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Neurodevelopment at Age 10 
Years of Children Born <28 Weeks 
With Fetal Growth Restriction
Steven J. Korzeniewski, PhD,​a,​b Elizabeth N. Allred, MPH,​c,​d Robert M. Joseph, PhD,​e Tim Heeren, PhD,​f Karl 
C.K. Kuban, MD,​g,​h T. Michael O’Shea, MD,​i Alan Leviton, MD,​c,​d for the ELGAN Study Investigators

OBJECTIVES: We sought to evaluate the relationships between fetal growth restriction 
(FGR) (both severe and less severe) and assessments of cognitive, academic, and adaptive 
behavior brain function at age 10 years.
METHODS: At age 10 years, the Extremely Low Gestational Age Newborns Cohort Study 
assessed the cognitive function, academic achievement, social-communicative function, 
psychiatric symptoms, and overall quality of life of 889 children born before 28 weeks’ 
gestation. A pediatric epileptologist also interviewed parents as part of a seizure 
evaluation. The 52 children whose birth weight z scores were <−2 were classified as 
having severe FGR, and the 113 whose birth weight z scores were between −2 and −1 were 
considered to have less severe FGR.
RESULTS: The more severe the growth restriction in utero, the lower the level of function 
on multiple cognitive and academic achievement assessments performed at age 10 years. 
Growth-restricted children were also more likely than their extremely preterm peers to 
have social awareness impairments, autistic mannerisms, autism spectrum diagnoses, 
difficulty with semantics and speech coherence, and diminished social and psychosocial 
functioning. They also more frequently had phobias, obsessions, and compulsions 
(according to teacher, but not parent, report).
CONCLUSIONS: Among children born extremely preterm, those with severe FGR appear to be 
at increased risk of multiple cognitive and behavioral dysfunctions at age 10 years, raising 
the possibility that whatever adversely affected their intrauterine growth also adversely 
affected multiple domains of cognitive and neurobehavioral development.
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What’s Known on This Subject: No cohort 
study of later school-aged children born extremely 
preterm has examined the relationship between 
fetal growth restriction and executive function, 
adaptive behaviors, or quality of life.

What This Study Adds: Among children born 
extremely preterm, those born with fetal growth 
restriction appear to be at increased risk of multiple 
cognitive and behavioral dysfunctions at age 10 
years.
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Children born at term weighing  
much less than expected for their 
gestational age are at greater risk  
of developmental limitations than 
their peers with birth weights 
appropriate for gestational age  
(AGA),​‍1‍‍–‍4 seemingly even into 
adulthood.5‍‍‍–‍9 Children born very 
preterm are also at increased risk 
of developmental disorders.10‍‍–‍13 
The combination of severe growth 
restriction and extremely preterm 
birth might result in so-called double 
jeopardy,​‍14 placing children with both 
characteristics at especially high risk 
of developmental problems.15‍‍‍–‍19

Researchers in follow-up studies of 
children born extremely preterm have 
used just a handful of instruments 
and questionnaires to assess motor, 
cognitive, speech and language, 
hearing, vision, academic, and 
some behavioral problems or other 
symptoms typically at ∼5 years of 
age.‍11,​‍20,​‍21 Whereas motor function 
appears stable by ∼5 years old,​‍22‍‍–‍26 
deficits in other domains involving 
higher-order cognitive processes do 
not.‍27,​28 No researchers in cohort 
studies of later school-aged children 
born extremely preterm have 
examined the relationship between 
fetal growth restriction (FGR) and 
executive function, adaptive behaviors, 
or quality of life. The large Extremely 
Low Gestational Age Newborns 
(ELGAN) Study cohort of infants born 
before 28 weeks’ gestation provided 
us opportunities to fill this void and 
evaluate the relationships between 
FGR (both severe and less severe) and 
assessments of cognitive, academic, 
and behavioral functioning at age 10 
years.

Methods

Participants

The ELGAN Study is a multicenter, 
prospective, observational study of 
the risk of structural and functional 
neurologic disorders in extremely 
preterm infants.‍29 All women 
delivering before 28 weeks’ gestation 

at 1 of 14 participating institutions 
were asked to enroll in the study 
during years 2002 to 2004. All the 
children they delivered who survived 
to have a cranial ultrasound scan 
were included. A total of 1506 infants 
born before 28 weeks’ gestation 
were enrolled, and 1200 survived 
to 2 years, when 1102 of them had 
a developmental assessment.‍30 At 
age 10 years, of the 966 children 
who were eligible to be recruited for 
follow-up (because of the availability 
of data on inflammation-related 
proteins in blood samples from 
their first postnatal month), 889 
(92%) returned for an assessment 
of cognition, executive functioning, 
behaviors, and achievement. Children 
who survived but did not participate 
were more likely at the time of birth 
than participants to have indicators of 
social disadvantage (lower maternal 
education and receipt of public 
health insurance), but there were no 
differences on sex, gestational age, 
or birth weight z score. Enrollment 
and consent procedures for this 
follow-up study were approved 
by the institutional review boards 
of all participating institutions. 
Our previous publications provide 
additional information about the 
ELGAN Study design,​‍29 pregnancy 
disorders,​‍31 microbiologic and 
histologic characteristics of the 
placenta,​32 systemic inflammation in 
children born with FGR,​‍33 and the age 
10 years assessments.‍34

Newborn Variables

The gestational age estimates were 
based on a hierarchy of the quality 
of available information. The most 
desirable were estimates based 
on the dates of embryo retrieval 
or intrauterine insemination or 
fetal ultrasound before the 14th 
week (62%). When these were 
not available, reliance was placed 
sequentially on a fetal ultrasound 
at 14 or more weeks (29%), last 
menstrual period (LMP) without fetal 
ultrasound (7%), and gestational age 
recorded in the log of the NICU (1%).

The birth weight z score is the number 
of SDs an infant’s birth weight is above 
or below the mean weight of infants 
of the same gestational age in referent 
samples not delivered for preeclampsia 
or fetal indications.‍35,​‍36 Three study 
groups were formed according to birth 
weight z score category: <−2, ≥−2 and 
<−1, and ≥−1.

Procedures

Families who were willing to 
participate were scheduled for 1 visit, 
during which all of the measures 
reported here were administered in 
3 to 4 hours, including breaks. The 
assessments were selected to provide 
the most comprehensive information 
about cognitive and academic 
function in 1 testing session. While 
the child was being tested, the 
parent or caregiver completed 
questionnaires regarding the child’s 
medical and neurologic status, 
language, behavior, and quality of life.

Cognitive Measures

We selected cognitive measures 
that are well validated and provide 
recently normed standard scores, 
allowing for comparison with US 
population norms. Details about 
the assessments of cognition and 
executive function (the Differential 
Ability Scales–II [DAS-II]‍37), 
Developmental Neuropsychological 
Assessment-II [NEPSY-II]‍38), language 
(Oral and Written Language Scales 
[OWLS]‍39), social and communication 
function (Social Communication 
Questionnaire [SCQ]‍40), and autism 
spectrum disorder (ASD) diagnosis 
are provided in our previous 
publications.34,​‍41,​‍42 Each cognitive 
subtest is described elsewhere.

Academic Function

The Wechsler Individual Achievement 
Test-III (WIAT-III [C]) provides 
standard scores in word recognition 
and decoding, spelling, and numeric 
operations.‍43 We report the scores 
from the WIAT-III Numeric Operations, 
Word Reading, Pseudoword Decoding, 
and Spelling subtests.
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Autism Assessment

Children determined to be at risk 
on the SCQ (see parent-completed 
questionnaires below) were 
assessed with the Autism Diagnostic 
Interview–Revised (ADI-R) and 
an in-depth parent interview.‍42,​‍44 
Children who met ADI-R modified 
criteria for ASD‍45 were administered 
the Autism Diagnostic Observation 
Schedule, Second Edition (ADOS-2).‍46 
All children who met standardized 
research criteria for ASD on both the 
ADI-R and ADOS-2 were classified as 
having ASD. In addition, 11 children 
were included who met ADOS-2 
criteria but did not have an ADI-R 
assessment; of these children, 9 who 
had a previous clinical diagnosis of 
ASD or who the site psychologist 
thought were likely to meet diagnostic 
criteria for ASD were assessed with 
the ADOS-2, whereas the parents 
of the remaining 2 children did not 
complete the ADI-R interview.

Gross Motor Function

The children’s motor function was 
assessed with the Gross Motor 
Function Classification System.‍47 
A child was classified as level 3 or 
higher if he or she needed mobility 
assistance (level 3, walks using a 
handheld mobility device; level 4, 
self-mobility with limitations, may 
use powered mobility; and level 5, 
transported in a manual wheelchair).

Manual Ability Classification System

The classification assigns a single 
level for the collaborative use of both 
hands when handling objects in daily 
life (level 1, handles objects easily and 
successfully; level 2, some reduction 
of quality and/or speed; level 3, 
handles objects with difficulty; level 
4, significant limitations; and level 5, 
requires total assistance).‍48

Communication Function Classification 
System

The Communication Function 
Classification System allocates children 
to 1 of 5 levels of communication 
performance (level 1, effective with 

unfamiliar and familiar partners; level 
2, effective but slower paced; level 3, 
effective with familiar partners but 
less so with unfamiliar partners; level 
4, inconsistent with familiar partners; 
and level 5, seldomly effective with 
familiar partners).‍49 The system 
assesses speech, gestures, behaviors, 
eye gaze, facial expressions, and 
such augmentative and alternative 
communication systems as manual 
signs, pictures, communication boards, 
communication books, and speech-
generating devices.

Parent-Completed Questionnaires

While the child was being tested, 
the parent or caregiver was asked to 
complete the following questionnaires 
regarding the child’s medical and 
neurologic status and behavior.

Child Symptom Inventory-4

While the child was being tested, 
the parent or caregiver completed 
questionnaires regarding the child’s 
medical and neurologic status 
and behavior, including the Child 
Symptom Inventory-4 (CSI-4) Parent 
Checklist.‍50 The child’s current 
teacher was also asked to complete 
the CSI-4 Teacher Checklist. Although 
the parent checklist has 20 more 
items than the teacher version (97 
vs 77), both include the same 18 
items specific to attention-deficit/
hyperactivity disorder symptoms (9 
for the inattentive domain and 9 for 
the hyperactive and/or impulsive 
domain) that are each rated on a 
scale from 0 (never) to 3 (often). 
Teachers and parents did not make 
any Diagnostic and Statistical Manual 
of Mental Disorders, Fourth Edition 
diagnosis. Rather, the CSI-4 program 
identified children as screening 
positive for these diagnoses on the 
basis of the parents’ or teachers’ 
acknowledgment of selected child 
characteristics.

Social Responsiveness Scale

The Social Responsiveness Scale 
(SRS) is a short, parent-completed 
questionnaire designed to evaluate 

a child’s social ability.‍51,​‍52 This 
65-item instrument was designed 
as a quantitative trait measure for 
ASD-related deficits that do not 
warrant a formal diagnosis in the 
general population.‍53,​‍54 It provides a 
total score reflecting the severity of 
social deficits on the autism spectrum 
as well as 5 subscale scores: social 
awareness, social cognition, social 
communication, social motivation, 
and restricted interests and 
repetitive behavior.

SCQ

All children were screened for an 
autism disorder by the parent-
completed SCQ.‍55 We used the current 
version, which is composed of 40 
yes-or-no questions about the child’s 
behavior over the last 3 months.

Children’s Communication Checklist-2

The Children’s Communication 
Checklist-2 (CCC-2) has 70 items that 
are used to assess speech, vocabulary, 
sentence structure, and social 
language skills.‍56 The 10 subscales 
are discourse, syntax, semantics, 
coherence, inadequate initiation, 
stereotyped language, use of context, 
nonverbal communication, social 
relations, and interests. We calculated 
z scores using normative data.‍57

Data Analyses

We evaluated the null hypothesis 
that among children born before 
28 weeks’ gestation, those who had 
severe and less severe intrauterine 
growth restriction do not differ from 
their peers who had higher weight for 
gestation on assessments of cognitive 
and executive function, behavior, 
language, and communication at age 
10 years. We also described motor 
function, the frequencies of parent 
and teacher responses on CSI-4 
items, the occurrence of seizures, and 
quality of life among children who 
were born growth restricted and 
children who were not.

Frequencies and proportions 
were calculated to describe the 
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characteristics of each study 
group. For assessments that yield 
a continuous outcome, we used 
normative data described by the 
authors of the assessment‍37,​‍58,​‍59 to 
derive z scores. Associations with 
z scores <−2 or z scores ≥−2 and 
<−1 were evaluated for cognition 
and academic outcomes, as well as 
those measured by the SRS, SCQ, and 
CCC-2. We used logistic regression 
models to estimate odds ratios (ORs) 
with 95% confidence intervals (CIs) 
adjusting for potential confounders 
(sex and racial identity) that were 
selected a priori and were associated 
with the independent and dependent 
variables (see Supplemental Fig 5). 
ORs with 95% CIs that exclude 1.0 
are statistically significant at P <.05.

Results

Correlates of Birth Weight Z Score 
Categories

The mothers of severely growth-
restricted newborns were more likely 
than the mothers of other children to 
identify as neither white nor African 
American (Supplemental Fig 5). Most 
(69%) children who were delivered 
because of preeclampsia were growth 
restricted, as were half of those who 
were delivered for a fetal indication. 
Girls were more frequently growth 
restricted than boys.

Distributions of Age 10 Years 
Assessment Scores

‍Figure 1 shows box plots for each 
measure; the 3 horizontal lines in 
the box plots correspond to the 
normative population 25th, 50th, 
and 75th percentile values for each 
measure. The distributions of scores 
on every assessment were lower 
than was expected on the basis of 
the distributions in the normative 
sample (ie, the medians lie below the 
horizontal line at 0).

Compared with their peers who 
were not born with FGR, the most 
severely and the less severely growth-
restricted newborns had relatively 

similar percentages of low scores 
on the DAS-II Verbal Reasoning, 
OWLS Listening Comprehension, 
NEPSY-II Visuomotor Precision, and 
WIAT-III Word Reading, Pseudoword 
Decoding, and Spelling subtests. In 
contrast, the more severe the growth 
restriction, the lower the scores for 
auditory attention, auditory response, 
inhibition inhibition, inhibition 
switching, inhibition naming, and 
arrows assessments. Differences in 
scores for the remaining assessments 
across the 3 study groups were minor, 
although median and 25th percentile 

scores generally tended to be higher 
among the AGA group than among 
their growth-restricted peers.

General Cognition and Achievement

In analyses that were adjusted for race 
and sex, children born severely or 
less severely growth restricted were 
1.5- to twofold more likely than their 
peers who were born with higher 
birth weight z scores to have low 
scores on the OWLS Oral Expression 
subtest, the DAS-II Working Memory 
subtest, the NEPSY-II Auditory 
Response subtest, and the WIAT-II 
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FIGURE 1
Box-and-whisker plots (A and B) of each cognitive subtest by birth weight z score category. All z 
scores are adjusted to population norms. Light gray is <−2; medium gray is ≥−2, <−1; and dark 
gray is ≥−1. The central line in the box indicates the median (50th percentile), whereas the top 
of the box indicates the 75th percentile, and the bottom of the box indicates the 25th percentile. 
If ELGAN had the expected normal distribution of term children, the middle of the box would be 
at z score = 0, and the upper and lower ends of the box would be at z score = 1 and z score = 
−1, respectively. AA, auditory attention; AS, animal sorting; AW, arrows; GEO, geometric puzzles; INI, 
inhibition inhibition; INN, inhibition naming; INS, inhibition switching; LC, listening comprehension; 
NO, numerical operations; NV, nonverbal reasoning; OE, oral expression; PwD, pseudoword decoding; 
RS, auditory response set; Sp, spelling; V, verbal; VP, visuomotor precision; WM, working memory; WR, 
word reading.

http://pediatrics.aappublications.org/lookup/suppl/doi:10.1542/peds.2017-0697/-/DCSupplemental
http://pediatrics.aappublications.org/lookup/suppl/doi:10.1542/peds.2017-0697/-/DCSupplemental


Numeric Operations subtest (‍Fig 2, 
Supplemental Tables 1 and 2).

Children who were less severely 
growth restricted at birth were also 
at increased risk of low scores on the 
OWLS Oral Expression subtest and 
the DAS-II Working Memory subtest. 
These children also had higher risks 
of low scores on the DAS-II Verbal 
subtest, the NEPSY-II Animal Sorting 
subtest, and the WIAT-II Word 
Reading, Pseudoword Decoding, and 
Spelling subtest scores.

SRS

Clinically significant impairment 
(score of ≥60) at age 10 years on the 
social awareness and social cognition 
components of the SRS occurred 
more frequently among children 
who were severely growth restricted 
at birth than among children who 
were not growth restricted (‍Fig 3, 
Supplemental Table 3). The ORs of 
clinically significant impairment as 
defined by the total SRS score and the 
remaining SRS components (social 
cognition, social communication, 
social motivation, and autistic 
mannerisms) were not statistically 
different from 1.

Children who were severely growth 
restricted at birth were also at 
increased risk of a rigorously 
defined ASD. Their increased risk of 
screening positive on the SCQ was not 
statistically significant, although they 
were considerably more likely than 
others to have been described as using 
odd phrases, socially inappropriate 
questions, and made-up words.

Children whose growth restriction 
at birth was less severe were not at 
increased risk of high scores on the 
SRS, screening positive on the SCQ, or 
positive ADOS-2.

CCC-2

Children with severe FGR were at 
increased risk of a z score ≤−1 on 
the CCC-2 subtests of coherence, 
context, nonverbal communication, 
and interests (‍Fig 4, Supplemental 

Tables 4 ). Children who were less 
severely growth restricted at birth 
were not at increased risk of a low 
score on any subtest of the CCC-2.

CSI-4 Identified Behavioral Disorders

According to both parents and 
teachers, children who were born 
severely growth restricted screened 
positive for posttraumatic stress at 
age 10 years more frequently than 
their AGA peers (Supplemental Fig 6). 
Parents, but not teachers, also reported 
a higher frequency of vocal tics among 
children who were born severely 
growth restricted. In contrast, teachers, 

but not parents, reported higher 
frequencies of symptoms of specific 
phobia, obsessions, compulsions, and 
social phobia among the severely 
growth restricted than among those 
who were not growth restricted. 
The less severely growth restricted 
children were remarkably similar 
to their peers who had higher birth 
weight for gestation.

Other Dysfunctions

Inconsistent or seldom effective 
communication with familiar partners 
was more common among severely 
growth restricted than among 
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FIGURE 2
Forest plots of ORs and 95% CIs of a z score ≤−1 on each DAS-II and NEPSY-II cognitive assessment 
at age 10 years associated with birth weight z score category <−2 (on left) and ≥−2, <−1 (on right). 
ORs are adjusted for racial identity and sex. BW, birth weight.

FIGURE 3
Forest plots of ORs and 95% CIs of a T score ≥60 on the SRS subtests, of a positive screening result 
on the SCQ, and of documented characteristics of ASD on the basis of the ADOS-2 at age 10 years 
associated with birth weight z score category <−2 (on left) and ≥−2, <−1 (on right). ORs are 
adjusted for racial identity and sex. BW, birth weight.

http://pediatrics.aappublications.org/lookup/suppl/doi:10.1542/peds.2017-0697/-/DCSupplemental
http://pediatrics.aappublications.org/lookup/suppl/doi:10.1542/peds.2017-0697/-/DCSupplemental
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children who were not born with 
FGR (Supplemental Fig 7). However, 
less severely growth-restricted 
children did not have such severe 
communication limitations. Children 
who were severely growth restricted 
at birth were also more likely than 
others to be strongly right-handed, 
but they were no more likely to have 
seizures or a limitation of manual 
ability or gross motor function.

The more severe the FGR, the higher 
the proportion of children who 
had limited quality of life in school 
functioning. Limited quality of life in 
social functioning and psychosocial 
functioning were also more common 
among children born severely growth 
restricted but not among those who 
were born less severely growth 
restricted.

Discussion

Our main finding is that by 
and large, the more severe the 
growth restriction in utero, the 
lower the scores on multiple 
neurodevelopmental assessments 
at age 10 years. Severely growth-
restricted children were more likely 
than their extremely preterm peers to 
have social awareness impairments 
and autistic mannerisms (according 
to the SRS), a rigorously defined ASD, 
and difficulty with speech coherence, 

context, nonverbal communication, 
and interests (according to the CCC-2).  
These severely growth-restricted 
children also had diminished social 
and psychosocial function and quality 
of life (according to the Pediatric 
Quality of Life Inventory) compared 
with their peers who were not growth 
restricted. Children who were less 
severely growth restricted at birth 
were at increased risk of low scores 
on the OWLS Oral Expression subtest 
and the DAS-II Working Memory 
subtest.

Synthesis With Previous Studies

Some of the social and communication 
deficits we studied were particularly 
pronounced in children born 
extremely preterm who had severe 
FGR, as were some cognitive 
functioning deficits, but not all. We 
do not know if FGR at low gestational 
ages is associated with general deficits 
across most cognitive domains or 
with selective deficits in only some 
domains of brain function.‍11,​‍20,​‍21 Our 
search of PubMed identified no large 
study of associations between FGR 
(or being small for gestational age 
[SGA]) and cognitive and behavioral 
outcomes in children born before 
28 weeks’ gestation. However, such 
associations have been assessed in 3 
studies involving children who were 
born before 30 weeks’ gestation. 

In the first, excluding children who 
had cerebral palsy and/or sensory 
impairment, 6-year-old SGA children 
were more likely to have an IQ <75 
than were their AGA peers (35%, 7 of 
20 vs 14.6%, 12 of 82).‍60 The second 
included 8-year-olds who were born 
before 28 weeks’ gestation, but only 
4 children were SGA. Nonetheless, 
birth weight z score was moderately 
correlated with IQ.61 In the third 
study, SGA children who also had 
absent or reversed end diastolic 
blood flow were compared with 
AGA controls and matched for sex, 
gestational age at birth, and year of 
birth. At 5 years to 8 years of age, a 
full-scale IQ <70 was more common 
(10 of 34 vs 2 of 34), and the mean 
verbal IQ was lower in the SGA 
group.‍62

Our findings are also generally 
consistent with those of 2 
population-based cohorts of children 
born very preterm (ie, before the 
32nd week). In a Dutch cohort of 
school-aged children who were 
born very preterm or very low birth 
weight (<1500 g), SGA children were 
more likely to have a speech and 
language abnormality and to receive 
special education.‍63 Similarly, in the 
Etude Epidémiologique sur les Petits 
Ages Gestationnels (EPIPAGE) cohort, 
5- to 8-year-olds who were SGA were 
more likely to have minor cognitive 
difficulties, inattention-hyperactivity 
symptoms, and school difficulties 
(OR: 1.74; 95% CI 1.07–3).

The most likely explanation for the 
observation that girls are more likely 
than boys to be growth restricted at 
birth is based on the observation that 
preterm preeclampsia occurs more 
commonly among pregnancies with a 
female fetus than among pregnancies 
with a male fetus.‍64

FGR and the Brain

Some of the brain structure 
characteristics of growth-restricted 
children born preterm might account 
for some of the dysfunctions evident 
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FIGURE 4
Forest plots of ORs and 95% CIs of a z score ≤−1 on the CCC-2 subtests at age 10 years associated 
with birth weight z score category <−2 (on left) and ≥−2, <−1 (on right). ORs are adjusted for racial 
identity and sex. BW, birth weight.

http://pediatrics.aappublications.org/lookup/suppl/doi:10.1542/peds.2017-0697/-/DCSupplemental


at age 10 years in children who were 
growth restricted at birth,​‍65‍‍‍–‍70  
although some morphologic 
correlates might be below current 
clinical MRI resolution.‍71 These 
brain structure abnormalities 
might, in turn, be a consequence of 
epigenetic phenomena that sensitize 
the brain,​‍72‍–‍75 making it vulnerable 
to inflammatory phenomena that 
appear to increase the risk of brain 
damage in very preterm newborns.‍76 
Indeed, the risk of brain damage in 
severely growth-restricted neonates 
born very preterm appears further 
heightened by their tendency to have 
more intense systemic inflammatory 
responses than their peers who were 
not growth restricted,​‍33 perhaps 
acting in a 2-hit model‍77 (in which 
growth restriction is the first hit, and 
intermittent or sustained systemic 
inflammation is the second hit). 
Likewise, inflammation appears 
to account for some of the brain 
abnormalities in rats with FGR.78

Growth Restriction Might Be a 
First Hit Because of Impaired 
Placentation

In the ELGAN Study, almost two-thirds 
of all severely growth-restricted 
infants were born to women who had 
preeclampsia. Both of these disorders 
are characterized by impaired 
placentation‍79,​‍80 and deficiencies of 
growth factors‍81,​‍82 apparently involved 
in the regulation of intravillous or 
fetomaternal angiogenesis.83‍‍–‍86 
Although the stimulus responsible 
for altered placental release of 
the molecules is not known,​‍87–‍89 
dysregulation of angiogenic-related 
factors is thought to affect pregnancy 
either by failing to promote growth‍90 
or limiting the availability of 
nutrients.‍91 Both mechanisms have 
the potential to limit brain growth and 
maturation.‍15,​92,​‍93

A paucity of the enzyme heme 
oxygenase (HO) might also 
contribute to impaired fetal brain 
development.‍94,​‍95 It helps regulate 
not only angiogenesis but also 

vascular tone, inflammation, 
apoptosis, and oxidation. Deficiencies 
of HO additionally appear to 
characterize preeclampsia,​‍96‍‍–‍100 
although not all researchers agree.‍101 
The deletion of the gene HO-1 in 
mice leads to inadequate remodeling 
of spiral arteries and suboptimal 
placentation followed by intrauterine 
growth restriction.‍102 Consistent 
findings have been shown in rats.103

HO also modulates innate and 
adaptive immune responses,​‍104‍‍‍–‍109 
can contribute to the resolution 
of inflammation,​‍110‍–‍112 and can 
also reduce oxidative stress.113,​‍114 
Moreover, an HO-1 inducer promotes 
preconditioning,​‍115 perhaps thereby 
protecting the vulnerable brain.‍116‍–‍119 
Consequently, the brains of very 
preterm children born to women 
who have severe preeclampsia might 
be more vulnerable than the brains 
of their peers who are delivered 
for spontaneous indications.‍120 
Such vulnerability might explain 
the increased risk for cognitive 
impairment reported among 
children who were born to mothers 
affected by preeclampsia (and its 
correlates).‍121‍–‍124

Methodologic Issues

Defining FGR is not as simple as it 
might seem. This is reflected in the 
wide variation in terms and methods 
across studies.‍125‍–‍127 Not all infants 
whose weight is near the lower end 
of the spectrum have had disordered 
growth. Some will be small in part 
because of the tendency for children 
of his or her genetic predisposition 
to be small at birth.‍128 However, the 
contribution of such tendencies is 
thought to be small relative to the 
contributions of phenomena that 
lead to severe growth restriction.129 
Consequently, customized percentiles 
based on maternal characteristics are 
not recommended.‍130,​‍131

Some argue that growth restriction 
and SGA are not synonymous.‍127,​‍132  
We use the term FGR in light of 

the ongoing challenge to discern 
pathologically from constitutionally 
small newborns‍3,​‍133,​134 and because 
we prefer to avoid the impression that 
we used a cutoff of the lowest decile 
(which would define SGA). Indeed, our 
finding that some children who were 
relatively but not severely growth 
restricted at birth had cognitive 
limitation leads to this inference that 
growth restriction can be a continuum 
and not an either/or phenomenon.

Clinical Implications

The cognitive, social, and other 
behavioral impairments we and 
others have observed call for 
efforts to prevent and ameliorate 
these impairments among children 
with FGR born extremely preterm. 
Low-dose aspirin administered 
in early gestation has therapeutic 
benefits for some women who are 
at increased risk of preeclampsia 
(and its correlates [ie, FGR]‍135), and 
trials are underway to test additional 
strategies.‍135‍‍‍–‍140 Placental and other 
stem cells,​‍141‍‍‍‍‍–148 proton-pump 
inhibitors,​‍149 low-molecular-weight 
heparin‍150 and other molecules‍151‍–153 
might also have therapeutic 
benefits. Indeed, compelling studies 
of rodents‍154‍‍–‍157 and nonhuman 
primates158 support the possibility of 
a therapeutic benefit from exogenous 
angiotrophins during gestation.

Interventions aiming to improve 
maternal diet and its correlates (eg, 
the mHealth coaching program‍159) 
would likely be more beneficial than 
a narrow focus on maternal weight 
gain.‍160‍‍–163 Postnatal care plans that 
were not specifically developed for 
children with FGR might nevertheless 
help minimize some of the limitations 
identified.‍164‍‍‍‍‍‍‍‍–‍175

Strengths and Limitations

The strengths of our study are 
the large number of infants, the 
enrollment of infants based on 
gestational age and not birth weight,​‍176  
the outcome assessments by 
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individuals who did not know which 
study participants had a history 
of FGR, and the large number of 
instruments used to assess cognitive 
and other functions at age 10 years. 
To avoid the error of inappropriately 
drawing the inference that FGR has 
no influence, we did not adjust for 
multiple comparisons; it is possible 
that this increased type I error.‍177 
However, we found 5 times as many 
statistically significant ORs than 
was expected by chance alone; this 
prompts us to infer that our findings 
are unlikely to reflect random 
phenomena. As with all observational 
studies, we are limited in our ability 
to infer causation from associations; 
ie, we cannot rule out the possibility 
that the observed association 
between FGR and increased risk of 
neurodevelopmental deficits was 
explained by alternative unmeasured 
or measured factors (eg, neonatal 
morbidities).

Conclusions

Among children born extremely 
preterm, those with severe FGR are 
at increased risk of a wide variety of 
neurodevelopmental dysfunctions 
and low achievement scores assessed 
at age 10 years.
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