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Abstract

Mitochondria serve a primary role in energy maintenance but also function to govern levels of 

mitochondria-derived reactive oxygen species (mROS). ROS have long been established to play a 

critical role in tumorigenesis and are now considered to be integral to the regulation of diverse 

signaling networks that drive proliferation, tumor cell survival and malignant progression. mROS 

can damage DNA, activate oncogenes, block the function of tumor suppressors and drive 

migratory signaling. The mitochondrion's oxidant scavenging systems including SOD2, Grx2, 

GPrx, Trx and TrxR are key of the cellular redox tone. These mitochondrial antioxidant systems 

serve to tightly control the levels of the primary ROS signaling species, H2O2. The coordinated 

control of mROS levels is also coupled to the activity of the primary H2O2 consuming enzymes of 

the mitochondria which are reliant on the epitranscriptomic control of selenocysteine 

incorporation. This review highlights the interplay between these many oncogenic signaling 

networks, mROS and the H2O2 emitting and consuming capacity of the mitochondria.
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Introduction

Mitochondria have emerged as integral participants in the regulation of cellular signaling, in 

part, through the generation and consumption of reactive oxygen species (ROS) under both 

physiologic and pathologic conditions. ROS are produced in many cellular compartments 

including phagosomes, peroxisomes, endoplasmic reticulum, cellular membranes, and 

mitochondria 1–3. Mitochondrial ROS (mROS), metabolic byproducts of normally and 

functionally active mitochondria as a result of electron leak during oxidative 

phosphorylation and reduction of molecular O2
4, have gained the attention of the cancer 

research community as their critical role in tumorigenesis continues to be unraveled.
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mROS encompass a number of primary reactive species including superoxide anion (O2
•-), 

hydroxyl radical (•OH), hydrogen peroxide (H2O2), and singlet oxygen (1O2) 5–9. 

Incomplete electron transfer through electron transport chain (ETC) complexes I and II 

results in O2
•- production in the mitochondrial matrix, while electron leak at complex III 

generates O2
•- in both matrix and intermembrane space. Intermembrane space O2

•- can more 

readily travel to the cytosol and has been shown to modify DNA 10–13. The contribution of 

the different ETC complexes in the production of mROS varies when comparing healthy to 

pathological states as reviewed by Zorov et at (2014) 9. It is thought that under most 

pathologic conditions that complex I is the primary site of O2
•- production while complex III 

generates O2
•- as a result of hypoxic signaling and hypoxia inducible factor (HIF) activation 

in both pathological and physiological instances 14. Mitochondrial-localized NADPH-

oxidase 4 (Nox4) also produces mROS predominantly in the form H2O2
15,16. Nox4 is 

implicated in the pathophysiology of numerous disease processes and its inhibition can 

induce mesothelioma cell apoptosis9,17; however the signaling events that drive the latter 

process are yet undefined. In addition, monoaminoxidase (MAO), an important flavoprotein 

resident of the outer mitochondrial membrane, is another H2O2 generator during ischemia/

reperfusion injury in the brain and heart 18–20. As noted, there are multiples sources of 

mROS with the capacity to modulate cellular physiology in both beneficial and deleterious 

ways.

As both ROS production and scavenging are necessary to maintain cellular health, different 

antioxidant systems such as SOD2, Grx2, GPrx, Trx and TrxR, play coordinate roles in 

preserving redox balance. Disruption or overpowering of the antioxidant systems can lead to 

oxidative stress that induces damage to biomolecules that participate in numerous disease 

processes including cancer 21–25.

Historically, tumors were associated with high levels of ROS that induce tumorigenesis 

through DNA damage. In addition tumors are associated with a switch in the metabolic 

activity of the mitochondria called the Warburg effect (aerobic glycolysis with lactate 

production)26,27. While those associations remain true, new discoveries have increased the 

interest of the scientific community in unraveling the role of the mitochondria in cancer 

pathophysiology, as mROS production, redox regulation, and apoptotic signaling are all 

linked to cancer etiology 28. The exploration of mitochondria's beneficial and deleterious 

effects in cancer's pathophysiology through mROS regulation is an active research area. This 

review provides a summary of the mitochondria's role in the ROS regulation of cancer.

mROS in physiological cellular regulation

In physiological conditions mROS participate in the regulation of a diverse array of 

signaling networks. H2O2-mediated cysteine oxidation is the primary mode by which mROS 

participate in regulating proliferative and survival signals 29–32. Cellular proliferation can 

also be regulated by H2O2 through different mechanisms such as: phosphatase with 

sequence homology to tensin (PTEN) inactivation 33,34, activation of cyclin dependent 

kinase 1 (Cdk1) 35 (Lim 2015), inhibition of the protein tyrosine phosphatase (PTP1b) and 

mitogen-activated protein kinase (MAPK) phosphatases 36,37, propagation of growth factor 

cascades by activation of Lyn and Syk kinases 38, and positive regulation of the transcription 
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factor activator protein 1 (AP-1) through c-Jun binding at the collagen production regulator 

CCN1 promoter site 39.

In addition to cellular proliferation, angiogenesis is induced by the upregulation of vascular 

endothelial growth factor (VEGF), by mROS transcriptionally and through mROS-induced 

HIF stabilization 40–42. mROS-induced HIF stabilization allows for its binding to hypoxia 

response element (HRE) to express hypoxic adaptation genes 43,44 in an adaptive response to 

low oxygen levels.

Therefore, while high levels of ROS have traditionally been considered harmful, evidence 

shows that the mitochondria's role in regulation of ROS production and homeostasis is 

crucial for maintaining normal cellular function.

mROS in cancer progression

Oxidative stress, or the abnormal accumulation of ROS has long been associated with 

several disease processes including cancer 45–49. In fact the characteristic unrestricted 

growth pattern of tumor cells in response to ROS accumulation has been the focus of interest 

in several recent studies 50,51. It has also been established that while ROS may have a 

mitogenic effect in tumors50,51, at higher levels they can induce damage in cancer cells and 

induce apoptosis or necroptosis if not counteracted by antioxidant systems 27,52–55 (Figure 

1). This shows that in terms of cellular growth and proliferation, just as healthy cells, cancer 

cells need to achieve a delicate redox balance to ensure survival.

As cancer cells utilize the mitogenic effects of ROS to induce cellular proliferation, several 

mechanisms exist to ensure an adequate ROS supply. Deactivation of tumor suppressor 

genes 56–58, oncogene expression 59 and mutations in mitochondrial DNA (mDNA) 60 are 

some mechanisms that are ROS-regulated and that can in turn regulate tumorigenic ROS 

production to ensure such supply.

Tumor suppressor genes that regulate cell proliferation, differentiation, apoptosis, and other 

vital cellular activities respond to oxidative stress by regulating both antioxidant and pro-

oxidant responses as reviewed by Vurusaner 2012. In particular, mROS-mediated regulation 

of the tumor suppressors p53, p21, p16, FoxO, retinoblastoma (RB) and breast cancer 

susceptibility genes 1 and 2 (BRCA1 and BRCA2) 56 has been shown. p53 for example can 

both promote and limit ROS production to induce apoptosis or restrict DNA damage, 

respectively 6162. The FoxO family of transcription factors controls antioxidant levels and 

both regulates and is regulated by ROS and mROS through acetylation, phosphorylation, and 

ubiquitination 63. FoxOs can promote apoptosis in response to chemotherapy and can also 

induce cell quiescence 63. In breast cancer cells the inhibitory phosphorylation of FoxO is 

induced by ROS-dependent protein tyrosine phosphatase PTPN12 oxidation, promoting 

tumorigenesis 64. Also, Sirtuin 3 (SirT3), a mitochondrial localized tumor suppressor, 65 has 

been shown to decrease tumorigenesis in part by inhibiting mROS production and HIF-1α 
activation in fibroblast and colon carcinoma cell lines 66.

Oncogene expression may also affect mROS generation and tumor proliferation. The Ras 

and Myc oncogenes for instance, promote oxidant production in mitochondria and other 
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organelles and can modulate tumorigenic and migratory signaling 57,67–69. Oncogene-driven 

ROS production induces mDNA mutations and mitochondrial dysfunction further enhancing 

ROS levels and apoptosis 70,71. In a murine model of lung cancer, complex III 57, and 

complex I 72 were shown to be the major source or ROS required for Kras mediated 

anchorage-independent cell growth 73.

Mitochondrial DNA instability is another mechanism that contributes to tumorigenesis in a 

canonical Wnt/β-catenin independent pathway that involves increased mROS production and 

oxidative mDNA damage as shown in a mouse model for intestinal cancer, 74. Further both 

mitochondria-generated O2
•- and H2O2 have been shown to induce mutations in the gene of 

mitochondrial complex I's nicotinamide adenine dinucleotide dehydrogenase subunit 6 

(ND6) in HepG2 cells75. This is consistent with the findings by Ishikawa et al. (2008) 72 

where mutations in the gene encoding ND6a increased the metastatic potential of mouse 

tumor cell lines which was reversed by pretreatment with ROS scavengers. Moreover, 

inhibition of complex I in osteosarcoma cell lines results in increased mROS production and 

AKT activation which promotes cell survival 76.

Other ROS-mediated pathways in cancer include the activation of kinases, inhibition of 

phosphatases, and regulation of phosphoproteins and proteinases 77–81. Some other 

pathways are shared between healthy and cancer cells in term of cellular proliferation. As an 

example, the mechanisms by which mROS induce angiogenesis during hypoxia via mROS-

induced HIF-1α stabilization, are also utilized by cancer cells to induce tumor growth and 

proliferation with deleterious effects to the host 66,82,83. HIF-1α has been associated with 

invasiveness of several types of cancer 25,84–87. In addition, matrix metalloproteinases 

(MMPs), a group of endopeptidases that hydrolyze extracellular matrix (ECM) components, 

have long been known to participate in tumor progression 88–90. As both MMPs and HIF-1α 
may play critical roles in metastatic disease progression, and mROS play critical roles in the 

regulation of both MMPs 91,92 and HIF-1α 93, it is very likely that their contribution to 

tumorigenesis may be controlled by redox-dependent programming under mitochondrial 

control.

Mitochondrial antioxidant systems

It is known that a precise regulation of ROS formation and scavenging is crucial for 

maintaining cellular and organismal homeostasis. For this purpose several enzymatic and 

non-enzymatic processes occur in order to coordinate the conversion of molecules from 

highly reactive into less reactive ones 9,24. Examples of these processes are the oxidant-

scavenging activity that occurs through the superoxide dismutases (SOD), peroxidase, and 

catalase enzymatic systems at distinct cellular locations 94. For instance, reactive O2
•- is 

converted into H2O2, by superoxide dismutase (SOD)1 in the cytosol, by SOD2 in the 

mitochondrial matrix, and by SOD3 in the extracellular space 24,95. Reduction of H2O2 into 

H2O restricts reactive •OH formation through fenton chemistry and is regulated by both the 

catalase and the peroxidase systems such as the thioredoxin/ thioredoxin reductase/

peroxiredoxin (Trx/TrxR/Prx) and the glutathione/glutathione peroxidase (GSH/GPx) 

systems 94 (Figure 2). These redox systems seem to be independently regulated, and allow 

for the selective signaling regulation of the redox state 96. Moreover, the 
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compartmentalization of some of these systems also denotes a localized effect of their 

regulating functions; for instance, the Trx2/TrxR2/Prx3 system in the mitochondria is an 

independent system from the Trx1/TrxR1/Prx system in the cytoplasm and the nucleus. The 

GSH system on the other hand is not exclusive of the mitochondria as it interacts with the 

cytosolic GSH system to enact its effects97.

The detoxification from ROS in the cytoplasm, or mROS in the mitochondria, is the main 

purpose of these antioxidant systems. When H2O2 is not cleared by these systems, it can 

produce protein thiol oxidation, which alters cellular signaling pathways for cellular 

division, differentiation and apoptosis 50. The protein thiol oxidation can be reversed by Trx 

and Grx, both of which depend on TrxR and GSH for reduction 98. In turn, both TrxR and 

GSH's reduction depends on NADPH oxidation to maintain a cellular redox balance. The 

thiol-reducing activity of GSH and Trx is then crucial for the other antioxidant elements to 

function properly. In addition to its role in the regulation of the cellular redox state, both 

Trx1 and Trx2 can activate an apoptotic response via forming a complex with apoptosis 

signal-regulating kinase 1 (ASK-1) in response to oxidative stress 99.

It is no surprise then, that while the mitochondrial production of ROS promotes tumor cell 

proliferation and metastasis, efficient ROS scavenging often inhibits cell proliferation in 

distinct cancer cells types and has been used to assign a tumor suppressor function to a 

number of ROS mitigation newtworks28. Thus, a special interest continues to develop in the 

mitochondria's antioxidant systems and their role in cancer pathophysiology as described 

below.

SOD2 / MnSOD2

Manganese superoxide dismutase (SOD2) is a mitochondrial antioxidant enzyme that 

catalyzes the conversion of O2
•- to H2O2 100,101. SOD2 contributes to the regulation of cell 

proliferation, transformation, migration, invasion and angiogenesis primarily through the 

redox-dependent modulation of the transcription factors NF-KB, HIF-1, AP-1 and 

p53 100,102–104. SOD2 deficiency has been shown to have both pro- and antitumorigenic 

activity 102,105–107. High SOD2 expression can inhibit cell proliferation directly 108 or 

sensitize cells to the cytotoxicity of the anti-cancer drugs 109. In contrast, the SOD2-

dependent production of H2O2 enhances the malignant properties of tongue squamous cell 

carcinoma cells by increasing Snail, MMP1, and pERK1/2 protein levels and repressing E-

cadherin 110. SOD2 can also promote epithelial to mesenchymal transition (EMT) 111in 

breast cancer cells, which promotes tumor migration. Increased expression of SOD2 in 

tumor cells can also contribute to anoikis resistance 112, a type of apoptosis induced by 

disruption of cell-extracellular matrix contact 113, prolonging tumor cell's survival. As 

reviewed by Hempel et al (2011), a bimodal role for SOD2 during tumorigenesis is now 

considered. While SOD2 may have tumor suppressor activity during the initial stages of 

tumor progression, at later stages SOD2 levels appear to positively contribute to metastatic 

disease progression 108.

In a recent comprehensive meta-analysis a relation between SOD2 polymorphism and the 

development of non-Hodgkin lymphoma, lung cancer, and colorectal cancer was found 114 
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supporting the potential of SOD2 as a cancer biomarker 115. In addition, SOD2/catalase and 

SOD2/GPx1 ratios have been recently proposed as biomarkers for tumor progression and 

metastasis in several types of cancer 116. Considering the different roles of SOD2 in cancer 

progression, metastasis and inhibition according to different cancer types and stages108, 

careful assessment of SOD2 as a therapeutic target is indicated.

Grx2

Glutaredoxin-2 (Grx2) is another mitochondrial antioxidant system crucial for thiol/disulfide 

redox homeostasis 117. Grx2 system has been shown to be associated with anti-apoptotic 

signaling by protecting Trx2/1 from oxidation in HeLa cells118. Grx2 is also associated with 

regulation of angiogenesis in embryonic cells 119 and may have a similar function in tumor 

cells. Grx2 silencing sensitizes HeLa cells to death by anti-cancer drugs 120. Thus, the Grx2 

system has an anti-apoptotic function via thiol redox modulation in several cancer cell 

models28.

GPx-1 and GPx-4

Glutathione peroxidases (GPx) are another group of isoenzymes capable of metabolizing 

H2O2, using reduced glutathione (GSH) as a cofactor. From this group, GPx-1 and GPx-4 

are found in mitochondria 28. Both GPx-1 and GPx-4 are selenoproteins that use 

selenocysteine as a key active site amino acid 121. GPx-1 overexpression suppresses 

intracellular ROS122 which attenuates growth factor receptor activation mediated by 

oxidative stress 123, resulting in decreased cellular proliferation 122. Moreover, the loss of 

heterozygosity of the Gpx1 gene located on chromosome 3p is a prevalent event during early 

carcinogenesis in many types of cancers including lung 124, head and neck 125, breast 126 

and colon cancer 127. In GPx4, a single nucleotide polymorphism within the 3'UTR has been 

linked to an increase risk of colorectal cancer 128. While in normal cells GPx4 prevents 

necroptosis 129, in cancer cells overexpression of GPx4 decreases the growth of 

fibrosarcoma and pancreatic cancer cells while having no effect on melanoma cell 

growth 130. Similar to other antioxidant systems, the mechanisms related to GPx and its 

effects on tumors, are not yet fully understood.

Trx2/TrxR2/Prx3

The mitochondrial thioredoxin/ thioredoxin reductase/peroxiredoxin (Trx2/TrxR2/Prx3) 

system, with detoxifying effects via inhibition of mROS131, consists of a unique thioredoxin 

(Trx2) that is reduced via NADPH by its unique corresponding thioredoxin reductase 

(TrxR2), and by a corresponding peroxiredoxin (Prx3) that depends on Trx2 for its reduction 

after the resulting oxidation from its H2O2-scavenging functions50,97. The Trx/TrxR 

thioredoxin systems modulate thiol-dependent thiol-disulfide exchange reactions that control 

cell growth, proliferation, and other cellular functions 132.

The importance of this axis as a H2O2 scavenging system in the mitochondria, has been 

shown by increased sensitivity to ROS-inducing toxins 133, and by the presence of lethal 

phenotypes in mice lacking any of the Trx2/TrxR2/Prx3 components 134. Besides having a 
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key role in mitochondrial redox homeostasis, Trx2 also exerts a redox-dependent regulation 

of transcription and signaling factors that inhibit apoptosis through NF-Kβ 97 and ASK-1 

pathways 135. In HeLa cells, Trx2 reduces TNFα-mediated mROS production and apoptosis, 

with inhibition of subsequent signaling pathways 97,135.

TrxRs are a group of selenoproteins that are important for maintaining cellular redox 

balance and eliminating ROS. TrxR2 is the mitochondrial isoform of the three known TrxRs 

found in mammals. TrxR2 catalyzes the NADPH-dependent reduction of Trx2, which in its 

reduced state protects against elevated levels of ROS within the mitochondria 136. It has been 

reported that TrxR2 expression is highly elevated in liver cancer 137, TrxR1 levels on the 

other hand, the cytosolic isoform, are upregulated in many different cancers including 

breast 138, thyroid 139, prostate 140, liver 141, melanomas 142 and colorectal, where strong 

overexpression of both TrxR and Trx may correlate with overall tumor aggressiveness 143, 

perhaps through the HIF-1 pathway144. The elevated level of the enzyme is an adaptation to 

the increased ROS production resulting from the higher metabolic activity of cancer 

cells 145. The TrxRs have become an important molecular target in cancer treatment, since 

its inhibition results in an increased susceptibility in regards to cytotoxicity and cell 

death 146. Single nucleotide polymorphism (SNP) in both TrxR1 and TrxR2 have been found 

to be associated with the risk of developing colorectal tumors 147,148.

Peroxiredoxins are a group of peroxidases that reduce peroxides with conserved cysteine 

residues 149. Of the 6 mammalian isoforms, Prx3 and Prx5 (also found in peroxisomes) 

localize in the mitochondria 150. Prx3, member of the Trx2/TrxR2/Prx3 axis, is the major 

target of the H2O2 generated in the mitochondrial matrix, and its inhibition has shown to 

sensitize cells to apoptosis 150. Prx3's expression is upregulated in prostate151, colon152, and 

cervical153 cancer, and some studies suggest it has an important role in the regulation of 

ROS-induced apoptosis in antiandrogen-resistant cells, which may convey its potential as a 

therapeutic target in prostate cancer151. Moreover, in a malignant mesothelioma cell line, it 

was established that Prx3 levels allowed cells to thrive in response to elevated mROS levels, 

and that any alteration in the redox activity of Prx3 impaired cell proliferation pausing the 

G2/M phase 154, showing that this important peroxidase allows for proper cell cycle 

dynamics in this particular cancer cell line.

Determination of ROS and antioxidant concentrations

As the balance between oxidative stress and the antioxidant systems play a crucial role in 

cellular homeostasis and cancer pathophysiology, the quantification of both ROS and 

antioxidant levels has become of increasing interest to scientists. As an example, in murine 

and human breast cancer models, cancer stem cells (CSC), unlike other cancer cell lines, 

display lower ROS levels than their corresponding non-cancerous cells. The low ROS 

burden in the CSC's is associated with increases in endogenous antioxidant systems and 

confers radiation-resistance that is reversed by pharmacologic depletion of antioxidants 155. 

In this case, the quantification of ROS and the antioxidant systems in CSC's and their non-

tumor counterparts proved pivotal in defining strategies to reverse limit their therapeutic 

resistance.
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As indicated above, the redox properties greatly vary between different cancer types, which 

makes the quantification of ROS and the antioxidant system's activity a potentially useful 

parameter to determine each cancer type's response to determined therapies. We are not 

aware of any broad quantitative ROS profiling of tumor cells but our own studies and those 

of other groups indicate that the concentrations of steady-state [H2O2] (SS-[H2O2]) in select 

tumor cell studies range anywhere from 5-50 picomolar156,157. Metastastic bladder tumor 

cells display a near 2-fold (18-31 pM) increase SS-[H2O2] when compared to their non-

metastatic parental counterpart156. It is possible that chemotherapeutic strategies which both 

augment metabolic H2O2 production and limit ROS detoxification may allow for SS-[H2O2] 

to exceed these picomolar quantities and drive tumor cell death.

The ability to develop chemotherapeutic strategies based on the intrinsic redox-state of a 

particular cancer is reliant on precise monitoring of cellular ROS levels. For this purpose, 

several direct and indirect methods are used to measure oxidative stress, and their 

advantages and disadvantages have been reviewed by Poljsak et al 158. One of the 

disadvantages of direct quantification of free radicals is that the high reactivity and short 

half-life of such molecules, make it difficult to achieve steady concentrations of ROS in the 

micromolar range, limiting their accurate measurement with tools such electron spin 

resonance (ESR) in patients158.

Traditional indirect methods to quantify oxidative stress focus on detecting either more 

stable ROS intermediates or tracers of free radical damage in biomolecules158,159. Indirect 

methods include the measurement of total antioxidant status by colorimetric, enzymatic, 

fluorescent and immune methods, the measurement of endogenous enzymatic and non-

enzymatic antioxidant systems160, and the fingerprinting methods through high performance 

liquid chromatography, gas-liquid chromatography and colorimetric tests that are able to 

measure markers of oxidative DNA damage, lipid peroxidation and protein damage 158. 

Markers of oxidative stress damage include 8-OHdG (8-hydroxyguanosine), double-strand 

DNA breaks, 4-HNE (4-Hydroxynonenal), MDA (Malondialdehyde), PCC (protein carbonyl 

content), 3-Nytrotyrosine, advanced glycation end products and others158,161.

A new generation of redox-sensors include genetically encoded probes or direct chemical 

sensors. These novel sensors can provide sensitivity to monitor near picomolar fluxes in SS-

[H2O2] and we refer the reader to detailed reviews on this topic162,163.

The quantification of antioxidants and antioxidant systems in patients has its own 

challenges. The direct measurement of specific antioxidants is not only expensive but may 

fail to account for synergistic effects of antioxidants and leave many key antioxidants 

unmeasured158. Also, the changing values of oxidative stress markers over time and from 

patient to patient make it difficult to establish typical oxidative stress reference 

values 164,165. Therefore, while there is a continued effort to improve and expand the 

methods to quantify the oxidative stress status in an effective, efficient, cost permissive and 

accurate manner, to date, there is not a single established preferred method that would prove 

useful in clinical settings.
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Targeting mROS and anti-oxidant systems in anticancer therapy

Strategies which target mitochondrial metabolism has been shown to be effective in a 

number of different clinical cancer studies and these findings are reviewed in 166,167. 

However, targeting mitochondria redox activity as a therapeutic cancer target is still in 

development. As discussed above, ROS can both assist or limit tumor cell proliferation. 

While tumor cell lines increase their production of ROS some cell lines engage antioxidant 

networks to ensure that ROS levels do not surpass a fatal threshold 27,52–55,168,169. 

Therefore, it is not surprising that treatment of cancer with dietary antioxidants has been 

successful in some studies while ineffective or detrimental in others. For example, while 

supplementation with carotenoids may increase mortality in breast cancer patients 170, 

supplementation with vitamin C and E in the same patients was associated with reduced 

recurrence rate 170,171. Vitamin C also potentiates the anti-proliferative effect of doxorubicin 

in breast cancer 172 while high vitamin D levels are associated with increased survival in 

colorectal cancer patients 173.

Despite these findings, when translated into human clinical trials, dietary antioxidants lack 

consistent beneficial effects 174–177, probably due to a generalized rather than a localized 

mROS targeting 166. Alternate strategies include the use of synthetic mitochondria-targeted 

antioxidants to inhibit tumor cell growth and promote apoptosis. For instance, inhibition of 

cell proliferation and induction of apoptosis was achieved in pancreatic cancer cells with the 

mitochondrial antioxidants Mito-CP, and Mito-CP-Ac, by altering mitochondrial and 

glycolytic functions, and intracellular citrate levels 178. In addition, Mito-Q and Mito-

chromanol can selectively inhibit proliferation of different xenograft models of 

tumorigenesis as reported by Cheng et al 179. Moreover, cell growth inhibition and apoptosis 

was induced by decreased mitochondrial superoxide via the mitochondria superoxide 

scavenger MitoTEMPO in melanoma cells, while sparing healthy fibroblasts 180, allowing 

for enhanced tumor cell killing while limiting cytotoxicity in healthy tissue. Furthermore, 

the mitochondria deacetylase SirT3, mentioned previously in this review, which increases 

SOD antioxidant activity by lysine deacetylation and HIF-1α stabilization 181, can also 

attenuate tumorigenesis in cancer cell lines 66.

Considering that the targeted inhibition of mROS has shown to be beneficial as anti-cancer 

therapy, it would be reasonable to conclude that enhancing the activity of the natural 

antioxidant mechanisms in the mitochondria would convey the same results. However, the 

elevated expression of the natural antioxidants TrxR, in particular the mitochondrial TrxR2, 

has been encountered in several types of cancer, and in some instances has been correlated to 

tumor aggressiveness 138–143. Similarly, Grx2 has been shown to have an anti-apoptotic 

effect in tumor cells 28. Moreover it has been established that decreases in glutathione levels 

in murine breast cancer do not impede tumor development but increase Trx activity as a 

compensatory shift to buffer ROS levels 168. This latter observation suggests that cancer 

cells have the capacity to survive and adapt to glutathione inhibition by augmenting 

antioxidant function of the mitochondria. Targeting Trx2 has proven to be useful in 

inhibiting multiple myeloma growth by restricting proteasome function and promoting 

cytotoxic oxidative stress 182. In addition, Grx2 down regulation can sensitize cells to the 

cytotoxic effects of chemotherapy 120.
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In general, while anti-oxidant cancer therapy is justified by ROS's role in cancer initiation, 

promotion and progression, pro-oxidant cancer therapy is also justified by ROS's role in 

inducing apoptosis and reversing chemo- and radio-resistance in tumors 183. This paradox 

has raised the concern for the use of ROS- and antioxidant- targeted therapies, especially 

since effectiveness of this treatment seems to be dependent on the specific environment in 

which the cell exists, including its base oxidative stress status183. Some authors propose the 

creation of a “redox signaling signature”, comprised of different parameters including redox 

status, expression of antioxidants, cell signaling and transcription factor activation profiles, 

as a reference to determine if anti-oxidant or pro-oxidant therapy would be effective in the 

treatment specific type of cancer183. This strategy would still prove challenging as ROS 

levels seem to vary even within the same type of cancer, and as previously discussed, the 

quantification methods still need to be improved183.

In conclusion, to inhibit growth and induce apoptosis, both targeting the tumor's mROS and 

ROS-scavenging systems can elicit anti-cancer effects. Reducing the levels of mROS 

impedes survival signaling, while truncating the cancer's cell antioxidant armature induces 

cell death 182. Therefore, in determining whether to take a pro-oxidant or anti-oxidant route 

for cancer therapy, the elucidation of a “redox signaling signature” may be critical in this 

decision making process. The development of accurate and specific reference parameters for 

determining the redox status of specific cancer types is still greatly needed.

Epitranscriptomic control of mROS

Recent work indicates that mitochondria are key to the regulation of cellular H2O2 

consumption through Trx and glutathione dependent pathways, and that large changes in 

H2O2 efflux comes from altering the activity of mitochondrial matrix consumers185,186. The 

predominant matrix H2O2 consumers are the peroxiredoxins and glutathione peroxidases 

whose activity is indirectly or directly reliant on selenocysteine utilization, respectively186. 

Selenocysteine is the 21st amino acid and does not contain a dedicated codon. 

Selenocysteine incorporation during translation requires UGA-stop-codon recoding, which 

uses specifically modified tRNA for accurate decoding 187. Dynamic changes in tRNA 

modification are an epitranscriptomic signal because they regulate gene expression post-

transcriptionally (i.e., during translation elongation), (Figure 3). It has been shown that the 

stress-induced translation of many selenocysteine containing ROS detoxifying enzymes is 

dependent on the Alkbh8 tRNA methyltransferase and the tRNA modification 5-

methoxycarbonylmethyl-2′-O-methyluridine (mcm5Um) 188,189. Alkbh8 enzymatically 

methylates the uridine wobble base on tRNASelenocysteine to promote UGA-stop codon 

decoding. Also, Alkbh8 protein, stop-codon recoding and Alkbh8-dependent uridine wobble 

base modifications are increased in response to ROS stress (H2O2 or rotenone) to improve 

the translation of selenocysteine containing GPx and TrxR enzymes189. Thus it has been 

demonstrated that regulation of the ROS response is under epitranscriptomic control. Loss of 

Alkbh8-/- decreases the levels of many GSH metabolizing selenoproteins, promotes 

increased ROS and DNA damage levels, and confers enhanced sensitivity to oxidizing 

agents 189. Interestingly, over-expression of Alkbh8 has been identified in human bladder 

cancer models and invasive carcinomas, with in situ silencing of Alkbn8 suppressing 

invasion, angiogenesis and tumor growth in xenograft models 190. As Alkbh8 is a key node 
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in the regulation of cytoplasmic and mitochondrial H2O2 via selenoprotein regulation, 

cancer cell addiction to increased selenoproteins may be a coping mechanism that could be 

exploited therapeutically.

Preclinical studies suggest that drugs which affect glutathione metabolism can limit the most 

common renal malignancy, clear cell renal cell carcinoma 191. Moreover, GSH biosynthesis 

is significantly enhanced in patients with a mutation in fumarate hydratase which is 

associated with a highly malignant form of renal cancer192. Gottlieb and coworkers 

demonstrated that adducts formed between fumarate and glutathione that are observed as a 

result mutations in the TCA cycle enzyme fumarate hydratase (FH) disrupt glutathione 

metabolism leading to oxidative stress and cellular senescence 192. The FH mutation is 

commonly associated with a highly malignant form of renal cancer that was mimicked in 

mice dually deficient for FH and the senescence regulator p21, indicating that, in this model, 

senescence serves to restrict initiation of these renal cancers. Thus, it appears that disruption 

in mitochondrial GSH metabolism is met by engagement of the senescence which serves to 

restrict the emergence of cells with oncogenic potential. Future work will define whether 

epitranscriptomic defects in selenocysteine utilization leads to the engagement of the 

senescence and a shift in mitochondrial function, which would serve to restrict oncogenic 

activity and limit mROS production.

Conclusions

The metabolic state of the mitochondria has long been known to be altered in tumor cells 

relative to normal tissue because of the cancer cells limited access to both molecular oxygen 

and fuel sources. As outlined above it appears that the mitochondria also adapt to fluxes in 

ROS production which are either self-generated or from extra mitochondrial sources. It is 

not surprising that mitochondria through reactive thiols would serve as sentinels to any 

cellular redox changes as they are the primary sites for both generating and consuming the 

primary ROS signaling intermediate, H2O2. As a myriad of signaling networks have 

emerged as targets of ROS control it is very likely that in these many instances the 

mitochondrion is critical in signal regulation. The mitochondrion is a dynamic organelle and 

often juxtaposed intracellularly to regions of high energy demand. It is also likely that its 

cellular compartmentalization is dually purposed to engage coordinated redox-sensitive 

signaling nodules that are key for optimizing mitochondrial function. Under conditions 

where control of mitochondrial function and redox-signaling become discordant, as in 

response to an oncogenic or carcinogenic insult, the cell and mitochondria adapt by 

engaging protective response mechanisms that allow for cell survival and maintenance of 

cell function. The adaptive response often manifests itself as increases in antioxidant levels 

which confer a selective survival advantage that is often observed in aggressive metastatic 

cancers. Thus, it is not surprising that antioxidant-based cancer prevention strategies have 

shown poor therapeutic efficacy. Future therapeutic strategies might be directed at limiting 

global adaptions to mROS and ROS signaling. With the emergence of novel tumor 

mitochondria targeting strategies a new era in antioxidant based chemotherapeutic strategies 

is on the horizon.
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Figure 1. Mitochondrial redox control in healthy and cancer cells
ROS produced in the mitochondria, when balanced by the mitochondrial mediated 

antioxidant system, have several roles in healthy cell signaling pathways and cellular 

proliferation. An altered gene expression is seen in cancer cells, that have both an increased 

production of mROS, and an active antioxidant system to maintain a steady proliferative 

rate. In cancer cells a balanced production and scavenging of mROS allows the cell to 

perpetuate and induce more altered gene expression, and induce cellular mitosis, 

angiogenesis and metastasis through mROS mediated mechanisms, all in favor of cancer cell 

survival. In contrast, when the oxidant scavenging system is overpowered by mROS 

production in cancer cells, an oxidative-induced apoptosis occurs.

mROS-mitochondrial reactive oxygen species, H2O2—hydrogen peroxide, O2
•- -

superoxide, •OH-hydroxyl radical, 1O2-singlet oxygen, mAntioxidants-mitochondrial 

antioxidants, MnSOD2-manganese superoxide dismutase, Grx2-Glutaredoxin-2, GPX1-4-

Glutathione peroxidases 1 and 4, Trx-2- thioredoxin 2, TrxR2-thioredoxin reductase, RB-

retinoblastoma gene, mDNA-mitochondrial DNA, VEGF-vascular endothelial growth factor, 

HIF-1α-hypoxia inducible factor 1α, MMP- matrix metalloproteinase.
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Figure 2. Mitochondrial detoxification systems in cancer
The normal activity of the mitochondria's electron transport chain (ETC) produces reactive 

oxygen species (ROS), in particular O2
-, whose conversion into the less reactive H2O2 is 

catalyzed by the mitochondrial superoxide dismutase 2 (SOD2). Both O2
- and H2O2 can 

promote tumor proliferation and metastasis via Snail, MMPI and Perk1-2 regulation, thus 

other mitochondrial oxidant scavenger systems area activated to decrease the damaging 

effects of ROS. For this purpose, Gpx 1 and 4, and Trx 2, metabolize H2O2, while Grx2 

prevents Trx2's oxidation, allowing its detox activity. Trx2 via NP-Kβ and ASK-1 can have 

an anti-apoptotic effect in cancer cells. SOD2's antioxidant activity is increased by Sirt3 via 

HIF-1 stabilization and lysine deacetylation. SOD2 is also involved in the regulation of cell 

proliferation, transformation, and angiogenesis by mediation of the transcriptional factors 

NP-Kβ, HIF-1, AP-1 and p53, which can have varying and contrasting effects depending on 

cancer type and stage of the disease.
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Figure 3. Epitranscriptomic control of mitochondrial ROS detoxification systems
A. The mcm5U and mcm5Um modifications on the wobble position (34) of tRNASec are 

dependent on the methyltransferase activity of Alkbh8. B. Sec does not have a dedicated 

codon for use during translation, and its incorporation into a growing peptide utilizes the 

process of UGA stop codon recoding. The translation of selenoproteins requires transcripts 

with an internal UGA codon and a 3′ untranslated region (UTR) that contains a 

selenocysteine insertion sequence (SECIS). The Alkbh8 dependent mcm5Um modification 

has been shown to be increased in response to H2O2 exposure with mitochondrial specific 

TrxR2 and Gpx H2O2 detoxification protein levels dependent on Alkbh8 activity [171].
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