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Abstract

We present a novel framework for characterizing paired brain networks using techniques in hyper-

networks, sparse learning and persistent homology. The framework is general enough for dealing 

with any type of paired images such as twins, multimodal and longitudinal images. The exact 

nonparametric statistical inference procedure is derived on testing monotonic graph theory features 

that do not rely on time consuming permutation tests. The proposed method computes the exact 

probability in quadratic time while the permutation tests require exponential time. As illustrations, 

we apply the method to simulated networks and a twin fMRI study. In case of the latter, we 

determine the statistical significance of the heritability index of the large-scale reward network 

where every voxel is a network node.

1 Introduction

There are many studies related to paired images: longitudinal studies with two repeat scans 

[7], multimodal imaging study involving PET and MRI [13] and twin imaging studies [15]. 

The paired images are usually analyzed by relating voxel measurements that match across 

two images in a mass univariate fashion at each voxel. Compared to the paired image setting, 

paired brain networks have not been often analyzed possibly due to the lack of problem 

awareness and analysis frameworks.

In this paper, we present a new unified statistical framework that can integrate paired 

networks in a holistic fashion by pairing every possible combination of voxels across two 

images. This is achieved using a hyper-network that connects multiple smaller networks into 

a larger network. Although hyper-networks are frequently used in machine learning [16], the 

concept has not been often used in medical imaging. Jie et al. used the hyper-network 

framework from the resting-state fMRI in classifying MCI from AD in a machine learning 

framework [9]. Bezerianos et al. constructed the hyper-network from the coupling of EEG 

activity of pilots and copilots operating an aircraft albeit using ad-hoc procedures without an 

explicit model specification [1]. Motivated particularly by the science of [1], we rigorously 
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formulate the problem of characterizing paired networks as a single hyper-network with 

physically nonexistent hyper-edges connecting between two existing networks.

Graph theory is often used framework for analyzing brain networks mainly due to easier 

accessibility and interpretation. Since we do not know the exact statistical distribution of 

many graph theory features, resampling techniques such as the permutation tests have been 

mainly used in estimating the null distribution and computing p-values. The availability of 

inexpensive and fast computers made the permutation tests a natural choice for computing p-

values when underlying distributions are unknown. However, even with fast computers, 

permutation test is still extremely slow even for small-scale problems. There is a strong need 

for fast inference procedures. We propose a new exact inference procedure for graphs and 

networks. The method speeds up the computation by counting the number of permutations 

combinatorially instead of empirically computing them by numerically generating large 

number of permutations.

Our main contributions are as follows.

1. The new formulation of the hyper-network approach for paired images. We show 

that hyper-networks can be effectively used as a baseline model for paired twin 

fMRI. The proposed holistic framework is applied to a twin fMRI study in 

determining the statistical significance of the brain network differences and the 

heritability of the reward network.

2. Showing that the topological structure of the sparse hyper-network has a 

monotonic nestedness. This is used to define monotonic graph features and 

subsequently in computing topologically aware distance between networks.

3. The derivation of the probability distribution of the combinatorial test procedure 

on graph theory feature vectors that do not rely on resampling techniques such as 

the permutation tests. While the permutation tests require exponential run time, 

our exact combinatorial approach requires quadratic run time.

2 Sparse hyper-network

Consider a collection of n paired images

We assume xk and yk are related either genetically (twin or sibling images), scan-wise 

(multimodal images of the same subject) or longitudinally. We further assume (xk, yk) are 

independently but identically distributed for different i. Let x = (x1, …, xn)⊤ and y = (y1, …, 

yn)⊤ be the vectors of images. We set up a hyper-network by relating the paired vectors at 

different voxels υi and υj:
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(1)

for some zero-mean noise vector e (Fig. 1). The parameters β = (βij) are the weights of the 

hyper-edges between voxels υi and υj that have to be estimated. We are constructing a 

physically nonexistent artificial network across different images. For fMRI, (1) requires 

estimating over billions of connections, which is computationally challenging. In practice 

however, each application will likely to force β to have a specific structure that may reduce 

the computational burden. For this study, we will consider a reduced model relevant to our 

genetic imaging application:

(2)

The scientific motivation for using the reduced model will be explained in section 6. Without 

loss of generality, we can center and scale x and y such that

(3)

for all voxels υi.

In many applications, we have significantly more number of voxels (p) than the number of 

images (n), so model (2) is an under-determined system and belongs to the small-n large-p 
problem [5]. It is necessary to regularize the model using a sparse penalty:

(4)

where sparse parameter λ ≥ 0 modulates the sparsity of the hyper-edges. The estimation β̂ is 

a function of λ. When λ = 0, (4) is a least-squares problem and we obtain β̂ij(0) = 

x⊤(υi)y(υj), which is referred to as the cross-correlation. The cross-correlation is invariant 

under the centering and scaling.

3 Distance between networks

To study the topological characteristic of the hyper-network, the estimated edge weights 

β̂ij(λ) are binarized by assigning value 1 to any nonzero weight and 0 otherwise. Let Gλ be 

the resulting binary graph, i.e., unweighted graph, with adjacency matrix Aλ = (aij(λ)):
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(5)

As λ increases, Gλ becomes smaller and nested in a sense that every edge weight gets 

smaller. This is not true for the binarization of other sparse network models. Our sparse 

hyper-network has this extra layer of additional structure that guarantees the nestedness.

Theorem 1

The binary graph Gλ obtained from sparse model (4) satisfies

(6)

for any 0 ≤ λ1 ≤ λ2 ≤ … ≤ λq ≤ 1.

Proof—By solving dβ̂(λ)/dλ = 0 for λ ≠ 0 and considering β̂(0) separately it can be 

algebraically shown that the solution of the optimization problem (2) is given by [5]

(7)

From (3) and the Cauchy-Schwarz inequality we have |x⊤(υi)y(υj)| ≤ 1. Thus, if λ > 1, β̂(λ) 

= 0. To avoid the trivial case of zero edge weights everywhere, we need 0 ≤ λ ≤ 1. From (7), 

we have |β̂ij(λj)| ≥ |β̂ij(λj+1)| for 0 ≤ λj ≤ λj+1 ≤ 1. Subsequently, from (5), aij(λj) ≥ aij(λj+1). 

Therefore, we have Gλj ⊃ Gλj+1.

The sequence of nested multi-scale graph structure (6) is called the graph filtration in 

persistent homology [11]. The graph filtration can be quantified using monotonic function B 
satisfying

(8)

The number of connected components, which is the zero-th Betti number β0 and the most 

often used topological invariant in persistent homology, satisfies this condition. The size of 

the largest connected component satisfies a similar but opposite relation of monotonic 

decrease.

Given two different graph filtrations  and , define 

the distance between them as
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which can be discretely approximated as

If we choose enough number of q such that λj are all the sorted edge weights, then D(G1, 

G2) = Dq. This is possible since there are only up to p(p – 1)/2 number of unique edge 

weights in a graph with p nodes and  and  increase discretely. In practice, ρj = 

j/q is chosen uniformly in [0, 1] or a divide-and-conquer strategy can be used to do 

adaptively grid the unit interval.

D satisfies all the axioms of a metric except identity. D(G1, G2) = 0 does not imply G1 = G2. 

Thus, D is not a metric. However, it will be shown in section 4 that probability P(D(G1, G2) 

= 0) = 0 showing such event rarely happens in practice. Thus, D can be treated as a metric-

like in applications without much harm.

4 Exact topological inference

We are interested in testing the null hypothesis H0 of the equivalence of two monotonic 

graph feature functions:

As a test statistic, we propose to use Dq. The test statistic takes care of the multiple 

comparisons by the use of supremum. Under the null hypothesis, we can derive the 

probability distribution of Dq combinatorially without numerically permuting images.

Theorem 2

where Au,υ satisfies Au,υ = Au–1,υ + Au,υ–1 with the boundary condition A0,q = Aq,0 = 1 

within band |u – υ| < d.

Proof—The proof is similar to the combinatorial construction of Kolmogorov-Smirnov 

(KS) test [2,5,8]. Combine two monotonically increasing vectors
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and arrange them in increasing order. Represent  and  as ↑ and → 
respectively. For example, ↑↑→↑→→ …. There are exactly q number of ↑ and q number of 

→ in the sequence. Treat the sequence as walks on a Cartesian grid. → indicates one step 

to the right and ↑ indicates one step up. Thus the walk starts at (0, 0) and ends at (q, q) (Fig. 

2). There are total  possible number of paths, which forms the sample space. This is 

also the total number of possible permutations between the elements of the two vectors. The 

null assumption is that the two vectors are identical and there is no preference to one vector 

element to another. Thus, each walk is equally likely to happen in the sample space.

The values of B(G1ρj) and B(G2ρj) satisfying the condition supj |B(G1ρj) – B(G2ρj)| < d are 

the integer coordinates of (u, υ) on the path satisfying |u – υ| < d. These are integer grid 

points within the boundary υ = u ± d (dotted red lines in Fig. 2). Thus the probability can be 

written as

(9)

where Au,υ be the total number of passible paths from (0, 0) to (u, υ) within the boundary. 

Since there are only two paths (either ↑ or →), Au,υ can be computed recursively as

within the boundary. On the boundary A0,q = Aq,0 = 1 since there is only one path.

Theorem 2 provides the exact probability computation for any number of nodes p. For 

instance, probability P(D4 ≥ 2.5) is computed iteratively as follows. We start with computing 

A1,1 = A0,1 + A1,0 = 2, A2,1 = A1,1 + A1,0 = 3, …, A4,4 = A4,3 + A3,4 = 27 + 27 = 54 (red 

numbers in Fig. 2). Thus the probability is . Few other 

examples that can be computed easily are
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Computing Aq,q iteratively requires at most q2 operations while permuting two samples 

consisting of q elements each requires  perations. Thus, our method can compute the 

p-value exactly substantially faster than the permutation test that is approximate and 

exponentially slow.

The asymptotic probability distribution of Dq can be also determined for sufficiently large q 
without computing iteratively as Theorem 2.

Theorem 3

The proof is not given here but the result follows from [8,14]. From Theorem 3, p-value 

under H0 is computed as

where do is the least integer greater than  in the data (Fig. 3-left). For any large 

observed value d0 ≥ 2, the second term is in the order of 10−14 and insignificant. Even for 

small observed d0, the expansion converges quickly and 5 terms are sufficient.

5 Validation and comparison

The proposed method was validated and compared in two simulation studies against 

Gromov-Hausdorff (GH) distance. GH-distance was originally used to measure distance 

between two metric spaces. It was later adapted to measure distances in persistent homology, 

dendrograms [3] and brain networks [11]. Following [11], the computation of GH-distance 

is done done on graphs with1-correlation as edge weights. GH-distance is the difference in 

the L∞-norm of corresponding single linkage matrices.

No network difference

The simulations were performed 1000 times and the average results were reported. There are 

three groups and the sample size is n = 5 in each group and the number of nodes are p = 40. 

In Groups I and II, data xk(υi) at each node υi was simulated as standard normal, i.e., xk(υi) 

∼ N(0, 1). The paired data was simulated as yk(υi) = xk(υi) + N(0, 0.022) for all the nodes 

(Fig. 4). Using the proposed combinatorial method, we obtained the p-values of 0.6568 

± 0.3367 and 0.2830 ± 0.3636 for β0 and the size of the largest connected component 

demonstrating that the method did not detect network differences as expected.

Using GH-distance, we obtained the p-value of 0.4938 ± 0.2919. The p-value was computed 

using the permutation test. Since there are 5 samples in each group, the total number of 
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permutation is  making the permutation test exact and the comparison fair. 

Both methods seem to perform reasonably well. However, GH-distance method took about 

950 seconds (16 minutes) while the combinatorial method took about 20 seconds in a 

computer.

Network difference

Group III was generated identically and independently like Group I but additional 

dependency was added by letting yk(υj) = xk(υ1)/2 for ten nodes indexed by j = 1, 2, …, 10. 

This dependency gives high connectivity differences between Groups I and III (Fig. 4). 

Using the proposed combinatorial method, we obtained the p-values of 0.0422 ± 0.0908 and 

0.0375 ± 0.1056 for β0 and the size of the largest connected component. On the other hand, 

we obtained 0.1145 ± 0.1376 for GH-distance. The proposed method seems to perform 

better in the presence of signal. The MATLAB codes for performing these simulations is 

given in http://www.cs.wisc.edu/∼mchung/twins.

6 Twin fMRI study

The study consists of 11 monozygotic (MZ) and 9 same-sex dizygotic (DZ) twin pairs of 3T 

functional magnetic resonance images (fMRI) acquired in Intera-Achiava Phillips MRI 

scanners with a 32 channel SENSE head coil. Subjects completed monetary incentive delay 

task of 3 runs of 40 trials [10]. A total 120 trials consisting of 40 $0, 40 $1 and 40 $5 

rewards were pseudo randomly split into 3 runs.

fMRI data went through spatial normalization to the template following the standard SPM 

pipeline. The fMRI dimensions after preprocessing are 53 × 63 × 46 and the voxel size is 

3mm cube. There are a total of p = 25972 voxels in the template. After fitting a general 

linear model at each voxel, we obtained the contrast maps testing the significance of activity 

in the delay period for $5 trials relative to the control condition of $0 reward (Fig. 1). The 

paired contrast maps were then used as the initial images vectors x and y in the starting 

model (2).

We are interested in knowing the extent of the genetic influence on the functional brain 
network of these participants while anticipating the high reward as measured by activity 

during the delay that occurs between the reward cue and the target, and its statistical 

significance. The hyper-network approach is applied in extending the voxel-level univariate 

genetic feature called heritability index (HI) into a network-level multivariate feature. HI 

determines the amount of variation (in terms of percentage) due to genetic influence in a 

population. HI is often estimated using Falconer's formula [6] as a baseline. MZ-twins share 

100% of genes while DZ-twins share 50% of genes. Thus, the additive genetic factor A, the 

common environmental factor C for each twin type are related as

(10)
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(11)

where ρMZ and ρDZ are the pairwise correlation between MZ- and and same-sex DZ-twins at 

voxel υi. Solving (10) and (11), we obtain the additive genetic factor, i.e., HI given by

HI is a univariate feature measured at each voxel and does not quantify how the changes in 

one voxel is related to other voxels. We can determine HI across voxels υi and υj as

ϱMZ and ϱDZ are the symmetrized cross-correlations between voxels υi and υj for MZ- and 

DZ-twin pairs:

 and  are the estimated cross-correlations from model (4). Note that

In Fig. 5-left and -middle, the nodes are ρMZ(υi) and ρDZ(υi) while the edges are ϱMZ(υi, υj) 

and ϱDZ(υi, υj) for λ = 0.5, 0.8. In Fig. 5-right, we have ℋ(υi) = ℋ(υi, υi). The network 

visualization shows high HI values for almost everywhere along the edges. We are interested 

in testing the statistical significance of the estimated HI for all edges. Testing for ℋ(υi, υj) = 

0 is equivalent to testing ϱMZ(υi, υj) = ϱDZ(υi, υj). Thus, we test for hyper-network 

differences between twins using the test statistic Dq (q = 100 is used) (Fig. 6). For β0 and the 

size of the largest connected component p-values are less than 0.00002 and 0.00001 

respectively indicating very strong significance of MZ- and DZ- network difference and HI 

of the whole brain network.

7 Discussion

Hyper-network

In this paper, we presented a unified statistical framework for for analyzing paired images 

using a hyper-network. Although we applied the framework in twin fMRI, the method can 

be easily applied to other paired image settings such as longitudinal and multimodal studies. 

The method can be further extended to triple images. Then we should start with the 

following hyper-network model
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(12)

Since we usually have more number of nodes p than the number of images n, it is necessary 

to introduce two separate sparse parameters in (12). Then, instead of building graph filtration 

over 1D, we need to build it over 2D sparse parameter space. This is related to 

multidimensional persistent homology [4,12]. Extending the proposed method to triple 

image setting is left as a future study.

Exact topological inference

We presented a combinatorial method for computing the probability that avoids time 

consuming permutation tests. Theorem 2 is the exact nonparametric procedure and does not 

assume any statistical distribution on graph features other than that they has to be 

monotonic. The technique is very general and applicable to any monotonic graph features 

such as node degree. Based on Stirling's formula, , the total number of 

permutations in permuting two vectors of size q each is . This is 

substantially larger than the quadratic run time q2 needed in our method (Fig. 3). Even for 

small q = 10, more than tens of thousands permutations are needed for the accurate 

estimation the p-value. On the other hand, only up to 100 iterations are needed in our 

combinatorial method.
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Fig. 1. 
The schematic of hyper-network construction on paired image vectors x and y. The image 

vectors y at voxel υj is modeled as a linear combination of the first image vector x at all 

other voxels. The estimated parameters βij give the hyper-edge weights.
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Fig. 2. 
Au,υ are computed within the boundary (dotted red line). The red numbers are the number of 

paths from (0, 0).
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Fig. 3. 
Left: Convergence of Theorem 2 to Theorem 3 for q = 10, 50, 100, 200. Right: Run time of 

permutation test (dotted black line) vs. the combinational method in Theorem 2 (solid red 

line) in logarithmic scale.
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Fig. 4. 
Simulation studies. Group I and Group II are generated independently and identically. The 

resulting B(λ) plots are similar. The dotted red line is β0 and the solid black line is the size 

of the largest connected component. No statistically significant differences can be found 

between Groups I and II. Group III is generated independently but identically as Group I but 

additional dependency is added for the first 10 nodes (square on the top left corner). The 

resulting B(λ) plots are statistically different between Groups I and II.
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Fig. 5. 
Left, middle: Node colors are correlations of MZ- and DZ-twins. Edge colors are sparse 

cross-correlations at sparsity λ = 0.5, 0.8. Right: Heritability index (HI) at nodes and edges. 

MZ-twins show higher correlations compared to DZ-twins. Some low HI nodes show high 

HI edges. Using only the voxel-level HI feature, we may fail to detect such high-order 

genetic effects on the functional network.
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Fig. 6. 
The result of graph filtrations on twin fMRI data. The number of connected components 

(left) and the size of the largest connected component (right) are plotted over the sparse 

parameter λ. For each λ, MZ-twins tend to have smaller number of connected components 

but larger connected component. The dotted green arrow (Dq) where the maximum group 

separation occurs.
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