models suggest that many but not all of the functions of macrophages are 

slowed or diminished in magnitude in the aged, leaving the host unable to shift between 

phenotypes when needed 18,34,42. Some of the better documented age-dependent changes in 

macrophage function are highlighted in Table 2.

Neutrophils

The neutrophil is a key innate immune cell that is often the first cell type to be recruited to 

sites of injury and infection. Neutrophils are capable of performing a variety of anti-

microbial functions that play a critical role in removing pathogens from tissues during the 

early stages of lung infections. Within minutes after recognition of foreign material, 

macrophages become activated and initiate a cascade of events which includes the release of 

chemoattractant cytokines that recruit neutrophils. Working together, macrophages and 

neutrophils join forces to remove and destroy infectious organisms 60,61. Neutrophil 

functions that are altered with advanced age are shown in Table 3.

A paradox: Aging causes higher cytokine levels in vivo, yet reduced 

production by inflammatory cells in vitro

The cellular sources of the mediators responsible for inflamm-aging remain unknown. 

Interestingly, there is a disconnect between the in vivo and in vitro effects of stimulation on 

the inflammatory response in young adult and older subjects and in cells isolated from those 

subjects. From both human and rodent studies in which an inflammatory stimulus, like 
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lipopolysaccharide (LPS), is given in vivo, it is clear that the inflammatory response is of 

greater magnitude and duration in older subjects relative to younger 90–92. In contrast, in 
vitro stimulation of certain cell subsets, including blood monocytes, lung or peritoneal 

macrophages from aged subjects, yields lower levels of cytokines relative to cells from 

younger individuals, 46–48,93,94 suggesting either that monocyte/macrophages are not a 

major source of these mediators in vivo or that there are additional factors responsible for 

this discrepancy. The effects of aging on monocyte/macrophage functions were 

comprehensively reviewed elsewhere 42.

What causes inflamm-aging?

There are multiple theories about the origin and perpetuation of inflamm-aging. Ones that 

have gained press over time include classical ideas about increased oxidative stress, DNA 

damage and telomere shortening.1,18 In brief, it is believed that with advanced age there is 1) 

an increase in post-translational modification of macromolecules including DNA, proteins 

and lipids that stimulate leukocytes and other cells to secrete pro-inflammatory cytokines 

and 2) senescence of immune and non-immune cells leading to an increased release of 

inflammatory mediators via a senescence associated secretory phenotype 1,18. Additionally, 

a complementary and newer theory about the initiation of inflamm-aging is emerging and 

gaining support in the literature. This theory revolves around changes in intestinal 

permeability that allows bacteria and bacterial products (e.g. endotoxin and peptidoglycan) 

to translocate into the lymphatic system and ultimately the bloodstream where they can 

trigger the low systemic inflammation in the elderly.

In brief, changes in aged intestine include: dysbiosis of intestinal microbiota in animal 

models of aging and in elderly humans; 95–98 and decreased integrity of the intestinal 

epithelial cell barrier in mice and man 99–104

Aging, Dysbiosis of Intestinal Microbiome and the Gut-Liver-Lung Axis

Extensive clinical and experimental evidence reveals that the intestinal barrier integrity plays 

a role in inflamm-aging which in turn alters pulmonary inflammation. The gut hypothesis 

states that heightened intestinal permeability, along with changes in immune function of the 

gut, results in increased translocation of bacteria and bacterial products 105–107.

Like the lung, the intestine is an organ that is exposed to the outside environment with a 

large surface area. While the lung and intestine provide very different biological functions, 

they share in common the feature of needing to maintain compartmental barriers which must 

remain intact to 1) permit normal organ function to occur and 2) protect the host from 

invading pathogens. Those barriers are created by the epithelium lining the lumen of the 

respiratory and gastrointestinal tract. The integrity of tight junctions between adjacent 

epithelial cells is an essential part of these barriers. In both young and the aged, this barrier 

is maintained in part by the complex interactions between the multiple proteins making up 

tight junctions (TJ), including occludins and claudins, along with multiple adaptor and 

scaffolding proteins. Under normal conditions, the epithelium maintains a semi-permeable 

barrier permitting passage of smaller molecules while preventing the movement of other 
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materials to its underlying mucosal tissue. Regardless of the organ, breach of the epithelial 

barrier allows inappropriate access of microbial organisms and debris to the underlying 

mucosa, which can cause inflammation and tissue damage 108–111. The integrity of this 

barrier can be perturbed in a plethora of disease states, such as reflux esophagitis, cancer, 

and inflammatory bowel disease, and are discussed elsewhere 110,111. One mechanism of 

altering the epithelial status quo is mediated by the enzyme myosin light chain kinase 

(MLCK), the long 210 kDa form, which remains inactive in the cytoplasm of epithelial (and 

endothelial) cells. When activated, MLCK phosphorylates myosin regulatory light-chain 

(MLC) at serine 19, allowing it to interact with actin. The interaction between actin and 

myosin light-chain causes cytoskeletal sliding, which disrupts tight junctions and creates a 

gap in the epithelial barrier, 112,113 thus permitting the uncontrolled flow of fluid, bacteria, 

bacterial products and other materials across the epithelial lining 114,115. Of interest to 

research on the elderly, the same set of pro-inflammatory mediators that are elevated in the 

circulation of the aged and serve as hallmarks of inflamm-aging, namely IL-1β, IL-6 and 

TNF–α, can trigger the activation of MLCK. Additionally, in the lung, when MLCK is 

activated in the capillary lining endothelial cells, it results in paracellular permeability, 

which can lead to pulmonary edema 112. As noted above, one of the consequences of the 

leakiness of the intestinal epithelium is the translocation of bacteria from the intestinal 

lumen to the underlying mucosal tissue and to regional lymph nodes. Subsequently, these 

products can traffic to the liver where they can stimulate production of pro-inflammatory 

cytokines (Figure 2). If not appropriately contained by the aging immune system, the 

dissemination of bacteria and/or release of bacteria and bacterial products such as 

endotoxins throughout the body. This can occur leading to prolonged and exacerbated 

inflammation in all organs and likely contributes to increased morbidity and mortality in the 

aged. Hence, the intestine and its microbial contents can play a critical role in inducing or 

exacerbating complications in various patient populations 113,116 and in the 

aged 103,104,117–119.

Summary and Future Directions

Factors or treatments that reduce inflamm-aging are of interest to basic and clinical 

researchers as they may be able to dampen the prolonged and heightened inflammation seen 

in the elderly after attempting to combat an infection. Thoughts about the design of 

therapeutic interventions to reduce inflamm-aging can be directed either at cells themselves 

or the pro-inflammatory environment in which they reside. Animal studies involving 

adoptive transfer of subsets of leukocytes are in progress, as are numerous clinical and basic 

research studies investigating anti-oxidant and anti-inflammatory agents to attenuate the over 

exuberant inflammatory response in the aged. Some believe that taking the indirect approach 

of reducing intestinal inflammation or restoring the intestinal microbiota may have benefit, 

but this is not without controversy. 120–122 It would be of interest to determine if patients 

receiving anti-inflammatory therapies for other conditions have restored intestinal barrier 

function and if this, in turn, improves systemic responses to the injury or infection in the 

aged population. Further exploration of these direct and indirect avenues of therapeutic 

manipulation may be of benefit to the overall health of the aged and with that will likely 

improve overall lung health of the elderly.
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KEY POINTS

• Age-dependent changes in immune responses cause increased morbidity and 

mortality in the elderly.

• Inflamm-aging causes immunosenescence.

• Intestinal permeability in the elderly may be responsible for inflamm-aging.

• The ability of alveolar macrophages to maintain pulmonary homeostasis 

following clearance of infection is reduced in the aged.
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Figure 1. Innate immune phenotype of the aged lung
Regardless of age, under healthy conditions, the major leukocyte of the distal lung is the 

alveolar macrophage. These multifaceted cells exist in an anti-inflammatory state to limit 

inflammation and maintain pulmonary homeostasis. A variety of pathogenic conditions alter 

alveolar macrophage function. In the young, alveolar macrophages can rapidly respond to 

external stimuli such as bacteria, clear infections and return to their anti-inflammatory state. 

In contrast, in the elderly, alveolar macrophages fail to mount an adequate response 

infectious insult, are slow at recruiting neutrophils to help combat the respiratory pathogens 

and are unable to return to their anti-inflammatory phenotype, thus leaving the lung in a 

compromised state.
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Figure 2. The gut, liver, lung axis
Under healthy conditions, the epithelial cells lining the intestine maintain tight junctions 

preventing luminal contents from invading the underlying mucosal tissues. In the aged, it is 

thought that epithelial cell tight junctions loosen, possibly in response to the presence of the 

pro-inflammatory cytokines associated with inflamm-aging. This loosening of junctional 

complexes and subsequent increase in paracellular permeability allows gut-derived bacteria, 

bacterial products and endotoxins to enter the mesenteric lymph and the bloodstream. 

Bacteria and their products then trigger Kupffer cells and other cells in the liver to produce 

and secrete pro-inflammatory cytokines, including IL-6. Hepatic-derived IL-6, along with 

the gut-derived bacteria products in the circulation, promotes baseline lung inflammation 

which can then be further exacerbated in the aged after injury or infection.
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Table 1

Aging of the Lung

Lung functions that are changed with age Reference

↓ Mucociliary escalator: reduced ability to clear microbes and debris from the airway 9,10

↑ Expression of proteins associated with bacteria attachment and infiltration in the pulmonary epithelial cells, including 
polymeric immunoglobulin receptor and platelet-activating factor receptor 11,12

↑ Expression of markers of cellular senescence 6,13

↓ Epithelial expression of anti-microbial peptides 14,15

↑ Levels of complement and surfactant proteins 15

↑ Proteostasis (and the loss of ability of cells from the aged to properly control protein abundance, proper folding and 
degradation)

16, 17

↑ Susceptibility to pulmonary infections 11,12,18–23

Dysbiosis (or the imbalance) of the pulmonary microbiome in the absence of infection and after infection 24–29
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Table 2

Aging and Macrophages

Alterations in macrophage function with advanced age Reference

↓ Toll-like Receptor (TLR) expression (both mRNA and protein) and downstream signaling (in most but not all studies) 24,43–48

↓ Production of pro-inflammatory and immunomodulatory cytokines, including TNFα, IL-6, IL-1β, and CCL2 (MCP-1) after 
stimulation by a varity of agonists. 46–52

↓ Telomere length 53

↑ Regulators of immune signaling, such as A20, a de-ubiquitinase which, in turn, inhibits TLR signaling and NF-κB activation 11, 12

↓ Phagocytosis and pathogen clearance 7,51,54–59
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Table 3

Aging and Neutrophils

Alterations in neutrophil function with advanced age Reference

↓ Chemotaxis 62–69

No change in chemokinesis 62

↓ Phagocytosis 64, 66, 70–77

↓ Production of reactive oxygen species (ROS) 63, 64, 66, 72, 73, 78–80

↓ Generation of neutrophil extracellular traps (NETs) 81–83

↓ Production of pro-inflammatory cytokines and mediators, including IL-6, IL-8, myeloperoxidase, elastase and ↑ 
Production of anti- inflammatory cytokines, IL-10

78, 84, 85

No increase in lifespan following stimulation 85–89
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