Table 4. Hierarchical linear models examining 6-week (pre-BMI) marijuana use status as a predictor of alcohol outcomes following the BMI.
HED Frequency | Peak BAC | Alcohol Consequences | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | t-ratio | p | B | SE | t-ratio | p | B | SE | t-ratio | p | ||
Intercept (Baseline) (β00) | 8.05 | 0.28 | 28.51 | <.001 | 0.21 | 0.01 | 36.96 | <.001 | 7.26 | 0.31 | 23.79 | <.001 | |
Gender (β01) | -0.68 | 0.53 | -1.28 | .20 | 0.004 | 0.01 | 0.41 | .69 | 0.12 | 0.50 | 0.24 | .81 | |
Condition (β02) | -0.59 | 0.48 | -1.22 | .22 | -0.02 | 0.01 | -2.17 | .03 | -0.70 | 0.49 | -1.43 | .15 | |
MJ user (β03) | 1.81 | 0.48 | 3.75 | <.001 | 0.02 | 0.01 | 2.58 | .01 | 2.33 | 0.49 | 4.73 | <.001 | |
3-month follow-up (β10) | -0.71 | 0.31 | -2.25 | .03 | -0.02 | 0.01 | -3.75 | <.001 | -0.92 | 0.27 | -3.43 | <.001 | |
Gender(β11) | -0.66 | 0.52 | -1.26 | .21 | -0.01 | 0.01 | -0.86 | .39 | -0.57 | 0.51 | -1.10 | .27 | |
Condition (β12) | -0.07 | 0.50 | -0.13 | .90 | 0.004 | 0.01 | 0.41 | .69 | -0.75 | 0.46 | -1.61 | .11 | |
MJ user (β13) | 0.15 | 0.52 | 0.29 | .77 | 0.01 | 0.01 | 1.07 | .29 | -0.27 | 0.47 | -0.57 | .57 | |
MJ user*Condition (β14) | 0.14 | 0.92 | 0.15 | .88 | 0.01 | 0.02 | 0.83 | .41 | -0.46 | 0.84 | -0.55 | .58 | |
6-month follow-up (β20) | -0.81 | 0.31 | -2.64 | .01 | -0.03 | 0.01 | -4.44 | <.001 | -1.13 | 0.29 | -3.86 | <.001 | |
Gender (β21) | -1.37 | 0.49 | -2.76 | .01 | -0.02 | 0.01 | -1.59 | .11 | -0.76 | 0.51 | -1.48 | .14 | |
Condition (β22) | 0.19 | 0.49 | 0.40 | .69 | 0.01 | 0.01 | 0.54 | .59 | -0.76 | 0.48 | -1.57 | .12 | |
MJ user (β23) | -0.39 | 0.49 | -0.80 | .42 | -0.01 | 0.01 | -0.71 | .48 | -0.37 | 0.49 | -0.77 | .44 | |
MJ user*Condition (β24) | 1.62 | 0.87 | 1.86 | .06 | 0.03 | 0.02 | 1.45 | .15 | 1.08 | 0.89 | 1.22 | .23 | |
9-month follow-up (π3i) | -0.47 | 0.34 | -1.39 | .17 | -0.03 | 0.01 | -5.05 | <.001 | -1.04 | 0.28 | -3.75 | <.001 | |
Gender (β31) | -2.00 | 0.54 | -3.67 | <.001 | -0.02 | 0.01 | -1.74 | .08 | -0.98 | 0.51 | -1.93 | .06 | |
Condition (β32) | 0.51 | 0.53 | 0.95 | .34 | 0.01 | 0.01 | 1.34 | .18 | -1.18 | 0.47 | -2.51 | .01 | |
MJ user (β33) | -0.27 | 0.53 | -0.50 | .62 | -0.01 | 0.01 | -0.69 | .49 | -0.51 | 0.47 | -1.08 | .28 | |
MJ user*Condition (β34) | 1.17 | 0.94 | 1.25 | .21 | 0.01 | 0.02 | 0.40 | .69 | 0.36 | 0.87 | 0.42 | .68 |
Note. Degrees of freedom in all models = 388 for intercept (pre-BMI) effects and 387 for follow-up effects. BAC = blood alcohol concentration. HED = heavy episodic drinking. MJ = Marijuana. Gender was coded as 0 for males and 1 for females Example HLM model equation (predicting consequences) is shown below, with coefficients corresponding to those listed in the table.
Level-1 Model
Consequencesti = π0i + π1i*(3moFUti) + π2i*(6moFUti) + π3i*(9moFU ti) + eti
Level-2 Model
π0i = β00 + β01*(GENDERi) + β02*(CONDITIONi) + β03*(MJ USERi) + r0i
π1i = β10 + β11*(GENDERi) + β12*(CONDITIONi) + β13*(MJ USERi) + β14*(MJ USERxCONDITIONi) + r1i
π2i = β20 + β21*(GENDERi) + β22*(CONDITIONi) + β23*(MJ USERi) + β24*(MJ USERxCONDITIONi) + r2i
π3i = β30 + β31*(GENDERi) + β32*(CONDITIONi) + β33*(MJ USERi) + β34*(MJ USERxCONDITIONi) + r3i