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Abstract

Purpose of review—Neurodevelopmental impairment is common in children with moderate to 

severe congenital heart disease. As children live longer and healthier lives, research has focused on 

identifying causes of neurodevelopmental morbidity that significantly impact long-term quality of 

life. This review will address the role of genetic factors in predicting neurodevelopmental outcome 

in CHD.

Recent findings—A robust literature suggests that among children with various forms of 

congenital heart disease, those with known genetic/extracardiac anomalies are at highest risk of 

neurodevelopmental impairment. Advances in genetic technology have identified genetic causes of 

congenital heart disease in an increasing percentage of patients. Further, emerging data suggest 

substantial overlap between mutations in children with congenital heart disease and those that have 

previously been associated with neurodevelopmental disorders.

Summary—Innate and patient factors appear to be more important in predicting 

neurodevelopmental outcome than medical/surgical variables. Future research is needed to 

establish a broader understanding of the mutations that contribute to neurodevelopmental disorders 

and the variations in expressivity and penetrance.
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Introduction

Congenital heart disease (CHD) is the most common birth defect, with moderate or severe 

disease occurring in six per 1000 live births.[1] Greater survival in recent decades has 

shifted the focus to improving long-term quality of life, and in particular, reducing the 

burden of neurodevelopmental disability. In 2012, the American Heart Association released 

a statement endorsed by the American Academy of Pediatrics highlighting the high 
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prevalence of neurodevelopmental disorders in this population and recommending routine 

evaluation and treatment in certain subgroups of children with CHD.[2]

Paralleling the enhanced interest in neurodevelopmental outcomes has been a remarkable 

leap in genetic technology, providing insight into the mechanisms of disease. Genetic factors 

have long been considered a dominant cause of CHD, in part due to strong heritability.[3] 

Recent advances have accelerated the identification of specific disorders, ranging from 

single gene disorders causing isolated CHD (e.g., GATA4) to complex multi-system disease.

[3, 4] Whereas genetic abnormalities are identified in up to 50% of children with CHD and 

recognizable syndromes, even among non-syndromic, sporadic cases, up to 10% of patients 

demonstrate deleterious de novo mutations when tested with whole exome sequencing. That 

percentage increases to 20% when the analysis is confined to those with co-existing 

neurodevelopmental disorders and extracardiac anomalies.[5]

This review will address the role of genetic factors in predicting neurodevelopmental 

outcome in CHD. We will describe not only the known associations between syndromic 

CHD and neurodevelopment but also emerging research that harnesses advanced technology 

to demonstrate shared genetic pathways between heart and brain development. Ultimately, 

this line of research has the potential to identify high-risk patients early and facilitate 

neurodevelopmental risk stratification, thereby improving targeted treatment.

Neurodevelopment and CHD

Neurodevelopmental disabilities are common among children with CHD, with the 

prevalence varying widely depending upon the severity of heart disease and co-existing 

conditions. Domains frequently affected include executive function, attention and self-

regulation, visuospatial skills, and social cognition.[6–10] Psychiatric morbidity (e.g., 

anxiety) is also emerging as an important consideration.[11] These neurodevelopmental and 

behavioral challenges significantly impact academic achievement. In one large cohort of 

adolescents with single ventricle, nearly 90% of subjects required developmental/

educational services; over one-third had received special education and nearly a quarter 

experienced grade retention.[12] Given the burgeoning number of survivors with critical 

CHD, neurodevelopmental and behavioral disabilities affect not only the individual child 

and family, but also exert a significant societal burden.

Influences on Neurodevelopment

Early studies examined perioperative and surgical factors, yet increasingly data suggest that 

non-modifiable patient factors are important influences on neurodevelopment.[8, 13] Not 

surprisingly, maternal education and socioeconomic status are frequently associated with 

neurodevelopmental outcome in CHD.[7] Similarly, birth weight and gestational age, even 

near-term birth, are important predictors.[7, 14, 15] Worse neurodevelopmental outcome has 

also been associated with medical and surgical factors, for example, elevated lactate and 

S100B (a sensitive biomarker for acute brain injury), longer total support time, or need for 

extracorporeal membranous oxygenation or a ventricular assist device. Neuroresilience 

genotypes, particularly the apolipoprotein ε2 allele, also appear to contribute to development 

after open heart surgery.[13, 15, 16]
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Fetal Brain Development

Recently, neonatal and fetal brain MRI studies have indicated that brain structure appears 

altered in CHD even before birth. Brain MRI studies evaluating microstructural, 

macrostructural, and metabolic indicators of brain maturity in preoperative term neonates 

with CHD suggest dysmature/immature brain development, with a total brain maturational 

score equivalent to that of infants born approximately one month earlier.[17–20] Similarly, 

fetuses with CHD have approximately 10% smaller total brain volumes than healthy fetuses 

in utero, with delays in cortical development detected in fetuses with hypoplastic left heart 

syndrome as early as 25 weeks gestation.[21–23] Thus, pathophysiologic processes 

impeding structural brain development likely precede birth.

Abnormal fetal perfusion and/or oxygenation may play a role in fetal brain abnormalities. In 

hypoplastic left heart syndrome, for example, in utero blood flow to the brain is abnormal, 

such that in severe cases, blood must flow retrograde via the ductus to reach the brain. In 

other lesions, such as D- transposition of the great arteries, relatively deoxygenated blood is 

recirculated to the fetal brain, while the higher oxygen content blood from the placenta is 

directed towards the body. These aberrations in cerebral perfusion and oxygen content may 

be one factor impairing brain growth and development. Supporting this mechanism, infants 

with D-transposition of the great arteries show smaller head growth relative to somatic size, 

and a recent phase-contrast fetal MRI study demonstrated correlations between fetal brain 

weight and fetal cerebral oxygen consumption and ascending aortic arch saturation.[23, 24] 

Whereas fetal perfusion and oxygenation may play an important role in altered prenatal 

brain development, innate genetic factors are an alternative, or perhaps additive explanation. 

Future large, multi-center studies will need to investigate the variability in prenatal brain 

structure that may be explained by genetic influences.

Genetics Causes of CHD

The genetic basis of CHD is complex and incompletely understood. CHD is highly heritable, 

with one landmark population-based study in Denmark identifying a more than three-fold 

risk among first-degree relatives of CHD patients.[3] CHD can occur in isolation or as part 

of a recognizable phenotype characterizing a syndrome. Among identified syndromes, some 

have well established neurodevelopmental associations (e.g., trisomy 21) while others are 

often without coexisting neurodevelopmental issues (e.g., Holt-Oram). Single gene 

disorders, copy number variants, and chromosomal aneuploidy conditions have been 

associated with congenital heart disease and neurodevelopmental abnormalities. Several 

reviews highlight the increasing identification of genetic abnormalities among the cardiac 

population.[4, 25, 26] To date, it has been shown that approximately 40% of familial CHD, 

20% of sporadic CHD, and 50% of CHD with extracardiac congenital anomalies have an 

identifiable genetic etiology.[25]

Genetics Influences on Neurodevelopment in CHD

Early and long-term neurodevelopmental outcome studies have suggested a strong genetic 

contribution to neurodevelopment in CHD. Whereas few studies have performed routine 
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genetic testing or universal clinical exams as part of the study protocol, most stratify for 

genetic or extracardiac anomaly detected during routine clinical care.

One multi-center study of over 1700 subjects with various forms of moderate/severe CHD 

evaluated with the Bayley Scales of Infant Development – Second Edition (BSID-II) at 15 

months found that definite/suspected genetic or extracardiac abnormality was associated 

with significantly reduced mental development and psychomotor indices.[7] Similarly, in the 

Single Ventricle Reconstruction (SVR) trial, approximately 80% of subjects underwent 

clinical or research genetic evaluations, and those who were classified as having genetic 

syndrome/other anomalies scored lower on the BSID-II mental development index at 14 

months of age.[27] Carey and colleagues evaluated infants who participated in the SVR trial 

as well as those who participated in the similar Infants with Single Ventricle (ISV) trial to 

assess the frequency of pathogenic copy number variants and associated outcomes. Infants 

with putatively pathogenic copy number variants that had been previously associated with 

known genomic disorders had globally lower scores on the BSID-II than those without 

pathogenic copy number variants.[28]

Shifting to late outcomes, in a study of adolescents who underwent the Fontan procedure, 

those with definite or suspected genetic abnormality based upon clinical examination and 

chromosomal microarray testing had lower full-scale IQ, higher autism spectrum quotient, 

and were more likely to require special developmental/education services.[12] Similarly, 

among 91 adolescents with tetralogy of Fallot, approximately one-quarter of whom had a 

genetic abnormality based on medical history or laboratory testing, those with genetic 

abnormalities scored broadly lower on measures of intellectual ability, academic 

achievement, and executive functioning.[6] Those with a genetic abnormality also had lower 

physical and psychosocial health-related quality of life.[29] Collectively, these data indicate 

a strong association between genetic abnormalities and neurodevelopmental outcome in 

CHD that persists from early childhood through adolescence.

Specific Genetic Abnormalities

Single gene disorders include the RASopathies and commonly identified syndromes such as 

CHARGE, Alagille, and Kabuki. The most well-known among the RASopathies is Noonan 

syndrome, often characterized by distinct facial features, short stature, a broad/webbed neck, 

and widely spaced nipples. The most common cardiac findings are pulmonary valve 

stenosis, atrial septal defect, or hypertrophic cardiomyopathy. Children with Noonan 

syndrome may have early motor delays, often secondary to hypotonia. Increasing evidence 

also suggests that while the majority of children with Noonan syndrome function in the 

general education setting, reduced executive functioning and high rates of ADHD are often 

present.[30, 31] Children with cardiofaciocutaneous syndrome may have similar facial, 

growth, and cardiac features but typically have more severely affected cognitive status.[32] 

Children with Costello syndrome have cognitive issues that fall on a spectrum between 

Noonan syndrome and cardiofaciocutaneous syndrome; developmental delay or intellectual 

disability is present in all individuals.[33] The neurodevelopmental prognosis for children 

with CHARGE syndrome (an acronym for Coloboma, Heart defects, choanal Atresia, 

Retardation of growth and development, Genital anomalies, and Ear anomalies) is 
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complicated by the common complications of significantly compromised vision and/or 

hearing and it has been shown that microcephaly, brain malformation, and extensive bilateral 

coloboma resulting in reduced vision are predictive of poor intellectual outcome in 25% of 

individuals.[34] Finally, Kabuki syndrome, another single gene disorder, is also associated 

with neurodevelopmental delays; preliminary studies have suggested children have relative 

strengths in verbal and nonverbal reasoning, with relative weakness in visuospatial skills.

[35]

Copy number variants in which chromosomal deletions or duplications alter the gene dosage 

of multiple genes simultaneously are implicated in multiple well known CHD syndromes 

including 22q11 deletion syndrome (also known as velocardiofacial or DiGeorge syndrome), 

Williams syndrome, 1p36 deletion syndrome, and 1q21.1 duplication. All of these disorders 

are associated with significant developmental delays and cognitive abnormalities as are 

whole chromosomal aneuploidies including Trisomies 13, 18, and 21 and Turner syndrome 

(monosomy X). These disorders are well studied, and the specific details of the 

neurodevelopmental outcomes are beyond the scope of this review.

A number of genes have been reported in association with isolated (non-syndromic) CHD 

including NKX2.5, GATA4, ELN, NOTCH1, and TBX20 and are thought to explain about 

10% of nonsyndromic CHD.[36] To date these genes have not been linked to an increased 

risk of neurodevelopmental complications beyond those associated with complex CHD.

Massively Parallel Sequencing

Massively parallel sequencing technology (MPS), such as whole exome and whole genome 

sequencing, holds great potential for elucidating the genetic connections between heart and 

brain disease, yet the science remains in its infancy. In one landmark study, more than 350 

parent-child trios, comprised of children with sporadic severe CHD and no known genetic 

diagnosis, underwent whole exome sequencing.[5] Not surprisingly, researchers identified 

strong enrichment of loss of function/damaging missense mutations particularly among 

those genes with high heart expression. However, they also identified marked overlap 

between these “damaging” de novo mutations and previously reported mutations associated 

with neurodevelopmental disorders, particularly those of chromatin modifiers. Among those 

subjects who had CHD and a neurodevelopmental disorder, the risk was particularly 

increased. Thus, substantial overlap may occur between the genetic mutations that cause 

CHD and those that cause neurodevelopmental disorders. In the future, those children with 

mutations in these shared pathways may be identified as those for whom early 

developmental services are especially indicated. These emerging findings also provide 

important mechanistic insight into the overlap of CHD and neurodevelopmental disorders.

Conclusion

Early in the discovery of neurodevelopmental disorders in CHD, medical and particularly 

operative variables were the focus of prospective and cross-sectional clinical studies because 

they had the potential to be modified and thereby improve the long-term trajectory for a 

child with CHD. Over the past ten years, evidence has emerged that abnormalities in brain 

structure are present at and even before birth, and that further mitigation of 
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neurodevelopmental sequelae will require not only optimization of postnatal management, 

but also understanding the innate genetic and prenatal contributors to brain development. 

Future large, multi-institutional studies will be needed to study the percent variability in 

neurodevelopmental outcome that is contributed by prenatal hemodynamic and genetic 

factors on brain development, as well as the interaction between these factors and the 

postnatal environment in determining outcomes. Moreover, shifting technological advances 

(e.g., whole exome sequencing) into routine clinical practice will establish a broader 

understanding of the mutations that contribute to neurodevelopmental disorders and the 

variations in expressivity and penetrance. Ultimately, refinements in early identification of 

the patients at highest risk of developmental disorders will allow clinicians to tailor the 

intensity and focus of early intervention services to neurodevelopmental risk level, a critical 

triage for a relatively scarce resource, and will improve counseling for families.
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Key Points

• Genetic abnormalities are identified in up to 50% of children with syndromic 

CHD, and at least 10% of children without a recognizable clinical phenotype.

• Neurodevelopmental impairment is common in children with CHD, and those 

children who have genetic/extracardiac abnormalities are consistently shown 

to be at highest risk.

• Smaller brain volumes and dysmature brain structure are seen in neonates and 

fetuses with CHD suggesting that innate and/or prenatal factors may play an 

important role in altering brain development.

• Marked overlap exists between deleterious de novo mutations and previously 

reported mutations associated with neurodevelopmental disorders, suggesting 

that substantial overlap may occur between the genetic mutations that cause 

CHD and those that cause neurodevelopmental disorders.
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