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Abstract

Although a differential sensitivity of cholera dynamics to climate variability has been reported in 

the spatially heterogeneous megacity of Dhaka, Bangladesh, the specific patterns of spread of the 

resulting risk within the city remain unclear. We build on an established probabilistic spatial model 

to investigate the importance and role of human mobility in modulating spatial cholera 

transmission. Mobility fluxes were inferred using a straightforward and generalizable 

methodology that relies on mapping population density based on a high resolution urban footprint 

product, and a parameter-free human mobility model. In accordance with previous findings, we 

highlight the higher sensitivity to the El Niño Southern Oscillation (ENSO) in the highly 

populated urban center than in the more rural periphery. More significantly, our results show that 

cholera risk is largely transmitted from the climate-sensitive core to the periphery of the city, with 

implications for the planning of control efforts. In addition, including human mobility improves 

the outbreak prediction performance of the model with an 11 month lead. The interplay between 

climatic and human mobility factors in cholera transmission is discussed from the perspective of 

the rapid growth of megacities across the developing world.
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1. Introduction

Seasonal outbreaks of endemic cholera are responsible of an estimated 3 million cases of 

acute watery diarrhea and 90’000 deaths each year [1]. The disease is associated with poor 

sanitary conditions given that fecal-oral transmission occurs either via the environment-to-
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human or human-to-human routes, bringing into play climatic, environmental and socio-

economic factors [2, 3]. Megacities of the developing world are exposed to cholera (and 

other water-borne infections) due to their high population density and all too often 

inadequate water and sanitation infrastructure prompting exposure to the pathogens through 

various mechanisms [4, 5].

Dhaka, the capital of Bangladesh with an estimated 17 million people, is located in a 

floodplain and experiences two cholera incidence peaks per year [2, 6]. Rapid urbanization 

in recent decades has been accompanied by an increase in the prevalence of severe cholera 

cases during flooding events [7]. When studied at the regional scale, cholera is known to be 

influenced by the El Niño Southern Oscillation (ENSO) [8, 9], but the spatio-temporal 

patterns of incidence within large cities are not necessarily synchronized (contrary to what 

one would expect from the Moran effect [10]). This lack of synchrony points to the non-

trivial relationship between global climatic drivers and local transmission dynamics [11], in 

particular in urban contexts [12]. The strong degree of spatial heterogeneity in population 

density and sanitary infrastructure in Dhaka has been hypothesized to underlie a differential 

sensitivity to climatic forcing between the densely populated city core and the more rural 

periphery (Fig. 1) [13]. Indeed, informal settlements, which often constitute hotspots of 

cholera transmission [14], are widespread in the city [15], and vulnerable to the intense 

yearly monsoon flooding which gains particular intensity in high-ENSO years [16, 17]. 

Although these conditions would explain the high cholera attack rates in the core, the 

pathways by which cholera spreads across the megacity remain unclear.

Hydrological transport and human mobility are the two main mechanisms for the spatial 

spread of Vibrio cholera, although food networks can also play an important role in bacterial 

dissemination [for eg. see 18]. Both of the former have been considered in modeling studies 

at the national scale for epidemic cholera either together [19, 20], or separately for human 

mobility [21, 22] and hydrology [23]. Potential pathways of hydrological pathogen transport 

in Dhaka, through both the urban drainage system and the surface during flooding, have 

recently been explored using a high-resolution 2D advection-dispersion model [24]. This 

study suggested small-scale heterogeneities in pathogen exposure due to the mixing of 

wastewater with flood water, but the highlighted effects were mainly local and were subject 

to unresolved sources of uncertainty [24]. Although hydrology may indeed be an important 

explanatory factor of cholera attack rates at the neighborhood-scale, it remains to be shown 

that it also acts as a city-scale control of disease spread. Another mechanism underling 

spread would be human mobility which has recently been shown to be a crucial driver at the 

national level [22], but that to our knowledge has neither been quantified nor included in 

spatial models for cholera dynamics at the urban scale. This gap has also recently been 

stressed for the transmission of all climatically-forced infectious diseases [12]. Models of 

human mobility that depend only on the spatial distribution of population have been used in 

waterborne disease models in the absence of mobility data such as mobile phone records, but 

not within cities [25, 26]. The recent development of a high resolution (12m) Global Urban 

Footprint (GUF) extracted from remote sensing data opens the door to the application of 

mobility models at the megacity scale [27, 28]. We present here an approach to rely on such 

mobility models to improve on default near neighbor assumptions of connectivity in 

transmission models, when direct data on movement is not available.
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Addressing the interplay between climate forcing and spreading mechanisms could prove 

useful in designing vaccination campaigns that take spatial structure into account, especially 

given the recent evidence showing the feasibility and protective effect of this kind of 

intervention in Dhaka [29, 30]. Indeed cholera models that account for spatial connectivity 

have been proposed to guide reactive vaccination interventions during urban cholera 

epidemics [31].

Here, we build on the existing framework of a multi-dimensional inhomogeneous Markov 

Chain model (MDIMC) for cholera transmission [13, 32]. We specifically incorporate 

inferred human mobility fluxes based on population distribution to investigate the spatio-

temporal dynamics of cholera within the city. We then discuss the relevance of taking human 

mobility into account in water-borne disease transmission within megacities.

2. Data and Methods

2.1. Dhaka and cholera

Dhaka covers around 2’300 km2 of a complex patchwork of land and water located North of 

the intersection between the Padma and the Meghna rivers. The city experiences regular 

flooding of particular intensity during high-ENSO years, of which 1998 and 2003 are the 

most memorable examples [17]. The part of the city we consider in this study is composed 

of 21 administrative units called thanas, which can be categorized into a densely populated 

city core and a more rural periphery (Fig 1 and [13, 33]).

Cholera, which has been reported for this region since the British colonial presence in the 

late 1800’s [34], continues to represent a public health issue for the city of Dhaka. Outbreaks 

are still common today, showing different temporal patterns in different parts of the city 

(Fig. 1). The epidemiological data, its collection protocol and the processing required by the 

MDIMC framework have been described elsewhere [13]. Briefly, cholera case data consisted 

of monthly cholera hospitalization counts at the International Center for Diarrhoeal Diseases 

Research, Bangladesh from 1995 to 2008. As mentioned in [13], the data correspond to El 

Tor infections confirmed by systematic laboratory analysis of a 4% sample of incoming 

patients with cholera symptoms from in 1995, and a 2% sample from 1996 onward. The 

attack rate data used in this study are the same as the ones used in [13], which were 

corrected for the difference in sampling effort. For modeling purposes and following [13], 

the monthly attack rate data was categorized into 3 discrete cholera states 0,1 and 2 

corresponding to no (0 cases/10’000 people/month), medium ( less than 1.85 cases/10’000 

people/month) and high (more than 1.11 cases/10’000 people/month) cholera incidence 

respectively (see Fig. 1). The average incidence in the medium and high cholera states were 

1.11 cases/10’000 people/month and 4.58 cases/10’000 people/month respectively.

2.2. The model

A large palette of modeling techniques have been applied to study cholera (for an overview 

see [32]). Here we choose the MDIMC framework proposed by Reiner et al. [13] in which 

the observed monthly cholera attack rates are categorized into discrete states of cholera 

intensity, and the space-time dynamics of transmission modeled by a inhomogeneous 
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Markov Chain [13, 32]. The transition from cholera in state i at time t to state j at time t + 1 

(Xk,t = i) → (Xk,t+1 = j) occurs with baseline probability pi,j. The baseline transition 

probability matrix is given by:

The effect of covariates can be accounted for through the modification of matrix P. In the 

case of Dhaka, the consideration of two groups of thanas with differential baseline 

probabilities was significant to explain the spatio-temporal attack rate patterns [13]. 

Furthermore, the seasonal variation of cholera risk and the effect the ENSO were shown to 

play important roles depending on the group to which each thana belongs (core or periphery, 

which we refer to interchangeably as inner and outer groups). We take both of these factors 

into account, in addition to the effect of human mobility which we specifically develop. 

More formally, the transition probability from state i to j with i < j or i = 3, of thana k in 

group g (inner or outer) is assumed to be modulated as:

(1)

where  and  correspond to the time varying seasonal, human mobility and 

ENSO forcings respectively, the β parameters depend on the starting cholera state i and the 

sign (increase or decrease) of fseas, and all exponents depend on the group g of the thana. 

The forcing functions are defined as:

where the subscript m indicates the month, kl is the human mobility matrix describing the 

probability for a person to move from the origin thana, k, to destination, l, and to come back 

during a finite time interval, the parameters γin(γout) modulate multiplicatively the effects of 

the incoming (outgoing) mobility fluxes, and ENSO(t − τ) is the sea surface temperature 

(SST) anomaly corresponding to the El Nino 3.4 index at τ lags (in months) ([13]). The 

methodology to obtain kl relies on the spatial distribution of population density as 

explained below. In the original formulation, the effect of spatial connectivity was 

incorporated through a simple effect of the state of neighboring thanas. Here, we replace this 

assumption by estimating human mobility fluxes.

The functional form for fENSO is a flexible parametrization of the influence of the ENSO on 

cholera risk with kg → 0 indicating a linear effect, whereas kg → π a nonlinear one (see 

[13] for an illustration of functional shapes). Here we set τ = 10 months based on the results 

by [13] which identify this value as the most significant lag between ENSO and cholera 
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outbreaks, consistent with previous studies [8, 35, 9]. This results in an 11-month lead 

prediction capacity. For any of the forcing functions, a negative (positive) value indicates a 

decrease (increase) in the probability of transitioning to a higher cholera state. The modified 

probabilities are normalized so that they sum to 1:

2.3. Population density and human mobility

Human mobility models have been extensively employed to infer mobility matrices (here Q) 

in the framework of spatially-explicit models for the spread of waterborne diseases [19, 25, 

20, 36]. Indeed, we are here interested in the spatial repartition of mobility, rather than 

mobility fluxes themselves (people per unit time). A common choice is to use the gravity 

model and its different parametrizations, which state that the probability of moving from one 

location to another is proportional to their respective populations and inversely linked to a 

function of the distance which separates them [37]. Recently, the radiation model was 

introduced as a generalization of the gravity model and has been validated based on 

commuting data [38]. The radiation model draws from physical sciences in assuming that 

the movement of people follows radiation emission and absorption processes, where both the 

absorption threshold of trips emitted from a given location and the absorbance of the 

surroundings are a function of population density. Though tied to an underlying assumption 

of relatively uniform spatial distribution of mobile population, it presents the advantage of 

being ”parameter free” when inferring mobility patterns, and to directly depend on the 

spatial distribution of population density. The radiation model predicts that the fraction of 

journeys originating from a given origin u that reach destination v is given by:

(2)

where Hu(Hv) denotes the origin(destination) population and suv is the sum of the population 

within a circle centered at the location of the origin, of radius equal to the distance between 

u and v, duv, excluding the origin and destination populations. Given the large size and 

population differences between thanas (Fig. 1) the radiation model was not applied to the 

administrative units directly, but instead to a pixel-to-pixel basis using a gridded population 

density raster map.

The population density map was produced by dasymetric mapping (sensu [39]) of census 

population counts available at the thana-level to the distribution of built up areas in the city. 

The methodology consisted of four steps: 1) computing the thana-specific population density 

of built-up areas, 2) aggregating population counts at a 1km2 resolution, 3) computing pixel-

to-pixel mobility fluxes, and 4) extracting thana-to-thana fluxes. The two first steps are 

illustrated in Fig. 2. The starting point of the methodology is a raster map of the built-up 

area produced and made available by the German Aerospace Center (DLR). The product 
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results from the analysis of the Synthetic Aperture Radar (SAR) data from the TanDEM-X 

(TDM) mission merged with multispectral Landsat data (for methodological details and 

applications see [16, 40, 28, 41]). It consist of a raster with a 12m resolution in which values 

correspond to the percentage of each pixel’s area covered by constructions in 2013 (mapped 

in terms of ”greenness”, i.e. the fraction of the pixel covered by vegetation, in Fig. 2 A). 

Based on the built-up raster, the population density map was computed by multiplying the 

built-up surface of each pixel by the thana-specific population density in built-up areas, 

which was obtained by dividing the thana’s population by the total amount of built-up 

surface in the thana (Fig. 2 B). Since the population census data was not available for 2013, 

an exponential projection of the most recent census was used (see [13]). The population 

raster was then aggregated to a 1km resolution for the computation of mobility patterns (Fig. 

2 C). The pixel-to-pixel mobility matrix, denoted by Qpq hereafter, was computed using the 

radiation model in eq. 2 applied to the aggregated population density map. The final thana-

to-thana mobility matrix kl was computed as:

(3)

where Hk = Σp∈k Hp is the sum of the pixel population densities Hp of thana k. The diagonal 

of kl indicates the probability of intra-thana movement, and the sum over each row equals 

to 1. The whole procedure can be easily applied to other urban settings since it only depends 

on (1) total population counts by administrative area (which could also be the overall 

population in the city) and (2) the built-up area map which can be provided on request for 

arbitrary areas of interest via DLR.

2.4. Model fitting

One of the advantages of the MDIMC formulation of the model is the simplicity of 

evaluating the agreement of a set of parameters to the data through a likelihood-based 

approach. Here we use the subplex algorithm [42], an extension of the straightforward 

Nelder-Mead (NM) algorithm used in previous MDIMC studies [43, 13, 32]. The subplex 

algorithm consists of iteratively applying the simplex algorithm on subspaces of the 

investigated parameter space, thus reducing computation time and improving convergence 

properties [42]. To impose parameter constraints (including positivity and probabilities 

summing to 1), we used the barrier method as done in previous studies [13, 32]. The optimal 

parameter set was obtained by running the subplex algorithm 100 times from different 

starting points using the subplex package in R [44, 45]. The subplex algorithm does not 

enable the direct computation of uncertainty bounds on the optimal parameter sets due to its 

heuristic nature. To give a quantification of uncertainty, the likelihood surface was further 

explored by profiling the parameters of interest. Profiling was performed on the parameters 

p.,3 of the transition matrix for each thana group which capture the intrinsic difference in 

cholera risk between the different parts of the city. Methodological details and results on 

parameter profiling are given in the Supplementary Material (SM). The computations were 

run in parallel with the foreach package [46] on the CASTOR cluster of the Scientific IT 

and Application Support Center of the Ecole Polytechnique Fédérale de Lausanne.
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2.5. Cross-validation and predictive capacity

To further assess model predictive capacity, we performed a 14-fold cross-validation 

following the methodology used by [13]. Briefly, the procedure consisted of sequentially 

removing one year of data (out of a total of 14 years), refitting the model to the remaining 

years with the subplex algorithm, and simulating cholera dynamics for the given year using 

the new best parameter set. Simulating cholera dynamics in the MDIMC framework is 

straightforward: since the model is stochastic, random numbers between 0 and 1 are drawn 

to update cholera states based on the probabilities of the state transition matrix (see [13] for 

details). A total of 10’000 simulations were performed for each data point of the time series 

for which an 11-month lead was feasible (corresponding to the ENSO forcing lag). To 

quantify outbreak prediction performance, the observed and simulated outbreaks were 

compared in a contingency matrix where an outbreak was defined as city-average cholera 

incidence higher than the 75th percentile of the observed aggregated monthly incidence a the 

city scale (2.06 cases/10’000 people). For the purpose of outbreak prediction, the simulated 

outbreak probability (i.e. the percentage of simulations that give an attack rate larger than 

the above-mentioned threshold) was used as a classification score. Following the 

methodology in [13], the optimal outbreak probability threshold retained for prediction was 

found using the Kolmogorov-Smirnov test. The threshold corresponds to the point of 

maximum distance between the Cumulative Mass Functions of the predicted outbreak 

probability in months where an outbreak did and did not occur [47]. Given the identified 

optimal threshold, the confusion matrix of observed and predicted outbreak was used a basis 

for the computation of predictive performance, including accuracy and false positive and 

negative rates.

To establish a baseline for comparison for the predictive ability of the MDIMC, we also 

fitted a seasonal autoregressive integrative moving average model (SARIMA) to the mean 

city-wide incidence time series. Details on model fitting and prediction results are given in 

the Supplementary Material.

3. Results

3.1. Predicted thana-to-thana mobility in Dhaka

The thana-to-thana mobility fluxes produced using the radiation model present strong 

heterogeneties in terms of both directionality and spatial connectivity. Indeed movement is 

predicted to occur with higher probability between the thanas of the core of the city, and to a 

lesser extent between the core and the periphery, except for some exceptions (for instance 

between Narayanganj Sadar (thana 12) and Keraniganj (thana 7), Fig. 3). In addition, outer-

outer movement is less frequent probably because of the spatial configurations of the thanas 

that impose crossing the city core to reach each other. Outer-to-inner movement was 

predicted to occur with a similar probability to the inner-to-outer one (an average across 

thanas of around 0.4% of trips).

3.2. Cholera, ENSO and the effect of human mobility

Model performance was quantified in terms of log-likelihood, the Akaike Information 

Criterion (AIC) [48], and the significance of the covariates evaluated using likelihood ratio 
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tests applied to the nested models (for details see [13]). The model with all forcing effects 

(full model with 60 parameters) presented the best AIC score, and the inclusion of all effects 

was significant compared to all nested models (Table 1). The climatic forcing by ENSO was 

found to be the most significant effect after seasonality. Interestingly, the best-fitting 

parameter set of the full model suggests a very similar functional form for the ENSO effect 

in the two regions of the city (kinner ≈ kouter ≈ 2.5, corresponding to a nonlinear functional 

form more sensible to extremes, Table 2). In accordance with previous findings [13], cholera 

dynamics in thanas of the core of the city presented a stronger absolute sensitivity to the 

ENSO than the periphery (Fig. 4). Indeed, the final selected model suggests a stronger 

interannual variability of the probabilities to transition to high cholera in the inner thanas 

than in the outer ones. This is the result of the higher base probability of transitioning to 

high cholera, pi,3, in the inner group and similar fENSO values (the forcing functions have a 

multiplicative effect on baseline probabilities). The inner vs. outer difference in cholera risk 

was further highlighted by the profiling results which indicate lower values of pi,3 in the 

outer group (see SM Fig S1).

Human mobility was identified as a significant effect when compared to all nested models 

(Table 1). Furthermore, our MIDCM model of cholera dynamics presented an overall better 

fit than the best-performing model reported in [13], which accounted for connectivity with 

the simpler near-neighbor assumption, thus highlighting the relevance of a more realistic 

representations of human mobility. The significant role of this spreading mechanism 

provides an opportunity to elucidate the spatial directionality of climate-cholera 

transmission in Dhaka. To this end, we computed the risk contribution of each thana through 

human mobility to all other thanas. To account for the stochastic variation in cholera states 

we performed 1-month ahead predictions via simulations with the best parameter set, 

sequentially setting the state of each thana to 0 and recomputing the value of the mobility 

forcing . The vector difference between the simulated mobility forcing, , and the 

simulated forcing without the contribution of the thana represents the increase in cholera risk 

due to mobility of thana k to each other thana. The simulations were run 1000 times and 

confidence intervals computed from the resulting difference vectors [ ]. The 

grouping of risk contribution by origin and destination group (inner vs. outer) reveals that 

cholera risk spreads mainly from the inner to the outer thanas, and among the latter (Fig. 5). 

Although risk contribution varies between thanas in the inner-outer and outer-outer 

directions (see Supplementary Video 1 and SM Fig. S4–S5), their values are consistently 

larger than the outer-inner risk contribution which is close to 0 throughout the study period. 

It is interesting to note that the directionality of cholera risk propagation appears clearly in 

the modeling results, although the predicted inter-group mobility fluxes are very similar. 

Interestingly the mean risk contribution between thanas (averaged across simulations and the 

study-period) was found be linearly linked to the intensity of mobility between thanas, 

although the slope of the relation varied significantly between groups (p-value< 0.01, see 

SM Table 2 and SM Fig. S6), thus confirming the fundamental differences between the role 

that human mobility plays depending on the region of the city. This probably stems from the 

larger probability of experiencing high attack rates in the core than in the periphery.

Perez-Saez et al. Page 8

Adv Water Resour. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3. Model predictive capacity

Cross-validation confirmed the forecasting capacity of the full model both in terms of inter- 

and intra-annual variation of cholera incidence and large outbreaks (Fig. 6 A). The cross-

validation parameter sets tend to over-estimate cholera attack rates during the period 2002–

2003, years in which the lagged ENSO anomaly was high but not accompanied by increased 

incidence. The optimal threshold for outbreak prediction was found to be an outbreak 

probability of 18.7% (Fig. 6 B), yielding false negative (21.1%) and positive (24.4%) rates 

that slightly outperform previously obtained results of ~ 25% by [13]. The overall accuracy 

of outbreak prediction is of 76.4%.

Furthermore, the MDIMC framework clearly outperformed the best-fitted SARIMA model, 

thus justifying the additional parametrization required for the MDIMC framework. Indeed, 

the SARIMA model reached an overall accuracy of 68.9% and much higher false negative 

rate (37.5%) which is of particular interest for operational reasons (see the SM and SM Fig. 

S2–S3).

4. Discussion

Dhaka with its heterogeneous landscape in population density and socioeconomic conditions 

presents a complex yet emblematic setting for waterborne disease transmission in urban 

centers across megacities of the developing world. Through our MDIMC modeling 

framework, we have disentangled the roles of climatic forcing and human mobility in 

shaping disease seasonality, inter-annual variability and spread.

The human mobility fluxes in Dhaka, as predicted by the radiation model, were found to be 

characterized by a strong intra-group connectivity, especially in the core of the city for 

which the majority of fluxes were predicted to occur among these densely populated thanas. 

The inter-group fluxes were predicted to be fairly symmetric. Fluxes were inferred using a 

simple and generalizable methodology based solely on the spatial distribution of population 

density. This approach could thus be implemented in other urban settings to study the effect 

of human mobility on the spread of cholera and other infectious diseases [49, 31, 33], 

provided urban settings are large enough to allow for the assumptions of the radiation model 

to apply. We here chose to use the radiation model by [38], although other parameter-free 

options exist [50], and refined models with calibrated parameters have been suggested to 

outperform the original formulation [51]. An assumption of our method is that mobility 

fluxes were computed based on the 2013 distribution of urban population in the city 

although the cholera data refers to the period 1995–2008. We therefore assume that mobility 

fluxes between thanas had the same structure throughout the study period, although Dhakas 

land cover has evolved significantly in the past 30–40 years with built-up areas rapidly 

extending into the rural peripheries of the city [16]. A full extension of our methodology 

would therefore require the availability of a time-series for the GUF product, which is not 

available. We nevertheless posit that the main result of the work, i.e. the directionality of the 

cholera spread from the inner thanas to the outer ones, would hold. In fact, progressive 

urbanization occurred mainly in the peripheral thanas [52], and thus the simplification made 

here would appear reasonable for the purpose of modeling cholera transmission, as it implies 

that weaker outer-to-outer fluxes with respect to prior urban settings. Furthermore, a 
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sensitivity analysis (see the SM for details) showed that a variation of ±20% in the outer-to-

inner mobility fluxes had only a marginal effect on the prediction outcomes at the city scale 

(difference in the attack rates < 0.1%, SM Fig S7), thus suggesting that our results are robust 

to the constant mobility matrix simplification made in this work. Despite these issues, our 

methodology could be easily modified to incorporate other model formulations, although the 

lack of access of mobility data such as mobile phone records hinders the applicability of 

models with free parameters. On the other hand, the use of mobile phone data has been 

shown to be relevant at the urban scale [53, 54], thus the increasing availability of mobile 

phone records in cholera-stricken countries could soon overcome the need for human 

mobility models altogether [21, 22, 55]. In an intermediate phase, and to inform efforts in 

locations where phone data are not readily available, comparisons of the fluxes based on 

methods such as the present one against phone data, where available, would be of interest. 

Indeed the built-up area raster dataset on which we based our current approach can be 

provided on request for arbitrary areas of interest via DLR. In summary, we have presented 

the application of an approach to examine whether a model of human movement provides a 

basis for modeling the connectivity of a spatio-temporal transmission model. In the absence 

of movement data, one can test whether a model of movement improves the fit of a 

transmission model to disease data. When this is the case, one has indirect evidence for the 

model of movement itself, and for the importance of further pursuing data on movement.

Transmission dynamics in the core and the periphery of the city appear to be fundamentally 

different, in particular with respect to the intrinsically higher probability of the inner thanas 

to transition to high cholera states. Poor water and sanitation infrastructure conditions, 

particularly in informal settlements and possibly exacerbated by rapid urbanization in the 

megacity, have already been pointed out as underlying factors of high cholera risk in the 

most densely populated areas of Dhaka and other cities [14, 7, 13]. Indeed, the thanas of the 

inner group presented higher average population densities and poorer sanitation conditions 

[13]. Our results support previous findings on the key role of global climatic forcing on 

cholera dynamics in Bangladesh [8, 35, 9], and its differential effect in the city of Dhaka 

[13]. Indeed, the inner thanas were found to be more sensitive to ENSO and presented a 

larger inter-annual variation of the probability of transition to high cholera states. These 

results are conditions on the choices both of the discretization of cholera attack rates into 

levels, and on the definition of the spatial grouping (here inner vs. outer). A future research 

direction would be to develop a more systematic way of determining the levels and 

groupings themselves (for instance through nonparamteric bayesian methods [56]), which 

would be extremely relevant to the application of the MDIMC framework to other settings 

and diseases.

The main finding of our work is that the inclusion of human mobility in the model reveals a 

clear directionality in the spread of cholera risk from the inner to the outer thanas, which had 

previously been proposed but not quantified. These results echo recent studies on epidemic 

cholera in urban settings that have revealed transmission hotspots, with implications for 

vaccination strategies [31]. Interestingly, these findings would suggest that even in the 

endemic context of Dhaka, secondary (i.e. human-mediated) transmission to (rather than 

from) the areas with suitable habitats for free-living V. cholerae is a main driver of disease 

outbreaks. Support for this transmission route could re-frame the emphasis placed on the 
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physical and chemical characteristics of the environment that are suggested to produce 

outbreaks in endemic regions such as Bangladesh [57, 58, 59]. Although it is undeniable that 

local environmental indicators are a key piece in understanding cholera outbreaks in urban 

settings, the results of this study are illustrative of the significance of human-related factors 

in the dynamics of the disease in a megacity like Dhaka.

Finally, including human mobility not only enabled a better understanding of disease 

transmission within the city, but also improved to some extent the prediction capacity of the 

model. Indeed we preserved the 11-month lead prediction horizon, but improved upon 

predictability, with a 21.1% false negative rate using cross-validation. The MDIMC 

framework also clearly outperformed the baseline SARIMA model, in particular in terms of 

false negative rate which is crucial for operational decision-making, thus suggesting that the 

added complexity in the model is worthwhile. This result is encouraging for the usefulness 

of MDIMC models for the prediction of cholera, which has already been shown in other 

countries [32], and for their applicability to other climatic-driven diseases.

5. Conclusion

The transmission of waterborne diseases in urban settings is inextricably linked to the 

interactions between environmental, socio-economic and climatic factors. Given the rate at 

which megacities in the developing world are emerging and growing, it is crucial to better 

understand these linkages to better support disease management in the highly complex and 

heterogeneous landscapes that characterize them.

Seasonal outbreaks of endemic cholera in Dhaka serve as a striking example of these 

interactions when accounting for human mobility. The heterogeneous physical landscape of 

the city, implicitly captured here via population density, could not only be an explanation of 

the different sensitivity to ENSO between the core and the periphery as suggested by [13], 

but also yields predictions of mobility fluxes that act to spread the disease. By providing 

insight into the spatial nature of transmission, the increased understanding these processes 

may help in the design of large-scale vaccination campaigns supported by promising field 

studies [29, 30].
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Highlights

• A model of cholera transmission in Dhaka which includes human mobility is 

proposed

• Human mobility was inferred based on gridded estimates of on population 

density

• Climatic forcing drives transmission inter-annual variability at the megacity 

scale

• Cholera was found to spread from the densely populated city core to the rural 

periphery
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Figure 1. 
Dhaka situation map and cholera incidence. (A) The 21 thanas of Dhaka are grouped in an 

inner core (yellow outline) and the periphery (purple outline). (B) Monthly cholera 

incidence in the thanas of Dhaka from 1995 to 2008, the bars beneath each timeseries 

indicates the discrete disease state in which the month is categorized, either no cholera 

(green), low cholera (yellow) or high cholera (red). The color of the frame indicates if the 

thana is in the core (yellow) or the periphery (purple) of the city.
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Figure 2. 
Population aggregation methodology. (A) Built-up area map shown in terms of the 

percentage of each pixel covered by vegetation (”greenness” index). (B) Dasymetric 

mapping of thana-specific population density at 12m resolution. (C) Aggregated population 

density at 1km resolution used to compute mobility fluxes. Black lines represent thana 

administrative boundaries.
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Figure 3. 
Mobility fluxes between thanas in Dhaka. The mobility patterns in the city are represented 

as the percentage of outgoing trips that are predicted to occur between the origin(row) to the 

destination(column) thana in the log10-color scale of each pixel in the grid. Thana groups 

(inner core and outer periphery) are indicated by braces.
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Figure 4. 
Climate effect on the interannual variability of cholera risk. The probability of transitioning 

to a high cholera state from no (p1,3), low (p2,3) and high cholera (p3,3) is shown accounting 

for the effect of seasonality (fseas) and the ENSO (fENSO) by month, year, and thana group. 

The intensity of the ENSO is indicated by the mean value of the SST anomaly in each year 

from low (blue) to high (red).
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Figure 5. 
Cholera risk spread in the city due to human mobility. The thana-to-thana contribution in 

cholera risk is illustrated in terms of the overall mean percentage increase in the baseline 

transition probability between the two regions of the city (black line) along with the 95% 

confidence intervals of the value of the mean (dark gray ribbon) over 1000 simulations of the 

state transitions. The variability of the difference over realizations is given in terms of the 

mean ± standard deviation (light gray difference).
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Figure 6. 
Cholera outbreak prediction performance. (A) Eleven-month predictions of cholera 

incidence. The means (blue dots) and 95% confidence intervals (blue shadings) of the 

simulations are given together with the observed average city-wide cholera state (solid line). 

The outbreak threshold is indicated by the horizontal dashed line. (B) Kolmogorov-Smirnov 

test comparing the cumulative mass function of the predicted outbreak probability in months 

in which an outbreak did (green) and did not (red) occur. The point corresponding to the 

maximal distance between the two curves (vertical dashed line) is used as a threshold for 

outbreak prediction.
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