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Abstract

The first examples of biologically active monocyclic 1,2-azaborines have been synthesized and 

demonstrated to exhibit not only improved in vitro aqueous solubility in comparison to the 

corresponding carbonaceous analogues, but in the context of a CDK2 inhibitor, also improved 

biological activity and better in vivo oral bioavailability. This proof-of-concept study establishes 

the viability of monocyclic 1,2-azaborines as a novel pharmacophore with distinct 

pharmacological profiles that can help address challenges associated with solubility in drug 

development research.

COMMUNICATION

BOR-ing? NO!!! Monocyclic 1,2-azaborines can serve as a novel pharmacophore with improved 

in vitro aqueous solubility, improved bioactivity, and better in vivo oral availability compared to 

their carbonaceous analogues.
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One of the main goals of synthetic chemistry is to create structural diversity – and as a 

consequence produce new functions and properties – beyond what Nature can achieve. For 

instance, a key impetus behind the laboratory syntheses of bioactive natural products is to 

diversify the original portfolio of structures to systematically investigate structure-function 

relationships and elucidate mechanism of action.1 This exploration of new chemical space 

facilitates the development of reagents that illuminate new biology and the development of 

therapeutics that can benefit society. BN/CC isosterism2 (i.e., the replacement of a carbon-

carbon unit with a boron-nitrogen (BN) unit) has recently emerged as a strategy to increase 
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the chemical space of compounds relevant to biomedical research.3 When applied to a 

“privileged” structural motif in medicinal chemistry,4 this approach can produce a new 

versatile pharmacophore. Aromatic rings are ubiquitous in medicinal chemistry, and arene-

containing compounds prevail among topselling small-molecule drugs.5 BN/CC isosterism 

of arenes results in the so-called azaborine heterocycles where specifically 1,2-azaborines 

are designated as compounds with the boron and nitrogen atoms adjacent to each other 

(Scheme 1).6 It has been demonstrated that 1,2-azaborines can bind to aryl recognition 

pockets7 in biological targets and engage in hydrogen bonding inside those binding 

pockets.8 Furthermore, it has been shown that both the B- and N-Et BN isosteres of 

ethylbenzene are inhibitors of ethylbenzene dehydrogenase (EbDH), in contrast to 

ethylbenzene itself, which is the naturally evolved substrate for the EbDH.9 Despite the 

recent advances made in the area of azaborine chemistry,10 the progress toward evaluating 

these heterocycles in the context of medicinal chemistry has remained underexplored. BN 

isosteres of naphthalene have recently been profiled in vitro and in vivo in terms of 

biological activity and ADMET (absorption, distribution, metabolism, excretion, toxicity) 

properties.11,12 However, to the best of our knowledge, profiling of the arguably more 

versatile monocyclic 1,2-azaborine motif has not been reported. Thus, essential questions 

such as stability, biological activity, pharmacological properties of monocyclic 1,2-

azaborines have remained unanswered. In our initial exploration in this area, we sought to 

investigate 1,2-azaborine isosteres of biologically active biphenyl carboxamides, the 

biphenyl motif being a “privileged” sub-motif of the arene family in drug discovery 

research.13,14 In this communication, we establish that 1,2- azaborine-based biphenyl 

carboxylic acids are compatible with the CDMT/NMM amide coupling conditions, and that 

the resulting amides 1) are air and water stable, 2) are more soluble in water than their 

carbonaceous counterparts, 3) exhibit better in vivo oral availability, and 4) can exhibit 

stronger biological activity due to hydrogen bonding.

In 2013, we reported a functional-group tolerant Rh-catalyzed B-arylation of B-Cl-

substituted 1,2-azaborines and as a demonstration synthesized the BN isostere of Felbinac, a 

nonsteroidal anti-inflammatory drug.15 Recognizing the versatility of the carboxylic acid 

functional group present in Felbinac, we sought to develop amide-coupling conditions to 

access BN isosteres of the ubiquitous biphenyl carboxamide family of biologically active 

compounds. Gratifyingly, the use of the 2-chloro-4,6-dimethoxy-1,3,5-triazine/N-

methylmorpholine (CDMT/NMM) conditions16 furnished the desired amide coupling 

products in moderate to good yield (Table 1). We specifically chose three biphenyl 

carboxamides that inhibit a distinct set of biological targets (dopamine D3 (BN-1),17 PPAR 

γ and δ (BN-2),18 and CDK2 (BN-3)19 to evaluate the effects of BN/CC isosterism on their 

pharmacological properties. It is worth noting that the amide coupling can be conducted in 

air. Furthermore, stability studies reveal no decomposition when BN-1, BN-2, and BN-3 are 

exposed to air and water at 50 °C for 24 hours, demonstrating the viability of these BN 

heterocycles in medicinal chemistry applications.20

Table 2 shows the ADMET behavior of BN-1, BN-2, and BN-3 in direct comparison to their 

carbonaceous analogues CC-1, CC-2, and CC-3.21 A general trend can be observed in terms 

of the effect of BN/CC isosterism on aqueous solubility properties: the BN isosteres are 

Zhao et al. Page 2

ChemMedChem. Author manuscript; available in PMC 2018 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



more soluble both under buffered and FASSIF conditions. As a result, they have decreased 

membrane permeability (more negative PAMPA value) than their carbonaceous analogues. 

The better aqueous solubility behavior of 1,2-azaborine derivatives is consistent with 

reported electronic structure analysis that revealed a 2.1 D dipole moment for 1,2-

dihydro-1,2-azaborine in contrast to benzene’s dipole moment of 0 D.22 Thus, the 

incorporation of the 1,2-azaborine motif renders the relatively hydrophobic biphenyl motif 

more hydrophilic. A majority of currently marketed drugs are poorly soluble.23 Thus, 

BN/CC isosterism can potentially be used as a design strategy to produce more soluble 

active pharmaceutical ingredients. No general trend can be discerned from the RLM Cl, 

CYP3A4, and hERG data. It appears that functional groups unrelated to BN/CC isosterism 

may be more responsible for the observed data. Overall, our ADMET data indicate that there 

is no particular red flag associated with the use of 1,2-azaborines as a pharmacophore in 

medicinal chemistry.

We then turned our attention to evaluating the biological activity of our BN isosteres in 

comparison to their all-carbon derivatives. Compound CC-1 was reported as a selective 

dopamine D3 antagonist,17 and in our analysis CC-1 exhibited an IC50 value of 1 nM 

(Scheme 2). Its BN isostere BN-1 is also biologically active although the activity is slightly 

attenuated with an IC50 value of 3 nM. CC-2 has been investigated as antagonists of PPAR 

γ and δ18 and in our assay we have determined IC50 values of 1 and 2 µM, respectively. 

Similarly, the corresponding BN isostere BN-2 also exhibits low micromolar activity against 

PPAR γ and δ (Scheme 2). Compound CC-3 was reported as a potent nanomolar 

antiproliferative agent in a CDK2 kinase assay.19 In our CDK2 assay CC-3 showed an IC50 

of 320 nM. Interestingly, the BN derivative BN-3 (IC50 = 87 nM) showed improved potency 

than CC-3. Compound BN-3 is selective for CDK2. When tested against a panel of 29 

kinases, BN-3 was found to be a more selective inhbitor of CDK2 than CDK1 (IC50 = 460 

nM).

The improved biological activity of BN-3 vs. CC-3 was intriguing. To understand this 

improvement in potency, BN-3 and CC-3 were analyzed by docking24,25 in a high resolution 

crystal structure of CDK2/cyclin A (PDB entry 1VYW).19 Shown in Figure 1 is one of the 

three docking poses obtained for BN-3 in the active site of CDK2. In addition to the 

hydrogen bonding interaction between the pyrazole amide fragment and hinge residues 

Leu83, Glu81, an additional hydrogen bonding interaction was observed between the NH of 

the azaborine and the backbone carbonyl of Ile10. The 3–4 fold improvement in binding of 

BN-3 vs. CC-3 may be attributed to this NH…O=C(amide) hydrogen bonding which we 

have recently quantified to be ~ 1 kcal/mol in strength (in the context of binding to T4 

Lysozymes).8

Finally, we asked the question whether the observed improved in vitro solubility for BN-3 
vs. CC-3 would translate into in vivo pharmacokinetic behavior. Gratifyingly, we 

determined that BN-3 exhibits pharmacokinetic properties that are superior to CC-3 in male 

Sprague Dawley Rat models (Table 3). When dosed intravenously, BN-3 showed lower 

clearance and a longer terminal half-life (t1/2) than CC-3. Additionally, BN-3 gave a two-

fold increase in AUCpo (area under the curve per oral administration) relative to CC-3. This 

results from a combination of lower clearance and greater bioavailability. The maximum 
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concentration (Cmax) of CC-3, 692 nM, is observed at 0.5 hour after oral dosing. BN-3 on 

the other hand, has maximum concentration of 746 nM at 1.5 hours after dosing, probably 

due to the increased solubility prolonging the precipitation time and allowing BN-3 to be 

absorbed further down the intestine than CC-3. Despite the slightly lower permeability of 

BN-3 relative to CC-3 in vitro, the improved solubility and lower clearance of BN-3 in vivo 
enabled an increase in oral exposure for BN-3 compared to CC-3.

In summary, we have synthesized the first examples of biologically active monocyclic 1,2-

azaborines and demonstrated that BN/CC isosterism in the context of biphenyl 

carboxamides leads to improvement in vitro aqueous solubility and better in vivo oral 

availability. The BN isosteres of biologically active biphenyl carboxamides are air and 

moisture stable, and they exhibit biological activity that is comparable to their carbonaceous 

counterparts. Furthermore, in the context of a CDK2 inhibitor, we have demonstrated that 

the presence of a 1,2-azaborine motif can lead to improved biological activity likely from an 

additional hydrogen bonding interaction associated with the NH of the 1,2-azaborine moiety. 

Overall, we have demonstrated the viability of the monocyclic 1,2-azaborine motif serving 

as a novel pharmacophore with a distinct pharmacological profile. In view of the solubility 

challenges associated with many aryl-based drug candidates, BN/CC isosterism may 

represent a new design principle in medicinal chemistry to address this challenge.
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Figure 1. 
Modeled binding mode of BN-3 (green) in the ATP binding site of CDK2 (white). Hydrogen 

bonding interactions are shown as black dotted lines. Boron in BN-3 is in magenta color.
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Scheme 1. 
BN/CC isosterism in the context of biologically active biphenyl carboxamides.
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Scheme 2. 
Effect of BN/CC isosterism on biological activity. Numbers are IC50 values.
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Table 1

Synthesis of BN isosteres of biologically active biphenyl carboxamides

a
Yields are isolated yields.

b
Yield after amide coupling followed by N-BOC removal from the pyrazole group.
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