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Abstract

Latino immigrants that work on farms experience chronic exposures to potential neurotoxicants, 

such as pesticides, as part of their work. For tobacco farmworkers there is the additional risk of 

exposure to moderate to high doses of nicotine. Pesticide and nicotine exposures have been 

associated with neurological changes in the brain. Long-term exposure to cholinesterase-inhibiting 

pesticides, such as organophosphates and carbamates, and nicotine place this vulnerable 

population at risk for developing neurological dysfunction. In this study we examined whole-brain 

connectivity patterns and brain network properties of Latino immigrant workers. Comparisons 

were made between farmworkers and non-farmworkers using resting-state functional magnetic 

resonance imaging data and a mixed-effects modeling framework. We also evaluated how 

measures of pesticide and nicotine exposures contributed to the findings. Our results indicate that 

despite having the same functional connectivity density and strength, brain networks in 

farmworkers had more clustered and modular structures when compared to non-farmworkers. Our 

*Corresponding Author: Laboratory for Complex Brain Networks, Department of Radiology, Wake Forest School of Medicine, 
Medical Center Blvd, Winston-Salem, NC 27127, USA. mbahrami@wakehealth.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neurotoxicology. Author manuscript; available in PMC 2018 September 01.

Published in final edited form as:
Neurotoxicology. 2017 September ; 62: 138–150. doi:10.1016/j.neuro.2017.06.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



findings suggest increased functional specificity and decreased functional integration in 

farmworkers when compared to non-farmworkers. Cholinesterase activity was associated with 

population differences in community structure and the strength of brain network functional 

connections. Urinary cotinine, a marker of nicotine exposure, was associated with the differences 

in network community structure. Brain network differences between farmworkers and non-

farmworkers, as well as pesticide and nicotine exposure effects on brain functional connections in 

this study, may illuminate underlying mechanisms that cause neurological implications in later 

life.
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1. Introduction

Latino immigrant workers employed on farms experience chronic exposures to 

cholinesterase-inhibiting pesticides such as organophosphates and carbamates [1, 2]. Such 

exposure to pesticides could place this vulnerable population at greater risk for the 

development of neurological dysfunction [3–5]. A recent longitudinal study by Quandt et al. 

[6] showed that total cholinesterase, acetylcholinesterase (AChE) and butyrylcholinesterase 

(BChE) activities in farmworkers are decreased during the agricultural season compared to 

non-farmworkers. Although the role of long-term exposures to low to moderate levels of 

pesticides remains controversial [7], a growing body of studies indicates that chronic 

exposure to cholinesterase-inhibiting pesticides is significantly related to cognitive 

impairment [8, 9]. The long-term effects of exposures to pesticides may include an increased 

risk of developing depression [10] or neurodegenerative disorders such as Alzheimer’s 

disease [11] and Parkinson’s disease [12–14].

Tobacco farmworkers are not only exposed to pesticides, but also experience nicotine 

exposure through dermal absorption. Tobacco farmworkers can have systemic nicotine levels 

that are comparable to regular smokers [15, 16]. While it is known that large doses of 

nicotine are toxic [17, 18], many studies have indicated that lower, nontoxic doses of 

nicotine improve cognitive performance through modulating the release of several 

neurotransmitters including acetylcholine and dopamine [19, 20]. An interesting finding is 

that nicotine may actually be protective against the development of Parkinson’s disease [21, 

22]. Co-exposure to pesticides and nicotine is particularly interesting since both 

cholinesterase-inhibiting pesticides and nicotine alter cholinergic neurotransmission. 

Pesticides increase cholinergic neurotransmission by blocking the degradation of the 

acetylcholine. Nicotine, on the other hand, increases cholinergic neurotransmission by 

directly binding to the acetylcholine receptor.

The basal forebrain cholinergic system has projections that broadly innervate the cerebral 

cortex and subcortical nuclei. Changes in cholinergic neurotransmission could therefore 

have far-reaching rather than local, brain effects. Thus, studies aimed at evaluating the 

neurobiological changes associated with exposure to pesticides and nicotine would benefit 
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by techniques that examine the brain as an integrated system rather than a collection of 

isolated brain areas.

Functional brain network analyses that use resting-state functional magnetic resonance 

imaging (rs-fMRI) have demonstrated great promise in examining systemic brain changes 

across health and disease [23–25]. FMRI, as a non-invasive technique, is sensitive to 

changes in blood oxygenation that occur in response to changes in brain acidity. The blood-

oxygenation level-dependent (BOLD) signal is sensitive to the changes in the relative 

amounts of blood oxyhemoglobin (higher) and deoxyhemoglobin (lower) that occur with 

increased neural activity [26]. A typical fMRI study is performed by collecting multiple 

(often hundreds) scans of the brain to identify the BOLD signal fluctuation that occur over 

time. Rs-fMRI measures the spontaneous fluctuations of the BOLD signal when the 

participant is not performing an explicit task [27, 28]. Approximately 95 percent of the brain 

metabolism occurs due to these spontaneous fluctuations [29].

The statistical association or dependency among BOLD signals from different parts of the 

brain image is referred to as functional connectivity [27], and represents the functional 

interactions among different brain areas. Brain network analyses are based on graph theory 

and evaluate the connectivity patterns across the entire brain rather than focusing on 

connectivity to and from a single brain area [30]. Brain networks and graph theory methods 

are growingly used in studies of the human brain because these methods examine the brain 

as an integrated system [31]. Within a systems view of the brain, circuits are critical for 

normal and abnormal neurological processes rather than individual brain areas. Brain 

network analyses are proving to be clinically meaningful in studies of neurodegenerative 

disorders such as Alzheimer’s [32–35] and Parkinson’s [36, 37] diseases, as well as for 

evaluating brain changes associated with smoking [38, 39].

This study used brain network analysis of rs-fMRI data and a mixed-effects modeling 

framework [40] to compare brain network connectivity patterns between Latino immigrant 

workers engaged in farm work to those not engaged in farm work. The network analysis was 

used to characterize global as well as local brain connectivity patterns. This study provides 

important evidence for the potential neurobiological impacts of pesticide and nicotine 

exposures on the brains of Latino farmworkers.

2. Materials and Methods

2.1. Participants

The analysis reported here is based on data collected as part of a larger research project, 

“Pesticide Exposures & Neurological Outcomes for Latinos: PACE4.” The PACE4 study is 

an ongoing community-based study with an initial size of 447 Latino male participants 

including migrant farmworkers and immigrant non-farmworkers. Farmworkers were 

recruited from east central North Carolina, and non-farmworkers were recruited from 

Forsyth County in west central North Carolina. Farmworkers were currently employed as 

agricultural laborers, and had worked in agriculture for at least 3 years. Non-farmworkers 

could not have worked in occupations in the past 3 years that exposed them to pesticides, 

such as farm work, forestry, landscaping, and lawn maintenance. The current study used the 
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same population as in [41]. Briefly, 81 of the PACE4 participants were recruited to have a 

brain MRI scan. The current study focused on 74 participants (48 farmworkers and 26 non-

farmworkers) with complete data, which including a brain image, at least had one blood 

sample for cholinesterase measurements, and one urine sample for cotinine measurements. 

Among the 7 excluded data, four participants had no blood sample, two had no urine sample, 

and one participant was missing both. All participants gave written informed consent for 

participation in the main study and consented again to participate in the imaging study. The 

study was approved by the Wake Forest School of Medicine Institutional Review Board.

Details of the parent study participant population [42] and this sub-population [41] have 

been previously reported. Participant characteristics for this study are included here for 

completeness. As shown in table 2.1, the farmworkers tended to be younger with less 

education. Neither difference achieved statistical significance, but both variables were 

included in the mixed statistical model. The smoking status was significantly different 

between the two groups. Due to this difference and our interests in the effects of nicotine on 

brain networks, smoking status and pack years were also included in the analyses. Note that 

there were significant differences in the country of origin with all farmworkers being from 

Mexico but 42% of non-farmworkers being from other countries. Despite this difference in 

country-of-origin, all participants in both groups identified as Latino.

2.2. Cholinesterase and Cotinine measurements

Whole blood acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) activities 

(umole/min/ml), and urinary cotinine levels (ng/ml) were used as indirect measures of 

exposure to pesticide and nicotine, respectively. Cholinesterase activity was measured from 

blood samples that were collected June 2, 2013, to October 20, 2013. Average across the 

summer (for those with multiple samples) was used in our analyses. Most participants had 

three or four samples but five individuals (four non-farmworkers, one farmworker) had two 

samples and a single participant (farmworker) had one sample. Cholinesterase activities 

were assayed with a modification of the radiometric method of Johnson and Russell [43]. 

Urine samples that were assessed for cotinine levels were collected between June 2, 2013, 

and October 20, 2013. The assay was performed by Salimetrics LLC using standard 

procedures. Details about the assays can be found in works published by Quandt et al. [6] 

and Arcury et al. [15].

2.3. Image acquisition

All imaging was carried out at Wake Forest School of Medicine using a Siemens 3T Skyra 

scanner equipped with a 32-channel head coil. For the functional data, whole-brain gradient 

echo-planar imaging (EPI) sequence was employed to acquire the blood-oxygenation level-

dependent (BOLD) contrast images with the following parameters: slice thickness = 4.0 

mm, in-plane resolution = 4 mm × 4 mm, TR = 1700ms, and 157 volumes with 35 

contiguous slices per volume. The first 8 image volumes were discarded to allow tissue 

magnetization to achieve steady-state. High-resolution (0.98mm×0.98mm×1.0mm) T1-

weighted scans were acquired in the sagittal plane using a single-shot 3D MPRAGE 

GRAPPA2 sequence with the following parameters: acquisition time = 5.0min and 30s, TR 
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= 2.3s, TE = 2.99ms, 192 slices. High-resolution images were used in preprocessing the 

functional images.

2.4. Image processing and network generation

The rs-fMRI data underwent a series of standard preprocessing steps using Statistical 

Parametric Mapping 8 (SPM8) software (Wellcome Trust Center, London, UK: 

www.fil.ion.ucl.ac.uk/spm/). T1-weighted structural images were first normalized to MNI 

standard space (www.mni.mcgill.ca) with 4×4×4 mm3 voxels. Functional scans were 

realigned to the first volume for head movement correction and slice-time corrected. 

Functional scans were then co-registered to their structural images, and transformed into the 

standard space using the registration transformation matrices. Low frequency drift and 

physiological noise were reduced through standard band pass filtering (0.009–0.08Hz), and 

regressing out motion parameters, and whole brain mean signal, mean white matter (WM), 

and mean cerebral spinal fluid (CSF) signals [44, 45] using in-house generated Matlab 

scripts.

Using the preprocessed data and the automated anatomical labeling (AAL) atlas [46], mean 

time series of 116 brain regions were extracted through averaging the time series of all 

voxels in each region. A functional brain network for each participant was constructed 

through computing the Pearson (full) correlation between all pairs of the time series. Each 

one of the 116 brain regions represents a node in the network and the correlation between 

the nodes quantifies the weighted edge between them. Negative correlations were set to zero 

for the subsequent analyses as multiple graph variables, clustering in particular, remain 

poorly understood in networks containing negative edges [47, 48]. This is a standard 

procedure for brain network analyses because most graph analysis algorithms that yield 

topological network properties cannot accommodate negative edges. We also generated 

networks using partial correlation due to its capability in distinguishing direct from indirect 

connections between brain regions [49]. Unfortunately, there were convergence problems in 

mixed model fits using partial correlations. Additionally, partial correlation may 

underperform full correlation in certain contexts due to the small fraction of indirect 

connections and the over removal of signal resulting from the large number of regressors 

[50]. Thus, all results presented here are for the full correlation analyses.

2.5. Mixed-effects modeling framework

Regression analysis is mainly used for two purposes: 1) predicting values of a dependent 

variable(s) from the values of a number of independent variables, and 2) determining which 

independent variables are associated with the dependent variable(s) and the magnitude of the 

association. This study used the regression analysis for the latter purpose. Since we had 

repeated measurements (i.e., thousands of functional connectivity measures between 

different brain regions for each person), a mixed-effects regression framework was 

employed to capture and account for the correlations between the repeated measurements of 

each participant. In other words, a functional connection between one pair of brain regions 

in a participant is not independent of the other pairs of connections within that participant’s 

brain. A mixed-effects regression framework allows dealing with this situation through 

including random effects for each participant.
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We used a two-part, mixed-effects modeling framework [40] to statistically compare the 

global and local network properties between Latino immigrant workers employed on farms 

to those in working in other industries with low likelihood of pesticide exposure. The 

modeling framework allowed comparing network properties between the two groups through 

the inclusion of interaction covariates. The flexibility of the mixed model also allowed for 

the inclusion of non-network variables. This allowed us to include cholinesterase enzyme 

activity levels and urinary cotinine (a nicotine metabolite) levels to quantify the relationship 

between brain network patterns and cholinesterase and nicotine levels. We were also able to 

control for important confounding variables such as age, education, and smoking status. The 

approach models both the probability of having a connection (presence/absence) and the 

strength of a connection if it exists. The modeling framework is detailed below.

Let Tijk denote a variable specifying whether a connection exists between node j and node k 

for the ith participant, and Wijk (Wijk ≥ 0) denote the connection strength (i.e. the (j,k)th 

element in the ith participant’s correlation matrix); then, we can write:

(2.1)

(2.2)

where pijk is the probability of having a connection between node j and node k for the ith 

participant, β is a vector of parameters corresponding to the fixed effects, and bi is the 

random effects vector for participant i. Fixed effects represent the population-based 

parameters, and random effects are participant-specific parameters that capture correlation 

between repeated measurements of each participant (i.e., capture between-participant 

variations). Assuming that Sijk is a non-zero correlation value (i.e. Sijk = Wijk > 0), the two-

part mixed-effects modeling framework can be defined as below (where the subscripts r and 

s denote parameters for the presence (Part 1) and strength (Part 2) modes, respectively):

(2.3)

(2.4)

Here Xijk and Zijk are design matrices for the fixed and random effects with the same set of 

covariates in both models, and εijk captures the random noise in the connection strength 

between node j and node k for the ith participant. Equation 2.3 is a logistic mixed-effects 

regression model that models the relationship between the probability (pijk) of having a 

connection and a set of covariates (Xijk). In general, logistic regression models are used for 
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modeling the probability of binary outcomes (presence or absence of a functional connection 

in our case). Equation 2.4 quantifies the relationship between the strength of present 

connections and the same set of covariates. FZT is the Fisher’s Z-Transform applied to 

correlation values to ensure the normality assumption is met. Using equations 2.3 and 2.4 we 

evaluated the relationships between a set of covariates and probability and strength of brain 

connections. Including interactions of brain network properties with the covariate of interest 

in these models allowed finding brain network differences between farmworkers and non-

farmworkers. To complement the mixed model findings, traditional univariate comparisons 

of brain network properties were also performed using a T-test.

2.6. Covariates

Farmworker Status (FWS)—FWS, our main covariate of interest, was a binary variable 

that distinguished farmworkers from non-farmworkers. We used farmworkers as the 

reference group. (FWS was set to zero for all connections corresponding to farmworkers and 

one for all connections corresponding to non-farmworkers.)

Network Covariates (Net)—Four metrics that represented different properties of the 

brain network were used. Network segregation, integration, and resilience were 

characterized by using the average clustering coefficient, average global efficiency, and 

degree difference in each nodal pair, respectively [51]. For degree, the difference was used to 

capture assortativity [52]. The overall modularity [53] was another utilized metric that 

quantified how much the network subdivides into interconnected communities (community 

structure).

Interaction Covariates (Int)—Interaction covariates included interactions of the four 

network metrics with FWS. These covariates determined if the relationships between the 

outcome variable (connection probability or strength) and network metrics (clustering 

coefficient, global efficiency, degree, and modularity) were different between farmworkers 

and non-farmworkers.

Exposure Covariates (Exp)—Blood acetylcholinesterase (AChE) and 

butyrylcholinesterase (BChE) activities (umole/min/ml) were used as markers of pesticide 

exposure. Urinary cotinine level (ng/ml) was used as a marker of nicotine exposure.

Confounding covariates (Conf)—Six variables including age (as a continuous 

variable), educational level, pack years of smoking as a continuous variable (smok_years), 

smoking status (smok_status), spatial Euclidean distance (dist1) between nodes (i.e., brain 

regions) [54], and the square of spatial Euclidean distances (dist2) between nodes were used 

as confounding covariates. Smoking status was a binary variable that distinguished current 

smokers from non-smokers. Non-smoker group was used as the reference group in the 

modeling analysis. Pack years of smoking was calculated based on the National Cancer 

Institute definition:
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Educational level was a categorical variable with three levels of educational attainment years 

including, level 1: 0–6, level 2: 7–11, and level 3: ≥12. These three levels are represented by 

Edu1, Edu2, and Edu3, respectively. The third educational level (Edu3) was used as the 

reference group in the modeling process. These variables were categorized as confounders 

because they were not the focus of this study, and they were assumed to affect the functional 

connections in the brain.

Thus, the fixed effects parameters βr and βs can be decomposed into βr = [βr,0 βr,Net βr,Exp 

βr,FWS βr,Int βr,Conf] and βs = [βs,0 βs,Net βs,Exp βs,FWS βs,Int βs,Conf]. βr,0 and βs,0 correspond 

to the intercepts in equations 2.3 and 2.4, respectively. Figure 2.1 shows different steps of 

our approach.

The random effects bri, bsi, and error εi were assumed to be normally distributed and 

mutually independent. We used an unstructured covariance matrix for random effects in 

terms of their Cholesky-root factors [55]. Unstructured covariance matrices are the most 

common forms of covariance structures for modeling data sets with small number of random 

effects. We also used a grouping effect that allowed modeling two different sets of 

covariance parameters for farmworkers and non-farmworkers. The parameters in equations 

2.3 and 2.4 were estimated via a restricted pseudo-likelihood approach [56] with the residual 

denominator degrees of freedom approximation of the F-test for a Wald statistic used for 

inference. Analyses were conducted in SAS software v9.4.

To clarify how the modeling framework links the connectivity probability and strength to a 

set of covariates, it is important to note that each parameter presented in table 3.1 represents 

the change in the log odds of an edge existing (probability model) and the change in the 

average strength of that connection (strength model) for each unit change in the given 

covariate. The network metric parameters, βNet = [βClust βEglobe βDeg βModul], give the 

change in the log odds of an edge existing and the change in the average strength of that 

connection for each unit increase in the respective metrics for farmworkers. The interaction 

parameters, βInt = [βFWSxClust βFWSxEglobe βFWSxDeg βFWSxModul], give the additional 
change in the log odds of an edge existing and the additional change in the average strength 

of that connection for each unit increase in the respective metrics for non-farmworkers.

3. Results

3.1. Brain Network Metrics

Table 3.1 presents the parameter estimates, standard errors, and False Discovery Rate 

(FDR)-corrected p-values obtained for the probability (eq. 2.3) and strength (eq. 2.4) 

models. The table details the relationship between the covariates and the probability and 

strength of functional connections in the brain.

Clustering coefficient (pr,Clust < 0.0001, ps,Clust < 0.0001) and global efficiency (pr,Eglobe < 

0.0001, ps,Eglobe < 0.0001), as measures of brain network segregation and integration, were 

significant factors in predicting both the connection probability and strength. Degree 

difference (pr,Deg < 0.0001, ps,Deg < 0.0001) was positively related to the connection 

probability and inversely related to the connection strength. Modularity (ps,Modul < 0.0001) 
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was associated with the connection strength. Modularity was also associated with the 

connection probability in farmworkers (Note that modularity was related to the connection 

probability only as an interaction covariate (pr,FWS×Modul < 0.0001)). There were significant 

interactions with farmworker status such that the network metric effects differed between 

populations. These effects are described in section 3.2 below.

3.2. Farmworker Status (FWS) and Interaction Covariates

Functional connectivity patterns differed between farmworkers and non-farmworkers by 

nodal clustering coefficient and overall network modularity. Figure 3.1 was created for 

illustrative purposes to help understand these differences when clustering coefficient and 

modularity increase from their minimum to their maximum values (i.e., it exhibits how the 

significant interactions translate into different relationships for farmworkers and non-

farmworkers). The results for probability and strength models are explained separately 

below.

3.2.1. Probability Model Results—The connection probability patterns were similar 

between farmworkers and non-farmworkers when network metrics were equal to their 

averages (pr,FWS = 0.4077).

Connection probability patterns differed between farmworkers and non-farmworkers as 

nodal clustering coefficient (pr,FWS×Clust = 0.0361) and overall modularity (pr,FWS×Modul < 

0.0001) varied. The connection probability in non-farmworkers was higher and increased at 

a faster rate than in farmworkers as the clustering coefficient increased. Figure 3.1.A 

illustrates how the significant interaction results in the higher connection probability and its 

faster increase in non-farmworkers when clustering coefficient increases from its minimum 

to its maximum. Figure 3.1.B illustrates how the connection probability in non-farmworkers 

decreases as modularity increases from its minimum to its maximum; whereas, modularity 

in farmworkers did not affect the connection probability (i.e., the relationship between 

modularity and connection probability was significant only for non-farmworkers).

3.2.2. Strength Model Results—The connection strength patterns were similar between 

farmworkers and non-farmworkers when network metrics were equal to their averages 

(ps,FWS = 0.3890).

Connection strength patterns did differ between farmworkers and non-farmworkers as nodal 

clustering coefficient (ps,FWS×Clust = 0.0250) and overall modularity (ps,FWS×Modul = 

0.0388) varied. The connection strength in non-farmworkers was higher and increased at a 

faster rate than in farmworkers as clustering coefficient increased. Figure 3.1.C shows the 

higher connection strength and its faster increase in non-farmworkers when clustering 

coefficient increases from its minimum to its maximum. The connection strength in non-

farmworkers was lower and decreased at a faster rate than in farmworkers as modularity 

increased (figure 3.1.D).

As pointed out in section 2.5, to complement the mixed model findings, traditional 

univariate comparisons of brain network properties were also performed using a T-test. The 

results showed that the average clustering coefficient (p = 0.0108) and modularity (p = 
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0.0495) were both significantly different between farmworkers and non-farmworkers. As 

shown in figure 3.2, both clustering coefficient and modularity were higher in farmworkers 

compared to non-farmworkers.

3.3. Exposure Covariates

Figure 3.3 shows boxplots for AChE, BChE, and cotinine for farmworkers and non-

farmworkers. While there were clear trends for lower cholinesterase activity in the 

farmworkers, the average AChE and BChE activities were not different among the two 

groups. It is important to note that in the full parent population there were significant 

differences between populations [6]. The modeling results showed that AChE had a 

significant inverse relationship with the connection strength (ps,AChE = 0.0009); however, 

urinary cotinine and blood BChE did not have significant main effects on the connection 

probability or strength.

3.4. Confounding Covariates

Spatial distance between brain regions played an important role in predicting the probability 

(pr,dist = 0.0328, pr,dist2 < 0.0001) and strength (ps,dist < 0.0001, ps,dist2 < 0.0001) of brain 

connections. The connection probability and strength between two regions decreased as the 

spatial distance increased. Education (pr,Edu1 < 0.0001, pr,Edu2 = 0.0398) was another 

significant factor in determining the probability of brain connections. Participants with 0–6 

or 7–11 years of educational attainment were more likely to have brain connections than 

participants with ≥ 12 years of educational attainment. The connection strength showed the 

reverse pattern with lower values in the less educated participants (ps,Edu1 < 0.0001, ps,Edu2 

= 0.0003). Thus, less educated participants have more, yet weaker brain connections. Note 

that there is a trend for difference in education between farmworkers and non-farmworkers 

(table 2.1). Thus, including education in the model is important to control for the potential 

influence of this covariate on the results. Pack years of smoking (ps,smok_years = 0.0050) and 

smoking status (pr,smok_status = 0.0016) were also associated with brain connections. Pack 

years of smoking was inversely related to the connection strength; but, smokers were more 

likely to have brain connections than non-smokers. The results also showed age as an 

important covariate in predicting the connection strength (ps,age = 0.0455). Older 

participants had weaker brain connections. Inclusion of these covariates in the model 

allowed for the comparison of network properties between farmworkers and non-

farmworkers while controlling for these potential confounding effects.

3.5. Parameter Estimates after excluding Cotinine, AChE and BChE

To test the biological hypothesis that exposure to pesticides and nicotine contribute to brain 

network differences between farmworkers and non-farmworkers, additional mixed models 

were evaluated. In separate model fits, we evaluated the effects of excluding cotinine or 

AChE and BChE on parameter estimates. As table 3.2 presents, removing AChE and BChE 

affected the relationships between connection probability and education, smoking status and 

modularity × FWS interaction. Both Edu1 and Edu2 lost their significant relationships with 

the connection probability (pr,Edu1 < 0.0001 → pr,Edu1 = 0.0692, pr,Edu2 = 0.0398 → pr,Edu2 

= 0.2165), however, the estimate for Edu2 didn’t change much (βr,Edu1 = 0.1340 → βr,Edu1 

= 0.06858, βr,Edu2 = 0.05476 → βr,Edu2 = 0.04325). Smoking status lost its significant 
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relationship with the connection probability (pr,smok_status = 0.0016 → pr,smok_status = 

0.1463), and its estimate became approximately half of the original estimate (βr,smok_status = 

0.08300 → βr,smok_status = 0.0495). Modularity × FWS interaction was no longer related to 

the connection probability (pr,FWS×Modul < 0.0001 → pr,FWS×Modul = 0.6161), and its 

estimate was noticeably different (βr, FWS×Modul = −4.5484 → βr, FWS×Modul = −0.4990). 

Removing AChE and BChE did not affect the significant relationships with connection 

strength.

Removing cotinine (table 3.3) affected the relationships between connection probability and 

education, AChE, and modularity × FWS interaction. Edu2 was no longer significantly 

associated with the connection probability (pr,Edu2 = 0.0398 → pr,Edu2 = 0.2326); however 

its estimate didn’t change much (βr,Edu2 = 0.05476 → βr,Edu2 = 0.03472). AChE showed 

significant association with the connection probability after removing cotinine; however, 

there was some trend for this covariate to be associated with the connection probability in 

the original model (pr,AChE = 0.0639 → pr,AChE = 0.0001). The estimate for AChE was also 

different after removing the cotinine (βr,AChE = 0.04860 → βr,AChE = 0.1065). The 

modularity × FWS interaction lost its significant relationship with connection probability 

(pr,FWS×Modul < 0.0001 → pr,FWS×Modul = 0.1686), and had a noticeably different estimate 

after removing cotinine (βr, FWS×Modul = −4.5484 → βr, FWS×Modul = −1.3277). The 

modularity × FWS interaction was no longer associated with the connection strength; 

however, it showed to be associated with the connection strength (ps,FWS×Modul = 0.0388 → 
ps,FWS×Modul = 0.0553). The estimate for modularity × FWS interaction didn’t change much 

(βs, FWS×Modul = −0.3499 → βs, FWS×Modul = −0.3258). These changes show that cotinine 

confounds relationships with both connection probability and strength. Thus, cotinine, 

AChE, and BChE, as markers of nicotine and pesticide exposures, are important covariates 

to be included in both models, and play important roles in modifying the significant 

relationships between several covariates and connectivity patterns, especially between the 

modularity × FWS interaction and connection probability.

4. Discussion

The current study was conducted to determine whether brain functional networks are 

different between Latino immigrant workers that do or do not engage in farm work. The 

contribution of pesticide and nicotine exposure to any population differences in brain 

network connectivity was also examined. We used resting-state fMRI due to its promise in 

detecting early brain changes in people at risk of developing neurological dysfunction [57–

60], as well as being a relatively straightforward technique that removes the burdens of 

experimental design, subject compliance, task-related confounds, and training demands. Rs-

fMRI could be especially useful for future studies that focus on prenatal pesticide and 

nicotine exposure effects on children, due to difficulties of performing experimental tasks in 

children. However, future studies can also focus on cognitive task studies to better 

understand how pesticide and nicotine exposure affect the brain in a cognitively relevant 

manner.

This study evaluated the whole-brain functional connectivity patterns, and did not identify 

specific brain regions that contributed to group differences. Unlike most other studies in this 
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area, however, it allowed controlling for important confounding variables such as age, 

education, and smoking. Furthermore, interactions between various brain regions play a key 

role in cognitive processes and complex behaviors [47], and numerous studies suggest that in 

neurodegenerative disorders, interconnected brain regions are targeted rather than single 

regions [61]. Thus, functional network mapping approaches provide valuable insights about 

complex patterns of pesticide and nicotine exposure effects on the brain and their likely 

contribution to cognitive impairment.

Overall, network properties in Latino immigrant workers, as well as effects of pesticide and 

nicotine on brain connections, were investigated via a mixed-effects modeling framework. 

Our results indicated that both connection probability and strength differed between 

farmworkers and non-farmworkers as clustering coefficient and modularity changed. Both 

probability and strength of brain connections in non-farmworkers were higher and increased 

at a faster rate than in farmworkers when nodal clustering coefficient increased. This means 

that for networks with a comparable density (probability) and strength of connection, the 

clustering coefficient is higher in farmworkers compared to non-farmworkers. This can be 

visualized by adding a horizontal line to figures 3.1.A and 3.1.C and seeing that it intersects 

the farmworker curve at a higher clustering coefficient value. Figure 4.1.A shows this for the 

connection probability. Since neither connection strength nor connection probability was 

different between the two groups when network metrics were equal to their averages (pr,FWS 

= 0.4077, ps,FWS = 0.3890), the clustering coefficient, on average, should be higher in 

farmworkers. In fact, as shown in Figure 3.2, the unadjusted comparison of average 

clustering coefficients did show higher clustering coefficient in farmworkers. Modularity in 

farmworkers was also higher than in non-farmworkers for any strength value. Again, this can 

be visualized by adding a horizontal line to figure 3.1.D and seeing that it intersects the 

farmworker curve at a higher modularity value (figure 4.1.B). Thus, the average modularity 

should also be higher in farmworkers based on networks with comparable density and 

strength of connection. Again, as shown in Figure 3.2, an unadjusted comparison showed 

that the average modularity was higher among farmworkers.

Thus, our results suggest that brain networks in farmworkers are more clustered and modular 

when compared to non-farmworkers. Higher clustering coefficient and modularity in 

farmworkers indicate increased functional specificity (increased intra-modular connection 

probability and strength) and decreased functional integration across brain modules 

(decreased inter-modular connection strength) when compared to non-farmworkers. In other 

words, functional modules in farmworkers are more dense and have stronger 

interconnections than those in non-farmworkers. But, connections between functional 

modules in farmworkers are weaker than those in non-farmworkers (i.e., there are stronger 

distributed connections across functional modules in non-farmworkers’ brain networks). The 

potential implications for information processing is that farmworkers (with higher clustering 

and modularity) could have more segregated neural processing and less sharing of 

information between brain regions. Figure 4.2 shows two cartoon brain networks that 

visually depict the implications of the differences found between the brain networks in 

farmworkers and non-farmworkers.
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Modularity plays an important role in facilitating different types of cognitive tasks [62–65]. 

Many studies have also shown altered modularity in neurodegenerative disorders [66–70]. 

Increased modularity has been shown to be associated with effortful, high-level cognitive 

tasks. Vatansever et al. [63] showed that higher cognitive efforts were associated with a more 

globally integrated (i.e., less modular) brain network. They showed that changes in default 

mode network (DMN) connectivity are central in integrating information across brain 

modules. Flexible community formation in the DMN during demanding cognitive tasks 

facilitates integrating functional interactions across the brain. Shine et al., in another study in 

[71], showed that brain networks fluctuate between a state of specialized structure with 

greater intra-network connectivity (higher modularity and clustering) and a state of higher 

integrity with greater inter-network connectivity (lower modularity and clustering). They 

showed that brain networks reorganize toward the lower modularity state during challenging 

tasks. This finding is consistent with other works indicating that globally integrated brain 

networks support higher cognitive flexibility and control in complex tasks [64, 72]. Thus, 

increased whole-brain modularity in farmworkers might be associated with relative 

decreases in complex cognitive function and reduced performance in demanding tasks when 

compared to non-farmworkers. At the same time, increased modularity could support 

enhanced performance in simple cognitive tasks [73].

While it is important to reflect upon the findings within the context of the extant literature, 

the present results are all based on resting-state brain networks. How these findings are 

ultimately associated with cognitive function is open to further research. A meta-analysis 

[74] dichotomized pesticide exposed workers into long (≥10 years) and short (<10 years) 

exposure durations, and found lower cognitive and motor performances in workers with 

longer exposure duration. The farmworkers included in this current study had significantly 

higher exposure duration than the non-farmworkers [75]. Unfortunately, we were not able to 

include exposure years into our network analysis model at this time due to collinearity with 

farmworker status. It is important to note that resting-state brain network properties are 

strongly associated with brain function in health and disease [76–78]. Brain networks in 

individuals who have better cognitive performance are mostly in an integrated state during 

rest [76]. Furthermore, increased resting-state modularity has been associated with cognitive 

deficits in some neurodegenerative disorders [66, 67, 69]. Future studies with brain imaging 

on a larger sample of farmworkers would be able to examine the relationships between 

exposure years, cognition, and network organization.

The analyses that removed the cholinesterase and cotinine measures were intended to give 

further insight into the role of occupational chemical exposure in the population differences 

observed. When AChE and BChE were removed from the model there were important 

changes in the statistical significance and parameter estimates. The results indicated that 

AChE/BChE confound the population differences in the relationship between connection 

probability and community structure. A similar finding was observed when cotinine was 

removed from the model. However, neither AChE /BChE, nor cotinine had an effect on the 

population differences in the relationship between connection probability and clustering 

coefficient.
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The comparable influence of AChE/BChE and cotinine is not overly surprising as both 

cholinesterase inhibiting pesticides and nicotine in tobacco can increase cholinergic 

neurotransmission [79]. Changes in AChE activity can lead to changes in acetylcholine at 

the synapse (i.e., reduced AChE associated with pesticide exposure can lead to decreased 

acetylcholine inactivation). The influence of BChE on acetylcholine metabolism is less clear. 

Nicotine, on the other hand, directly binds to nicotinic acetylcholine receptors and activates 

the cholinergic system. These findings indicate that alterations of the cholinergic nervous 

system from pesticide and/or nicotine exposure are at least associated with the population 

differences in modularity, but not clustering. After accounting for occupational exposure, the 

population differences for modularity highlighted in figure 4.1.B were eliminated. Thus, 

possible cognitive consequences (due to the modularity differences) that were pointed out 

above could be a result of chronic pesticide and/or nicotine exposures.

The current study is not without limitations. First, although the modeling approach allowed 

controlling for important confounding variables such as age, education, and smoking status, 

it did not provide detail about specific brain regions or subnetworks that differ, and only 

gave overall differences between connectivity patterns of farmworkers and non-farmworkers. 

Future studies can focus on functional connectivity patterns in specific brain subnetworks 

such as the basal ganglia or default mode network by incorporating regional covariates into 

the model. Second, farmworkers who participated in this study were from one area of the 

US. Thus, the pesticides used may be different from pesticides used in other parts of the 

country. Third, the average AChE activity in participants used in this study was not 

significantly different between farmworkers and non-farmworkers. Longitudinal 

assessments, however, have indicated decreased AChE and BChE activities in the larger 

inclusive population of Latino farmworkers evaluated in our previous study [14]. A 

longitudinal study on brain networks across the agricultural season could better reveal how 

the functional connections and brain network properties change as cholinesterase activities 

change in farmworkers. Finally, we only measured AChE and BChE in the blood, and how 

this reflects changes in brain enzymes is unclear.

5. Conclusion

The current study demonstrated that brain networks differed between Latino immigrant 

workers that did or did not engage in farm worker. Our results suggest that the farmworkers 

have more clustered and modular brain networks than the participants that did not engage in 

farm work. This finding is consistent with a higher number and strength of intra-modular 
connections in farmworkers, and a lower number and strength of inter-modular connections 

in farmworkers. Cholinesterase activity, as a marker of OP and carbamate pesticide 

exposure, and urinary cotinine, as a marker of nicotine exposure, were associated with the 

differences in brain network community structure (modularity). This could indicate that 

enhanced cholinergic neurotransmission may play an important role in modularity 

differences between farmworkers and non-farmworkers. However, the difference in 

clustering coefficient between the farmworkers and non-farmworkers was not associated 

with markers of pesticide or nicotine exposure. Thus, there are other population differences 

driving the clustering findings that cannot be accounted for by the variables measured in this 

study. While the neurobiological consequences of the topological brain network differences 
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between farmworkers and non-farmworkers cannot be determined in the current study, the 

fact that some of the differences were associated with markers of occupational exposures is 

of concern. It is possible that the network differences observed could be acute or could be 

early indicators of brain changes in farmworkers that have neurological consequences in 

later life. Further studies are warranted to gain a deeper understanding of the implications of 

occupational chemical exposure for Latino immigrants working on farms.
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Highlights

➢ Functional brain networks are different between farmworkers and non-

farmworkers.

➢ Farmworkers have more clustered and modular networks than non-

farmworkers.

➢ Cholinesterase activity contributes to differences in brain network 

differences.

➢ Urinary cotinine contributes to differences in brain network differences.

➢ Cholinesterase activity is associated with whole brain functional connectivity.
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Figure 2.1. Schematic of different steps
Rs-fMRI data were collected from each study participant. The average time series was 

determined from 116 anatomical brain regions as defined in the AAL atlas. Each region 

served as a network node. A correlation matrix was obtained through calculating the Pearson 

correlation between the average time series from every node pair, with negative correlation 

set to zero. The adjacency matrix was obtained via binarizing the correlation matrix. The 

four network metrics including nodal clustering coefficient, global efficiency, degree and 

overall modularity were extracted from the weighted brain network. These metrics along 

with exposure measurements including blood AChE and BChE activities, and urinary 

cotinine levels, farmworker status (FWS), and confounding variables were used as covariates 

in the two-part mixed-effects modeling framework to assess the relationship of farmworker 

status (and other covariates) with the probability and strength of functional brain 

connections. (2-column figure)
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Figure 3.1. Connection Probability* and Connection Strength as functions of clustering 
coefficient and modularity
This figure was created using coefficients obtained from the probability and strength models 

(table 3.1) to illustrate how connection probability* (A and B) and connection strength (C 

and D) change in farmworkers and non-farmworkers as clustering coefficient and modularity 

increase from their minimum to their maximum values. A. Connection probability in non-

farmworkers was higher and increased at a faster rate than in farmworkers when clustering 

coefficient increased. B. Connection probability in non-farmworkers decreased as 

modularity increased; however, connection probability did not have a significant relationship 

with modularity in farmworkers. C. Connection strength in farmworkers was higher and 

increased at a faster rate than in non-farmworkers when clustering coefficient increased. D. 
Connection strength in farmworkers was higher and decreased at a slower rate than in non-

farmworkers as modularity increased. *It is important to note that the y-axis in all figures is 

the log-odds of connection probability. Any change in the log-odds of connection probability 

reflects a similar change in the connection probability, thus the y-axis was labeled as 

connection probability instead of log-odds of connection probability for simplicity. (##: 

Significant relationship.) (2-column color figure)
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Figure 3.2. Boxplots for clustering coefficient and modularity in farmworkers and non-
farmworkers
Both clustering coefficient (p = 0.0108) and modularity (p = 0.0495) were significantly 

higher in farmworkers. (single or 1.5-column figure)

Bahrami et al. Page 22

Neurotoxicology. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3.3. Boxplots for urinary cotinine levels (ng/ml) and acetylcholinesterase (AChE) and 
butyrylcholinesterase (BChE) activities (umole/min/ml) in farmworkers and non-farmworkers
Urinary cotinine was significantly different between farmworkers and non-farmworkers (p = 

0.0063). However, AChE (p = 0.6598) and BChE (p = 0.6209) were not different between 

the two groups. (1.5- or 2- column figure)
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Figure 4.1. Connection probability as a function of clustering coefficient (A) and connection 
strength as a function of modularity (B)
A. for any given connection probability, the clustering coefficient in farmworkers is higher 

than in non-farmworkers (CFW > CNon-FW). Similarly, for any given connection strength, 

clustering coefficient in farmworkers is higher than in non-farmworkers (not shown here). B. 
for any given connection strength, the overall modularity in farmworkers is higher than in 

non-farmworkers (MFW > MNon-FW). (2-column color figure)
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Figure 4.2. Cartoon model of brain networks for farmworkers (A) and non-farmworkers (B)
Each network node represents a brain region and the lines represent functional connections. 

Although the same brain areas are included in both networks, the overall network 

connectivity is different. The node color indicates the module membership and the edge 

thickness represents connection strength. The average connection probability (density) and 

strength are the same between farmworkers and non-farmworkers (i.e., the total number of 

brain edges and average strength of present edges are the same in A and B — Each network 

has 35 edges including 17 strong edges). However, brain networks of farmworkers are more 

modularly organized and have higher functional specificity and lower intermodular integrity 

when compared to non-farmworkers (stronger connections are shown with thicker edges). 

This cartoon model was created for illustrative purposes to better visualize the study results. 

(2-column color figure)
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Table 2.1

Study Population Characteristics

Participant Characteristics Farmworkers
(n = 48)

Non-Farmworkers
(n = 26)

*p-value

Age 40.33±6.99 (Min/Max: 31/71) 43.61±10.49 (Min/Max: 30/58) 0.1108

Education 0.0654

 0–6 grade (Edu1) 17 (35.4%) 7 (26.9%)

 7–11 grade (Edu2) 24 (50.0%) 9 (34.6%)

 12 grade or more (Edu3) 7 (14.6%) 10 (38.5%)

Country of birth <0.0001

 Mexico 48 (100%) 15 (57.7%)

 Central America 8 (30.8%)

 South America 3 (11.5%)

Occupation N/A

 Farmworker 48 (100)

 construction 7 (26.9%)

 Production 6 (23.1%)

 Food preparation/restaurant 3 (11.5%)

 Maintenance/cleaning 3 (11.5%)

 Sales 1 (3.8%)

 Mechanic 2 (7.7%)

 Other 1 (3.8%)

 Unemployed 3 (11.5%)

Pack years smoked at baseline, yrs 1.6695±4.64 0.6501 ±2.94 0.3617

Smoking status 18 smokers (37.5%) 2 smokers (7.7%) <0.0001
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