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Ontology-based systematical 
representation and drug class effect 
analysis of package insert-reported 
adverse events associated with 
cardiovascular drugs used in China
Liwei Wang1,2, Mei Li3, Jiangan Xie4,5, Yuying Cao1, Hongfang Liu2 & Yongqun He   4,6

With increased usage of cardiovascular drugs (CVDs) for treating cardiovascular diseases, it is important 
to analyze CVD-associated adverse events (AEs). In this study, we systematically collected package 
insert-reported AEs associated with CVDs used in China, and developed and analyzed an Ontology 
of Cardiovascular Drug AEs (OCVDAE). Extending the Ontology of AEs (OAE) and NDF-RT, OCVDAE 
includes 194 CVDs, CVD ingredients, mechanisms of actions (MoAs), and CVD-associated 736 AEs. An 
AE-specific drug class effect is defined to exist when all the drugs (drug chemical ingredients or drug 
products) in a drug class are associated with an AE, which is formulated as a new proportional class 
level ratio (“PCR”) = 1. Our PCR-based heatmap analysis identified many class level drug effects on 
different AE classes such as behavioral and neurological AE and digestive system AE. Additional drug-AE 
correlation tests (i.e., class-level PRR, Chi-squared, and minimal case reports) were also modified and 
applied to further detect statistically significant drug class effects. Two drug ingredient classes and three 
CVD MoA classes were found to have statistically significant class effects on 13 AEs. For example, the 
CVD Active Transporter Interactions class (including reserpine, indapamide, digoxin, and deslanoside) 
has statistically significant class effect on anorexia and diarrhea AEs.

Worldwide, the incidence of cardiovascular diseases has been increasing in recent decades1. Coronary heart dis-
ease and stroke remain the two leading causes of death in the poorer regions of the world, including China, which 
will probably remain unchanged in 20202, though the mortality from cardiovascular disease has declined in the 
US3 and most Western European countries4–6. In 1998, cardiovascular diseases claimed approximately 2.6 million 
lives, accounting for 40% of total deaths in China7. In 2014, cardiovascular diseases ranked the first major reason 
for death in China, accounting for 44.60% in rural areas, and 42.51% in cities8. The prevalence of cardiovascular 
diseases has been very high in the past decades. Consequently, the usage of cardiovascular drugs (CVDs), which 
are used to treat cardiovascular diseases, increased fast. A recent study revealed that Chinese hospital utilization 
of cardiovascular and cerebrovascular drugs increased 3.3-fold between 2006 and 20129.

CVDs may lead to various adverse events (AEs) including serious adverse events (SAEs). In Dutch, 34% of all 
hospital admissions due to adverse drug events (ADEs) were associated with CVDs10. The rate of AEs induced 
by CVDs in Iran was 24.2%1. In 2013, 81.3% of suspected drugs responsible for ADEs in China were chemical 
compounds, of which 10% were drugs used for diseases of the cardiovascular system11. Using two-year clinical 
data from a tertiary care hospital in India, Palaniappan et al. identified 463 AEs from 397 patients, and 18.1% of 
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the total AEs are related to CVDs12. In USA, FDA AE reporting system (FAERS) is the official drug-associated 
AE surveillance system13. FAERS has been used to mine AEs associated with CVDs such as statin14. However, no 
systematic study has been reported in analyzing AEs associated with large-scale CVDs using the FAERS database.

Biomedical ontologies with logical classification hierarchies have emerged and played important roles in 
knowledge management and data integration compared to vocabulary resources15. Specifically, a biomedical 
ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific 
biomedical domain and how these terms relate to each other. A biomedical ontology is computer-interpretable 
since the ontology is generated using a standard computer-understandable language such as the Web Ontology 
Language (OWL; https://www.w3.org/OWL/). A signature usage of ontology is the wide usage of the Gene 
Ontology (GO)16 to support gene expression data analyses. Since its first publication in 200016, the origi-
nal GO ontology has been cited by 18,000 publications. The Ontology for Biomedical Investigations (OBI)17, 
co-developed by over 20 biomedical communities, provides integrative representations of data in various areas of 
life-science and clinical investigations18–21. Other example usages of ontology include knowledge base construc-
tion22, data exchange23, natural language processing24–29, and metadata generation20,30,31.

The Ontology of Adverse Events (OAE) is a biomedical ontology designed from bottom to up to logically 
represent various AEs observed after medical interventions including drug administration32. Compared to con-
trolled vocabulary terminologies such as the Medical Dictionary for Regulatory Activities (MedDRA)33 and the 
World Health Organization (WHO)’s Adverse Reaction Terminology (WHO-ART)34, OAE has many advantages 
such as the inclusion of textual definitions and references, logical axioms, and well-formed hierarchical struc-
ture32. Instead of definining an adverse event as an AE as shown in MedDRA and WHO-ART, OAE defines an 
AE as a bodily pathological process that occurs after a medical intervention and has an unintended outcome of a 
symptom, a sign, or a pathological process (e.g., infection)32. Such OAE definition logically links the AE with the 
medical intervention (e.g., drug administration), patient records, adverse health outcome, and temporal relation 
between the medical intervention and health outcome32,35. Empirical evidences36–39 show that OAE provides a 
more robust hierarchical structure defintions than MedDRA in terms of AE classification.

Developed by the Veterans Health Administration, the National Drug File - Reference Terminology (NDF-RT) 
uses a description logic-based, formal reference model that links drugs with active ingredients, groups ingredients 
into a hierarchy, and categorizes drugs and ingredients into classes of Mechanism of Actions (MoA)40. The com-
binatorial usage of OAE, and NDF-RT would allow the mapping and study of the relations among AEs, drugs, 
chemical elements, and drug mechanisms of action.

In pharmacovigilance, the term drug “class effect” was first used to describe the efficacy of beta-blockers in 
reducing total mortality for myocardial infarction41, and the term is now taken to mean the same or similar ther-
apeutic or adverse effects of a “class” of drugs, i.e., drugs in the same group of chemical structures, mechanisms of 
action, or pharmacological effects42. To identify drug class effects, the levels of evidence from clinical experiments 
used to compare the efficacy and safety of drugs within the same class have been proposed43. Biomedical stud-
ies have found various beneficial class effects of drugs in terms of treatments. For example, beta-blockers exert 
a possible class effect in treating acute myocardial infarction44, and angiotensin converting enzyme-inhibitors 
(ACEIs) in treating heart failure patients45. It is also known that angiotensin receptor blockers have beneficial 
effects on glucose and lipid metabolism46. Adverse class effects of drugs also exist. A 2015 study uses visual and 
computational methods to explore the contribution of individual drugs to the class signal using MEDLINE liter-
ature data47. In this article, aligned with the previous definitions43–45,47–49, a class effect of drugs on a specific AE 
is also defined as an effect where all drugs in a defined class (or called category or group) are associated with the 
same AE. Identification of class effects of drugs on specific ADEs is important to drug development and patient 
treatment.

In this study, using drug package inserts and ontology-based technologies, we systematically studied the pat-
terns of AEs associated with all available CVDs in China with a focus on drug class effect analysis.

Methods
CVD-specific AE data extraction.  The names of active ingredients of all CVDs were first extracted from 
the Chinese textbook of New Pharmacology (17th version)49. Using these ingredient names, the database from 
the China Food and Drug Administration (CFDA) (http://app1.sfda.gov.cn/datasearch/face3/dir.html) was 
searched to identify the product names of the drugs that are manufactured domestically in China or imported 
abroad to China. The drug package insert documents were retrieved from the CFDA drug administration website 
(http://www.sda.gov.cn/WS01/CL1038/), or from drug manufacturers’ websites.

The CVDs, associated AEs, and other related information were initially collected using Microsoft Excel files. 
The section of “Adverse Reactions” of drug package insert documents contains text description of known AEs 
associated with the CVDs. These AEs were collected and inserted into an Excel file (see Supplemental File F1) 
with a pre-defined Excel template format. The Excel file also includes other information such as Chinese drug 
name, Chinese AE term, and English drug name.

English translation of Chinese drug and AE names.  English drug names of those CVDs are usually 
provided by Chinese drug package inserts. Manual English translation was conducted only for those drugs of 
which English names are unavailable in the package inserts. All Chinese AE names were also manually translated 
into English. To ensure correctness, all authors manually reviewed the Chinese and English translations until 
agreements were achieved.

Ontology mapping and new OAE term addition.  Translated English AE names were manually mapped 
to OAE terms. If there was no mapping, the new term was annotated and added into OAE by following the stand-
ard OAE term editing procedure32.

https://www.w3.org/OWL/
http://app1.sfda.gov.cn/datasearch/face3/dir.html
http://www.sda.gov.cn/WS01/CL1038/
http://F1
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English drug names were mapped to NDF-RT (version 01/19/2012). Such mapping enables the query of drug 
products based on their active ingredient(s), ingredient classification, and the mechanisms of action (MoAs) for 
different drugs. Most drug names in NDF-RT contain dosage information. However, some cardiovascular drug 
package inserts do not contain drug dosage information. In this case, we mapped the drug dosage to the lowest 
dosage of the drug from NDF-RT.

Development and query of OCVDAE.  The Ontology of Cardiovascular Drug Adverse Events (OCVDAE) 
was developed using the format of W3C standard Web Ontology Language (OWL2) (http://www.w3.org/TR/
owl-guide/). To develop OCVDAE, we first used OntoFox (http://ontofox.hegroup.org/) to extract two ontology 
subsets: (1) an OAE ontology subset that includes all the CVD-associated AE terms, and their related terms in 
OAE; and (2) a NDF-RT ontology subset that includes all the CVDs and associated ingredients and the mecha-
nisms of actions (MoAs). Like OAE, OCVDAE is aligned with the upper level Basic Formal Ontology (BFO)50. 
For ontology consistency, the extracted NDF-RT terms were also aligned with the BFO structure. Specifically, 
the drug products and drug ingredients are aligned under BFO:material entity branch, and the MoAs are aligned 
under the BFO:role branch. After the two ontology subsets are aligned under OCVDAE, we used Ontorat (http://
ontorat.hegroup.org/)51 to automatically generate annotations (e.g., Chinese drug names) and axioms that link 
drugs with AEs in OCVDAE. The input files of the Ontorat operation were the Excel files described above. The 
Ontorat output OWL files were then directly imported into OCVDAE. The overall ontology results were visual-
ized and manually edited using a Protégé OWL editor.

The OCVDAE source code and related documents have been released to the OCVDAE GitHub website: 
https://github.com/OCVDAE. The ontology was deposited to the Ontobee website: http://www.ontobee.org/
ontology/OCVDAE as well as BioPortal: http://purl.bioontology.org/ontology/OCVDAE.

The OCVDAE information is queriable using SPARQL52. The SPARQL queries can be performed under the 
Protégé OWL editor, or conducted using the Ontobee SPARQL web page after its deposition in the Ontobee RDF 
triple store53.

Calculation of drug proportional class level ratio (PCR) for an AE.  To calculate the class effect of a 
drug class on an AE, we designed and calculated a proportional class level ratio (PCR) of drugs in a drug class for 
a specific AE. Such a PCR score represents the ratio between the number of drugs in a class that are associated 
with an AE and the total number of drugs in the class. For a specific drug class and a specific AE, the PCR score 
is defined in Equation (1):

=PCR for drug AE No of drugs in a class associated with AE
No of drugs in the class

_ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ (1)

where the numerator is the total number of drugs associated with the AE in the drug class, and the denominator 
is the total number of drugs in the class. To count if a drug belongs to a drug class or not, mechanisms of action 
(MoA) hierarchy or related drug ingredient hierarchy as defined in NDF-RT can be utilized. All drugs under a 
specific ontological hierarchy of a class are considered as a drug under this class. Note that the specific AE can be 
a bottom level AE or intermediate or top level AE.

Our development of the PCR score is designed to mathematically calculate the drug “class effect”. Specifically, 
a drug “class effect” on AE is defined as a condition when all drugs in a class have the same AE47. Correspondingly, 
with the background of the total number of drugs from the same class, PCR calculates the percentage of drugs in 
the drug class associated with specific AE. Therefore, the drug class effect can be defined as the condition when 
PCR = 1. It is clear that PCR is critical to the analysis of drug class effect to drug AE. Furthermore, we used the 
PCR scores for heatmap analysis for better exploration of drug class effects on different AEs.

A drug can mean a drug chemical ingredient or a drug product. Drug chemical ingredient and drug product 
are different. A drug ingredient is typically matched to one or more drug products. In this study, the drug-AE 
class effect associations are defined at the ingredient level instead of drug product level. It means that an identified 
AE associated with an ingredient class occurs in at least one drug product containing the ingredient. For example, 
different dosage forms (e.g., tablet or lipid solution) of a drug may be associated with different AEs. As long as 
one dosage form (e.g., tablet) having the drug ingredient is associated with an AE, the ingredient of the drug is 
counted as a positive association with the AE. However, it is likely that the other dosage form (e.g., lipid solution) 
for the same drug is not associated with this AE. The study of the dosage form effect on the AE outcome is not 
within the scope of this study.

PCR-based heatmap exploration of drug class effects.  Heatmap analysis was performed using R 3.1.3 
to explore the correlation between drug classes and various AE classes from OAE. The hierarchical drug and AE 
classes were identified using NDF-RT and OAE, respectively. The heatmap was created using n × m count matrix, 
the value of each cell in the matrix is the PCR corresponding to the specific drug class and AE class. In this way, 
PCR scores were used to cluster the drug classes and AE classes.

Detection of statistically significant drug class effects on AEs.  While a PCR of 1 meets the definition 
of class effect, such a class effect may not be statistically significant within background of all drugs and all AEs 
considered. To identify statistically significant drug class effects on AEs, we adopted and modified the traditional 
methods (e.g., PRR, χ2, and minimal case filtering) of defining specific drug-AE associations.

The proportional reporting ratio (PRR) is a major statistical method for detecting the associations between 
individual drugs and AEs54. In this study, we extended the PRR algorithm to detect the class effect between drug 
classes and AEs. Specifically, the drug class level PRR (C-PRR) for a specific AE was computed to measure if a 
class (or group) of drugs is more associated with the specific AE. A 2-by-2 contingency table was constructed for 

http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://ontofox.hegroup.org/
http://ontorat.hegroup.org/
http://ontorat.hegroup.org/
https://github.com/OCVDAE
http://www.ontobee.org/ontology/OCVDAE
http://www.ontobee.org/ontology/OCVDAE
http://purl.bioontology.org/ontology/OCVDAE


www.nature.com/scientificreports/

4SCientifiC REPOrts | 7: 13819  | DOI:10.1038/s41598-017-12580-4

the C-PRR calculation (Table 1). The number of drugs with an AE and a drug class is defined as a. The number of 
drugs that belong to all other drug groups and are associated with the AE is assigned as b. The number of drugs 
belonging to the drug class, but having no association with the AE, is defined as c. The number of drugs unrelated 
to the AE or the drug class is defined as d. The C-PRR is then defined in equation (2):

− =
+
+

C PRR a a c
b b d

/( )
/( ) (2)

A large C-PRR score of the AE indicates that the drug class-AE association is richly reported compared with 
other drug class-AE associations available in the database. In our study, all CVDs and all their associated AEs are 
our database for the calculation. In pharmacovigilance field, PRR usually uses a cutoff of 254. The same cutoff can 
be used for C-PRR calculation.

Based on the same 2-by-2 contingency table, the Chi-squared score can be calculated and used as a criterion 
for AE significance test. The cutoff of Chi-squared test is usually >4, which is approximately of P-value of <0.0554. 
A similar method can be easily used to derive the drug class Chi-squared (C-χ2) score.

An additional filtering method commonly used in drug AE analysis is based on the minimal case reporting 
number54. Similarly, our class effect analysis includes a cutoff of at least 3 drug ingredients under a specific drug 
class category for a specific AE.

Results
Overall, this project aimed to systematically collect, ontologically represent, and analyze chemical drugs used to 
treat cardiovascular diseases (i.e., CVDs) and their associated AEs recorded in package insert documents, and we 
have focused our analysis on drug class effects on AEs (Fig. 1).

Collection and annotation of CVDs and their associated AEs.  Our focus on the CVDs used in China 
market is because the health issue of cardiovascular diseases is very severe in China2,7,8, and the usage of various 

All drugs in a drug 
class

All drugs in all other drug 
groups

an AE a (No. of drugs) b (No. of drugs)

Not the AE c (No. of drugs) d (No. of drugs)

Total a + c b + d

Table 1.  A two-by-two contingency table for C-PRR calculation.

Figure 1.  Workflow of our ontology-based cardiovascular drug class level effects on different adverse events 
(AEs). The results of collected CVDs, associated AEs, and ontology mappings are also labeled in this figure.
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CVDs to treat cardiovascular diseases has dramatically increased8,9. The development of OCVDAE allowed us to 
seamlessly integrate different types of data, including CVDs, CVD ingredient classes and MoAs, and AEs, facili-
tating systematic queries and class effect analysis.

In total, 259 drugs used in China were identified to treat cardiovascular diseases. These CVDs were associated 
with 1,383 unique AEs in Chinese, corresponding to 802 unique English AE terms (see Supplemental File F1). 
One unique English AE term may include multiple Chinese translation names. Therefore, the number of the 
English terms is less than the number of Chinese terms. Among the 802 unique AE terms, 391 AEs already existed 
in OAE, and 411 AEs were added into OAE as new terms. In total 194 drugs can be mapped to NDF-RT, of which 
181 drugs can be mapped to ingredients and associated classes, and 166 drugs can be mapped to MOA and asso-
ciated classes. Supplemental File F1 is a master data Excel file that contains all the collected information of CVDs, 
NDF-RT terms and IDs of these CVDs, CVD-associated AEs, and OAE terms and IDs of these AEs.

To better understand the top AEs associated with licensed CVDs, the hierarchical structure of the top 10 AEs 
was extracted from OAE and visualized using the Protégé OWL editor (Fig. 2). Half of the top 10 most frequently 
reported AEs belong to behavioral and neurological AEs, followed by 3 digestive system AEs (i.e., diarrhea, nau-
sea, and vomiting AE), one skin AE (e.g., rash), and one cardiovascular AE (i.e., hypotension). Note that hypoten-
sion raises alert for clinical use of CVDs in patients with the same condition.

The OCVDAE: Systematic representation of CVD-specific AE information.  The purpose of gen-
erating OCVDAE is to ontologically represent and seamlessly link all the information of CVDs, CVD ingredi-
ents, CVD mechanisms of action, and CVD-specific AEs at different hierarchical levels. The machine-readable 
OCVDAE can be reused and serve as a platform for further CVD-specific AE research.

Formatted using the Web Ontology Language (OWL)55 format, our developed OCVDAE ontology includes 
194 CVD classes, 2,948 classes and 126 annotation properties. It is noted that since some CVD classes mapped 
to more than one Chinese name, these 194 CVD drug classes were matched to 198 CVDs defined in Chinese. 
For these 194 CVD classes, OCVDAE includes corresponding CVD ingredients, MoAs, and associated 736 
AEs (Fig. 1). To illustrate the hierarchical structure of OCVDAE, Fig. 3 was generated to show a subset of the 
OCVDAE that contains two fluvastatin drugs and their related terms, axioms, and hierarchies in OCVDAE. As 
seen in the figure, OCVDAE imports related terms from OAE32, and NDF-RT40. Like OAE, OCVDAE uses the 
Basic Formal Ontology (BFO)50 as the upper level ontology.

OCVDAE knowledge queries and analysis.  The contents of the OCVDAE OWL file were expressed 
with Resource Description Framework (RDF) triples and stored in the Ontobee RDF triple store53. The RDF 

Figure 2.  Classification of top 10 AEs associated with CVDs. These OAE terms are visualized using Protégé 
OWL editor. The left-side digits represent the numbers of specific AEs directly associated with CVDs. The right-
side numbers represent the numbers of drugs associated with corresponding AEs. The red color-highlighted 
right-side numbers come from the total of 259 CVD drugs identified in our study. The blue color -highlighted 
numbers come from the total of 194 CVD drugs that were mapped to NDF-RT and included in the OCVDAE 
ontology.

http://F1
http://F1
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data model makes statements about resources in the form of subject-predicate-object expressions (i.e., triples). 
The SPARQL RDF query language52 is used to retrieve data stored in a RDF triple store. Figure 4 provides an 
example of querying the OCVDAE ontology using the Ontobee SPARQL query web page (http://www.ontobee.
org/sparql)53. In this example, the SPARQL script was developed to query the chemical ingredients under the 
Glycosides class and their associated drug products (Fig. 4). Similar scripts can be developed to query other 
information in OCVDAE.

Analysis of CVD drug class effects on AEs based on drug ingredient classification.  To illustrate 
our drug class effect analysis using drug ingredient classification, we generated the Fig. 5 heatmap that shows how 
36 top level NDF-RT ingredient classes are related to AE classes based on the PCR scores. This level of 36 ingre-
dient classes (e.g., “Fatty Acids”) is located at the third layer starting from “Chemical Ingredients” in NDF-RT 
(Fig. 3). Each of these 36 ingredient classes, e.g., Fatty Acids, includes its own hierarchy of chemical ingredients 
at different levels. A drug’s active ingredient (e.g., fluvastatin) usually is located at the bottom (or leaf) level of 
such a hierarchy (Fig. 3). Figure 3 also illustrates how our ontology represents the relation between a drug and its 
chemical ingredient component (or other pharmacological classes like MoAs).

These ingredient classes include 181 drugs used to treat cardiovascular diseases. The use of PCR scores in the 
heatmap allowed us to clearly visualize which drug class-AE associations represent the class effects. Specifically, 
since PCR = 1 indicates that the drug class effect, those cells with PCR = 1 represent class effects of drug classes 
on corresponding AEs or AE classes.

According to Fig. 5, 32 out of 36 ingredient classes have a class effect on behavioral and neurological AE, and 
26 of 36 ingredient classes on digestive system AE. Many class effects on AEs are found from different ingredient 
classes, e.g., “Ethers” ingredient class and Electrolytes class (Fig. 5). Glycosides and other 12 ingredient class such 
as Iron Compounds and Peptides were found to have vision blurred AE.

When the three additional criteria (i.e., C-PRR, Chi-squared, and drug number filtering) were used, only 2 of 
these 36 ingredient classes, i.e., Glycosides class (Fig. 6A) and Fatty Acids (Fig. 6B), were statistically significantly 
(Supplemental Table S1). As shown in Fig. 6A, Glycosides class (which has 3 ingredients: digoxin, deslanoside, 
and adenosine) has a class effect on vision blurred AE, which indicates that each of these 3 drug ingredients has 
an association with vision blurred AE. Furthermore, such a class effect is found to be statistically significant based 
on the three other factors: C-PRR, χ2, and minimal drug number filtering.

Similarly, as shown in Fig. 6B and Supplemental Table S1, the fatty acids class has a class effect on 8 AE classes 
such as insomnia, abdominal pain, myopathy, myalgia, and myositis AEs. According to the NDF-RT, the fatty acid 
drug class of all the collected CVDs includes three ingredients: atorvastatin, fluvastatin, and fenofibrate (Fig. 6B). 
These three ingredients have been used for lowering lipids in patients.

Figure 3.  Integrative OCVDAE ontology representation of drugs, AEs, drug ingredients, and MoAs. This is a 
screenshot of Protégé OWL editor of a subset of OCVDAE after OntoFox extraction of two Fluvastatin drugs 
and their associated terms from OCVDAE. As shown in this figure, OCVDAE imports many terms from 
NDF-RT and OAE and uses the BFO as the upper level ontology. Each drug (e.g., Fluvastatin NA 20 MG CAP) 
is associated with its ingredient, MoA, and specific AE terms (e.g., paresis AE). These terms and their parent 
upper level terms are organized in a well-defined hierarchy in OCVDAE.

http://www.ontobee.org/sparql
http://www.ontobee.org/sparql
http://S1
http://S1 
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Analysis of CVD drug class effects on AEs based on drug MoA classification.  Insights were gained 
by examining the association of NDF-RT mechanisms of action (MoA) with drugs. Specifically, our OCVDAE 
analysis identified a total of 26 NDF-RT MoA classes that are related to 166 CVDs (Supplemental Table S2). 
These 26 NDF-RT MoA classes are organized under the MoA class of ‘Cellular or Molecular Interactions’, which 
includes four direct subclasses: Biological Macromolecular Activity, Enzyme Interactions, Physiochemical 
Activity, and Receptors Interactions. Our study found that 97 CVDs are associated with Receptor Interactions, 
which further includes 8 drugs for active transporter interactions, 32 drugs for G-protein-linked receptor inter-
actions, and 57 drugs for ion channel interactions. Among 33 CVDs for the Enzyme Interactions MoA class, 31 
belong to the Enzyme inhibitors class, which includes 4 drugs for nucleic acid synthesis inhibitors, 1 for phos-
phodiesterase inhibitors, 11 for protease inhibitors, and 11 for sterol synthesis inhibitors (Supplemental Table S2).

Our MoA-based class effect analysis identified that 3 specific CVD MoA classes, each MoA class associated 
with different drug ingredients, have statistically significant class effects on 5 AEs (Table 2). Specifically, the Active 
Transporter Interactions MoA class has a class effect on anorexia and diarrhea AEs. The Active Transporter 
Interactions class includes 4 ingredients, i.e., reserpine, indapamide, digoxin, and deslanoside (Table 2). The 
Angiotensin-converting Enzyme Inhibitors class, which also includes 4 drug ingredients (e.g., enalapril) (Table 2), 
has a class effect on both cough increased and angioedema AEs (Table 2). In addition, the Cholesterol Synthesis 
Inhibitors class, which has 5 statin-related ingredients (Table 2), has a class effect on myalgia AE. It should be 
noted that the difference exists in that the class level effect is on specific class levels. For example, at the chemical 
structure level the CVD Lipids class includes three ingredients: atorvastatin, aluvastatin, and fenofibrate. While 
at the mechanism level, 5 statin-related ingredients (i.e., simvastatin, rosuvastatin, pravastatin, fluvastatin, and 
atorvastatin) are classified to have the same mechanism as Cholesterol Synthesis Inhibitors. NDF-RT classifies 
different drugs under these two categories. Different classifications may result in different results.

Discussion
The contributions of this study are multiple. First, we for the first time systematically collected CVDs and anno-
tated their corresponding AEs. Second, we developed an ontology OCVDAE to ontologically represent the 
CVD-AE information. Third, we developed and applied a combinatorial strategy to calculate statistically signif-
icant drug class-AE associations. Fourth, such a combinatorial strategy was applied to identify many scientific 
insights in terms of the AE patterns associated with CVDs at the drug class level.

To our best knowledge, our work represents the first study on collecting CVD-associated AEs from drug 
package insert information and ontologically representing and studying these AEs. Most studies on AEs of CVDs 
belong to retrospective studies without randomized and well-controlled clinical experiments, which primarily 
used clinical records of patients56–58, or belong to prospective case-series study that was based on information 

Figure 4.  OCVDAE SPARQL script query example. The Ontobee SPARQL server53 was used to perform this 
query that identified drug-ingredient pairs with the condition of ingredients under the branch of NDF-RT 
“Glycosides [Chemical/Ingredient]” (N0000007897). This query returned 8 results, all related to digoxin, 
deslanoside, and adenosine.

http://S2
http://S2
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collected by interviewing patients, reviewing patients’ charts, laboratory test monitoring, and confirmation of 
physicians59. Existing studies mostly focused on AEs associated with specific classes of CVDs, i.e., cutaneous 
adverse reactions or suicide risk of calcium channel blockers56,60, or overall AEs of a specific class of CVDs, i.e., the 
retrospective evaluation of adverse drug reactions induced by antihypertensive treatment58. The systematic study 
of adverse reactions induced by CVDs at one hospital in Iran used prospective case-series method59. Different 
from these retrospective and prospective studies, our package insert data collection came from well-controlled 
randomized clinical trials, therefore providing accurate knowledge on drug-associated AEs. Meanwhile, explora-
tory studies are necessary in order to detect unknown drug AEs. Therefore, the evidences extracted from package 
insert documents and identified from spontaneously reported case reports or new clinical studies are comple-
mentary to each other.

OCVDAE is the first ontology targeted to represent AEs associated with drugs used to treat a category of 
diseases, i.e., cardiovascular diseases. Previously we have developed an Ontology of Drug Neuropathy Adverse 
Events (ODNAE), which ontologically represents all drugs leading to a specific category of AEs, i.e., neuropa-
thy AEs61. Therefore, OCVDAE and ODNAE study drug AEs from two different aspects. It is noted that both 
OCVDAE and ODNAE extend OAE. To describe and organize liver injury induced by drugs, a drug-induced 
liver injury (DILI) ontology (DILIo)62. DILIo uses the Unified Medical Language System (UMLS) tool and the 
standardized terminology of the Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT). 
However, unlike OCVDAE or ODNAE, DILIo does not provide one-to-one associations between drugs and 
DILI histophological terms62. ADEpedia is a standardized knowledge base of AE using semantic web technology 
(38), which integrates general aspects of AEs and associated drugs. However, ADEpedia is not organized as an 
integrated ontology, which differs from our OCVDAE strategy.

The naturally hierarchical OCVDAE structure and knowledge provide an ideal framework for systematically 
analyzing the class effects of drugs on AEs. First of all, OCVDAE provides different hierarchical levels of class cat-
egorization of drugs, ingredients, and MoAs, and AEs. These hierarchical classes allow us to analyze class effects 
at different levels and with different class categorization. OCVDAE directly links drugs to AEs, allowing advanced 
queries and analyses. Second, we developed the mathematic PCR score to calculate class effects of drug classes 
on different AEs based on different drug hierarchies (e.g., ingredients, and MoAs). The PCR score is aligned with 
the general class effect definition, i.e., an effect of all drugs in a defined class having on the same AE. The PCR 
score provides a simple but powerful method to study class effects. For example, our PCR-based heatmap analysis 
allowed us to clearly visualize different class effects (Fig. 5).

Figure 5.  Heatmap analysis between 36 ingredient classes and AE classes based on PCR. Yellow, purple and 
blue are ordered from low to high number.
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In addition to the PCR-based class effect calculation and heatmap analysis, we further modified classical 
AE-drug association methods (i.e., C-PRR, C-χ2, and minimal number of drugs in a drug class) to identify 
statistically significant class effects. For the statistical drug class effect analysis, the background of C-PRR and 
C-χ2 is the total number of CVDs and all possible AEs associated with these CVDs with different drug classes. 
The C-PRR/C-χ2 methods test whether the specific AE is significantly associated with the specific drug class 
compared to all other AEs and all other drug classes in the database. We also use a minimal number of drugs in a 
drug class as a cutoff, which reflects the traditional method of using minimal case reporting number filtering for 
defining specific drug-AE association54. Such a combinatorial method provides a feasible strategy for detecting 
statistically significant drug class effect for specific AEs.

Our study differs in many ways from another study of drug class effect analysis using MEDLINE literature 
data and heatmap data analysis47. In that study, Winnenburg et al. extracted drug-AE pairs from MEDLINE by 
aggregating drugs into the Anatomical Therapeutic Chemical (ATC) classes and drug AEs into high-level MeSH 
terms. The association between drugs and AEs at the drug class level was explored using heatmaps and k-means 
clustering based on the PRR values that specified the significance of AE-drug associations47. In comparison, 
our study differs in data source, standard terminology, and method to identify class effect. Instead of using the 
MEDLINE literature, we used drug package insert data. Our semantic system used OAE for AE terms/hierarchy 
and NDF-RT for drugs, drug ingredients, and MoA classes. For the heatmap and clustering analysis, the biggest 
difference between these two methods is that our method uses the PCR while their method uses PRR. Since PRR 
does not include the information of drug classification, the PRR-based heatmap and k-means clustering analysis 

Figure 6.  Statistically significant CVD class effects on different AEs based on 36 CVD ingredient classification. 
(A) Statistically significant class effect of glycosides on vision blurred AE, meaning that each of all three drugs 
under this class (i.e., adenosine, deslanoside, and digoxin) is statistically significantly associated with the AE. 
(B) Statistically significant class effects of fatty acids on 8 AEs. Only three drug ingredients (i.e., atorvastatin, 
fenofibrate, and fluvastatin) are placed under the fatty acids class in NDF-RT. Each of these ingredients is 
statistically significantly associated with each of these 8 AEs. See the text for more detail.

MOA class and ingredients AE Ingredient No. C-PRR χ2 PCR

Active Transporter Interactions (reserpine, 
indapamide, digoxin, and deslanoside)

anorexia AE 4 3.05 7.28 1

diarrhea AE 4 2.10 4.13 1

Cholesterol Synthesis Inhibitors (simvastatin, 
rosuvastatin, pravastatin, fluvastatin, and atorvastatin) myalgia AE 5 4.00 12.19 1

Angiotensin-converting enzyme inhibitors (enalapril, 
captopril, benazepril, and perindopril)

cough increased AE 4 5.55 14.21 1

angioedema AE 4 5.55 14.21 1

Table 2.  CVD class effect based on CVD MOA classification.
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could only approximately and indirectly explore class effects (which rely on drug classification). Instead of using 
PRR values, we directly used the PCR scores that provide a simple and accurate method for directly calculat-
ing drug class effects on AEs based on drug ingredient or MoA classifications. Furthermore, we calculated and 
applied class level PRR (i.e., C-PRR), Chi-square (i.e., C-χ2) and minimal number filtering to generate statistically 
significant drug class effects on different AEs and AE classes.

In addition to the PRR and Chi-square methods used in this study for drug-AE association analysis, there 
are also other reported statistical methods, including the Bayesian Confidence Propagation Neural Network 
(BCPNN)63,64, Gamma Poisson Shrinkage (GPS)65, Reporting Odds Ratio (ROR)66, Reporting Fisher’s Exact Test 
(RFET)67. An R package PhViD68 is also developed to include these methods. All these methods are developed 
for general drug-AE association studies. In comparison, our PCR method is designed specificially for drug class 
effect analysis. The PCR value of 1 indicates a class effect result. Since PCR does not test statistical significance, the 
combined useage of PCR and statistical methods (e.g., PRR and Chi-square in this study) will allow the detection 
of statistical significant drug class effects.

Our findings showed that CVDs are associated with cardiac disorder AE significantly. Hypotension AE and 
palpitation AE are among the top 10 most frequently reported AEs (Fig. 2). Previous studies also revealed the 
potential of having hypotension AE following treatment with cardiovascular drugs, e.g., verapamil (a drug to treat 
hypertension)69,70. Nifedipine, a calcium antagonistic drug for treating high blood pressure, was also associated 
with short lasting palpitation event without arrhythmias71. Our findings confirmed the alert of potential risks of 
cardiac disorder AEs after the administration of CVDs.

Our OCVDAE-based drug class effect analysis identified many insightful drug class effects on different levels 
of AEs based on the drug ingredient or MoA classifications. For example, our statistically significant class effect 
analysis found that out of 36 CVD ingredient classes, the Glycosides class and Fatty Acids class was found to have 
class effects on one and eight AEs, respectively (Fig. 6). Three Glycosides class ingredients (i.e., digoxin, deslano-
side, and adenosine) are all associated with blurred eye AE. The association between deslanoside (or adenosine) 
and blurred eye AE has not been reported in the literature; however, digoxin has been reported to be associated 
with blurred eye AE in peer-reviewed publications72,73. In such a class level analysis, drug classes were based on 
NDF-RT hierarchical definition, and AE or AE classes were derived from the OAE ontology.

Our statistical analysis found three MoA drug classes having class effects on different AEs (Table 2). Our 
MoA-based study found that the 4 drug ingredients under the MoA class of angiotensin-converting enzyme 
inhibitors have a class effect on increased cough and angioedema AEs (Table 2). Interestingly, a 2013 report has 
clearly indicated that angioedema and cough are the two most important adverse effects of angiotensin-converting 
enzyme inhibitors74. In addition, our study found that 5 statin-related ingredients (i.e., simvastatin, rosuvastatin, 
pravastatin, fluvastatin, and atorvastatin), which have the mechanism as Cholesterol Synthesis Inhibitors, all 
have the class effect on myalgia AE. Our result is consistent with many literature reports. For example, it has been 
reported that statin-associated muscle symptoms, which most often consist of myalgia, may occur in more than 
10% of patients using statins75,76. Muscle toxicity caused by the statin has been focused, such as myalgia, myopa-
thy and rhabdomyolysis77–79. Furthermore, myalgia is found to be the most common adverse event of statin use 
according to the review of MEDLINE database English articles80. While the mechanism by which statins produce 
muscle injuries is still unclear, reduction of the cholesterol content of skeletal muscle membrane is considered 
as a possible mechanism81,82. The other possible mechanisms include mitochondrial mechanisms83 and inhibi-
tion of farnesyl pyrophosphate (an intermediate for the production of ubiquinone (Coenzyme Q10))81. All these 
mechanisms are likely interconnected. For example, coenzyme Q is a member of the electron transport system 
of the inner mitochondrial membrane where it converts the energy in carbohydrates and fatty acids into ATP 
to drive cellular machinery and synthesis84, and treatment with Coenzyme Q10 significantly affects cholesterol 
production85. A recent report indicates that Coenzyme Q10 protects against statin-induced myotoxicity in zebraf-
ish larvae86. How these individual mechanisms are interconnected to cause statin-induced myotoxicity deserves 
further investigations.

Our study also found that the Active Transporter Interactions drug class (with 4 ingredients) have a class effect 
on anorexia and diarrhea AEs (Table 2). The Active Transporter Interactions drug class includes 4 drug chemical 
ingredients: reserpine, indapamide, deslanoside, and digoxin. The finding of such a class effect on anorexia and 
diarrhea AEs means that each of the 4 chemical ingredients in the drug ingredient class has been found to be 
associated with these two AEs according to the package insert data we have collected. Such a finding suggests 
that some active transporter interaction(s), triggered by these drug ingredients, might participate in the forma-
tion of anorexia and diarrhea AEs. For example, reserpine is able to bind to the catecholamine transport system 
of synaptic vesicles and deplete catecholamines from peripheral sympathetic nerve endings87. Catecholamines 
regulate appetite control which is closely related to anorexia88. Deslanoside inhibits the Na-K-ATPase membrane 
pump, resulting in an increase in intracellular sodium and calcium concentrations89. The imbalance of electrolytes 
(including sodium and calcium) may result in anorexia. It has been found that anorectic patients have altered 
erythrocyte Na-K-ATPase pump90. Metabolic turnover of Na-K-ATPase may be regulated by catecholamines 
and other hormones91. Indapamide is an inhibitor of the the Na-Cl co-transporter (NCCT). The chloride deple-
tion can cause electrolyte perturbations, hypokalemic alkalosis, and anorexia92. While digoxin-induced anorexia 
mechanism is unclear, digoxin-induced toxicity (including anorexia) is often elevated when digoxin is combined 
with other drugs (e.g., quinidine)89. Digoxin is a substrate of P-glycoprotein, an efflux transporter found through-
out the epithelial cells of the intestine. It was found that quinidine inhibits the P-glycoprotein in the intestine and 
at sites of digoxin elimination (e.g., kidney)89. Therefore, digoxin-induced anorexia is often due to a drug-drug 
interaction that affects digoxin elimination and absorption through the P-glycoprotein efflux transporter sys-
tem. Therefore, these four chemical ingredients (i.e., reserpine, indapamide, deslanoside, and digoxin) all inter-
act with some transporters, which might lead to anorexia AE. By integrating the possible anorexia formation 
mechanisms induced by different drugs as described above, we hypothesize that these drugs induce anorexia 
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by interacting with some components of an integrative transporter-mediated pathway, which likely includes a 
chain of transporter-mediated interactions that regulate the metabolic levels and activities of catecholamine and 
electrolytes. However, one drug may interact with an off-target receptor or transporter, and there might be other 
mechanisms of these drugs that contribute to the anorexia AE. Therefore, more experimental investigations are 
required to test this hypothesis and the role of the drug-transporter interactions in anorexia AE formation.

Our innovative technique revealed drug class effects based on the structural level as shown in the Fig. 5 
heatmap and Mechanisms of actions level (Table 2). In our studies, it appears that the classification based on 
the Mechanisms of actions is more useful to generate plausible hypotheses, for example, our hypothesis about 
the Active Transporter Interactions drugs that have a class effect on anorexia and diarrhea. Meanwhile, our 
structure-based classification was only focused on the top two level structure classes. It is possible that class effects 
based on more specific and bioactive structural classification may become more useful, which can be further 
explored in the future.

Our study represents the first ontology-based methodology that identifies drug class effects on adverse events. 
Most existing drug class effect studies focus on the drug therapeutic effects. Since no systematical reference text-
book or electronic resource is available to introduce drug class effects on certain adverse events, our study also 
provides the first source of summarized drug class effects on adverse events.

In our future work, we may examine the effects of different variables (e.g., age, gender, and drug dose form) 
on the class effect outcomes93. These variables may change the health outcomes and the classification of drug class 
effects on AEs. For example, a Korean study, analyzed the patterns of ADEs in different age groups and showed that 
CVDs, among other drugs, was reported more frequently as causative drugs for ADEs in the elderly94. Clear sex 
differences between women and men (54% vs. 46%, respectively) were seen in a Dutch study in hospital admissions 
for ADEs due to CVDs10. In addition, different drug forms (e.g., capsule vs tablet) may induce different AEs. A 
detailed examination of these variables to drug class effects will be very important for precision medicine.

In the future, we will also use our OCVDAE ontology as a platform to further add updated information 
to explain the basic mechanisms of CVD-associated AEs. For example, a new publication by Imbrici-2017 et 
al.95 discloses ClC-K channels as a novel target of the AT1 receptor blockers valsartan and olmesartan. The ion 
Channel Interactions [MoA] in OCVDAE does not mention the ClC-K chloride channels. To explain the AEs 
of valsartan and olmesartan by this mechanism of action, we can improve OCVDAE and include the reported 
reference.

Our current study focused on the PCR score of 1, which represents a class effect, i.e., all drugs in the drug class 
being associated with an AE. In the future, we may also examine the scenario with a PCR score less than 1, which 
indicates that only a portion of the drugs in a drug class are associated with a corresponding AE. The portion of 
the drugs may have its special meaning under different conditions; for example, this portion of drugs may be 
classified into a more specific drug subclass. The higher the PCR score, the more likely the drugs in a drug class 
are associated with a corresponding AE or AE class.

In this study, we focused our analysis of package insert documents of the CVDs used in China market. Our 
future work may also focus on the systematic analysis of class effects of different CVDs or other drug classes 
used in USA and European markets using package insert documents or other types of drug AE related data. The 
knowledge obtained will be added to OCVDAE. We will also periodically update OCVDAE when new informa-
tion of drug AEs is obtained.

While package inserts contain the AE information for the patients, the Summaries of product characteristics 
is the information for the doctors, which is available in the European Union)96. Since the Summaries of product 
characteristics is not available in China, we did not use such information. In the future, we will consider the col-
lection of the Summaries of product characteristics in Europe and use them for our class level effect drug adverse 
event studies.

FAERS contains publically available data of over 2 million drug AE case reports97. Compared to package insert 
information, the FARES data were spontaneously reported by customers, distributor or health professionals, etc., 
and can be registered by arbitrary names, including trade names, abbreviations, and even typographical errors. 
Therefore, the FAERS data can be quite noisy and difficult to analyze. For Such FAERS data analysis, we envision 
that the conventional drug-AE correlation tests (i.e., PRR, Chi-squared, and minimal case reports) can be per-
formed first, followed by a PCR analysis.

Conclusion
In this study, we systematically collected cardiovascular drugs (CVDs) used in China and CVD-associated AEs 
from package insert documents, generated the OCVDAE ontology by reusing terms from the OAE and NDF-RT 
and adding CVD-AE associations, and systematically analyzed drug class effects on AEs based on OCVDAE 
knowledge. For the class effect analysis, we for the first time derived a PCR score based on the class effect defini-
tion, and calculated and applied PCR scores for heatmap visualization and identification of drug class effects. We 
also modified classical AE tests to generate the methods of class level PRR (C-PRR), Chi-square (C-χ2), minimal 
number of drugs in a drug class for a specific AE (or AE class). These methods were used to identify statistically 
significant class effects at the drug ingredient class level and mechanisms of action class level. The usage of our 
new methods also identified many scientific insights, facilitating knowledge integration and exploration.
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