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Abstract

Adult skeletal muscle maintains a homeostatic state with modest levels of cellular turnover, unlike 

the skin or blood. However, the muscle is highly sensitive to tissue injury, which unleashes a 

cascade of regenerative and inflammatory processes. Muscle regeneration involves cross-talk 

between numerous cytokine signaling axes, and the coordinated activity of multiple muscle-

resident and circulating progenitor populations. Satellite cells, closely associated with myofibers, 

are established as the canonical muscle stem cell, with self-renewal and myofiber-regenerating 

capacity. However, a heterogeneous group of mesenchymal progenitor cells residing within the 

muscle interstitium are also highly responsive to muscle injury and exhibit varying degrees of 

regenerative potential. These cells interact with satellite cells via direct and indirect mechanisms to 

regulate regeneration or repair. We describe the known phylogenetic and functional relationships 

of the multiple progenitor populations residing within skeletal muscle, their putative roles in the 

coordination of injury repair, and their possible contributions to health and disease.
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Introduction

Recent work has demonstrated the presence and physiologic function of distinct stem cells 

populations within the solid tissues of adult organisms (1). A relatively small population of 

tissue-resident ‘adult stem cells’ possesses the ability to replenish the functional cells 

comprising adult tissue, while maintaining their own population by the phenomenon of self-

renewal. Skeletal or striated muscle is a complex tissue predominantly comprised of 
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myofibers, the functional unit of muscle. Each myofiber is a multinucleated giant syncytium, 

enclosed within the plasma membrane, ‘sarcolemma’ and surrounded by an extracellular 

matrix, the basal lamina. Located in between the sarcolemma and basal lamina are the 

satellite cells (2), which have been defined as the canonical adult muscle stem cells, based 

on their potential for self-renewal and ability to replenish damaged muscle fibers. Outside of 

the basal lamina, in the muscle interstitium resides a heterogeneous population of progenitor 

cells known collectively as ‘muscle interstitial cells’ (3). Both satellite and interstitial cells 

respond to muscle damage via distinct mechanisms, and contribute to regenerative and repair 

processes. There is extensive crosstalk between the satellite and interstitial cell 

compartments, forming a complex, dynamic regenerative microenvironment in skeletal 

muscle (Fig. 1A).

I. The satellite cell compartment

Satellite cells, considered the master stem cells of skeletal muscle regeneration, are the best 

characterized skeletal muscle-resident progenitor population. Named for their close 

juxtaposition with mature myofibers, satellite cells were first observed in electron 

microscopic studies of myofibers dissected from tibialis anterior muscles of the frog (4). It 

was subsequently observed that myofibers isolated from different anatomical locations 

exhibited different densities of satellite cells (5), as extensor digitorum longus or tibialis 

anterior muscles contain 7–9 satellite cells per myofiber, while soleus muscles contain >20 

satellite cells per myofiber. Similar to adult stem cells found in other tissues, such as 

epidermal or neural stem cells, satellite cells remain mitotically quiescent in the steady state 

(6). Once activated by extrinsic signals, however, these cells undergo active proliferation and 

give rise to myoblasts, a pool of myogenic progenitors which can fuse to existing myofibers 

or form new muscle fibers to repair damaged muscle (7, 8). During cell division, a 

subpopulation of activated satellite cells exit the cell cycle and return to quiescence to 

replenish the satellite cell pool (9), doing so by asymmetric cell division (Fig. 1B) (10). 

Activation of satellite cells is typically mediated by exercise or any form of physical or 

chemical muscle trauma.

Satellite cell markers

The transcription factor Pax7 has been utilized as a canonical marker of satellite cells in 

humans and mice (11), defining an anatomically and functionally restricted subset of 

myofiber associated cells (12). A number of surface and lineage markers that are relatively 

restricted to satellite cells within the context of muscle tissue have also been identified. SM/

C-2.6, a monoclonal antibody developed by Fukada et al., binds to the cell surface of murine 

sublaminar Pax7+ cells, which also co-express M-Cadherin (13). This group and others have 

gone on to demonstrate that satellite cells in mice are highly enriched among a subfraction 

of total myofiber associated cells lacking hematopoietic and endothelial lineage markers, as 

well as Sca-1 (CD45−CD31−Sca1−) (14). Despite the high level of enrichment of myogenic 

activity among Pax7+ lineages, it is acknowledged there is significant functional and 

phenotypic heterogeneity among this population (15). A prospective approach to isolating 

highly myogenic fractions of this population yielded a highly homogeneous 

CD45−Sca1−Mac1−CXCR4+β1-integrin+ subpopulation of satellite cells capable of 
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regenerating muscle from single cells in mice (15, 16). An analogous surface marker profile 

was recently described for human satellite cells, where the 

CD45−CD11b−GlyA−CD31−CD34−ITGA7hi surface phenotype was shown to mark Pax7+ 

fetal human myogenic cells (17). Adult human satellite cells could also be enriched using 

the same markers, but the frequency of these cells in adult muscle was >5 fold lower than in 

fetal tissues. Interestingly, the cell population enriched from human muscles using this 

marker profile was found to exhibit both myogenic and osteogenic potential. While a similar 

bipotency has not been described for rodent satellite cells in the quiescent state, following 

burn injury these cells acquire an osteogenic profile, at least in vitro (18). Similarly, 

enhanced expression of ITGA7 was shown to increase muscle regeneration and longevity in 

muscular dystrophic (Mdx−/−) mice (19), suggesting ITGA7 contributes to satellite cell 

functions required for maintaining skeletal muscle structure and function with age. In 

addition to identifying surface markers unique to satellite cells and their subpopulations, 

lineage tracing techniques have been helpful for delineating the function of satellite cell 

subcompartments (5). Using Myf5-Cre and Rosa26-YFP reporter alleles, Kuang et al. 

elegantly demonstrated that ~10% of sublaminar Pax7+ cells are Myf5−, and these 

Pax7+Myf5− subpopulations undergo asymmetric division to yield apical Pax7+Myf5+ 

committed myoblast progenitors and basal Pax7+Myf5−undifferentiated satellite cells, 

facilitating repair while replenishing the satellite cell reservoir (10). Consistent with a theme 

found in satellite cells and muscle-resident myoprogenitor cells in general, significant 

changes occur in the composition and function of this reservoir with aging and activation 

following injury.

Activation versus quiescence of satellite cells

The cellular and molecular regulation of quiescence and activation in satellite cells has been 

a subject of intensive investigation. Whereas uninjured satellite cells do not divide, 

mechanical, chemical or radiation induced injury activates satellite cells to undergo 

proliferation. The cues for this activity are derived from the niche, as transplantation of 

single isolated myofibers and their associated satellite cells into irradiated muscle is 

sufficient to trigger the extensive proliferation of donor satellite cells, regeneration of new 

myofibers and replenishment of the satellite cell pool (5). A hierarchy of myogenic 

regulatory factors (MRFs) has been implicated in the process by which satellite cells 

transition to myoblasts to accomplish muscle regeneration. MyoD, long considered a master 

regulator of myogenic differentiation, is expressed in satellite cells as they become 

committed towards a myogenic fate, consistent with the role of MyoD in embryonic muscle 

development (20, 21). Similarly in embryonic development, there is functional redundancy 

of MyoD and Myf5, which together serve spatiotemporally distinct but overlapping 

functions as MRFs and markers of myogenic commitment (22). Recently it was found that 

MASTR, a member of the Myocardin Related Transcription Factor (MRTF) family involved 

in serum response factor-mediated transcription in smooth muscle, is essential for the 

regulation of MyoD via a specific enhancer region, and precedes MyoD in the regulation of 

myogenic fate in satellite cells (23).

Pax7 itself appears to be necessary for the maintenance of the satellite cell compartment, its 

loss being associated with gradual attrition of the satellite cell compartment due to its anti-
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apoptotic function (24). Based on genetic ablation studies, Pax7 also appears to play an 

essential role for muscle regeneration following injury (25–27), while its role in mechanical 

load-induced hypertrophy is less clear. The Pax7 promoter is tightly regulated by epigenetic 

modifications that are highly responsive to external stimuli from the satellite cell niche (28) 

as well as injury (29). Some of these epigenetic modifications were shown to be mediated by 

noncoding RNAs, in addition to the conventional histone modifiers (30). The transcription 

factor FOXO3 has been recently shown to promote quiescence in adult muscle satellite cells, 

via activation of the Notch signaling pathway, specifically NOTCH1 and NOTCH3 receptor 

expression (31).

Extracellular regulation of satellite cell activation versus quiescence

Growth factors and inflammatory cytokines released in the satellite cell niche play a critical 

role in governing satellite cell activation and quiescence, via differential regulation of 

myogenic vs. proliferative genes. Myostatin (GDF8), a member of the TGF-β superfamily 

maintains satellite cell quiescence by upregulating p21 and inhibiting CDKs (32). Quiescent 

satellite cells in uninjured muscle exhibit a CD31−CD45−Sca1−VCAM+ surface phenotype 

in addition to expressing Pax7, whereas injury-activated satellite cells retain a similar cell 

surface marker profile but lose Sca1 in a portion of cells, while gaining MyoD (12, 14). 

There has been some controversy with regards to the expression of Sca1 among satellite 

cells, possibly due to its dynamic regulation in this compartment. STAT3 mediates the 

activation of MyoD expression downstream of IL-6 in the myogenic differentiation of 

satellite cells, whereas Pax7-specific deletion of STAT3 enhances satellite cell proliferation 

at the expense of diminished myogenic differentiation and myofiber repair activity, 

suggesting a critical function of STAT3 in regulating the balance between proliferation, 

differentiation, and replenishment of this compartment [31]. It was also shown that TNFα-

activated p38 MAPK signaling results in chromatin remodeling of myogenic differentiation 

genes (Myogenin, Myosin heavy chain (MHC), Myosin creatine kinase (MCK)) and 

repression of Pax7 in activated satellite cells (33), also enhancing myofiber regeneration. 

Another TNF-α-like proinflammatory cytokine, TWEAK, was shown to suppress satellite 

cell self-renewal by activating NF-κB and inhibiting Notch signaling (34). Conversely, 

inhibition of the TNF-α receptor associated factor 6 (TRAF6) improved satellite cell 

activation via upregulating Notch signaling and inhibiting NFκ-B (35), confirming the 

reciprocal relationship between Notch signaling and NF-κB pathway in satellite cell 

activation. Secretion of chemokines in the local microenvironment can also dictate satellite 

cell function, as a recent study demonstrated a regulatory function of the Monocyte 

Chemoattractant Protein (MCP-1/CCL2) secreted by CD8+ T cells in injured muscle, acting 

to promote myoblast proliferation by recruiting the infiltration of Gr1high macrophages (36). 

In addition to inflammatory cytokines, presence of growth factors such as HGF and LIF 

were also shown to upregulate MRFs including MyoD and Myogenin, while repressing 

myostatin in activated satellite cells, in part by activation of the Akt/mTOR/p70S6K protein 

synthetic pathway (37).

Intracellular regulation of satellite cell activation versus quiescence

The transition from a quiescent to an activated state also entails widespread metabolic 

changes within satellite cells (6, 38). A recent study demonstrated the necessity of 
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autophagy for meeting the bioenergetic demands of satellite cells during the transition from 

quiescence to activation (39). Shan et al. reported that the serine-threonine kinase Lkb1 

inhibits satellite cell proliferation via the AMPK/mTOR pathway, yet facilitates 

differentiation through phosphorylation of GSK-3β to modulate Wnt signaling (40). A study 

by Rodgers et al. recently showed that mTORC1 activity, in addition to cMet/HGF signaling 

is necessary and sufficient for the transition from quiescence or G0, to a reversible transition 

or “Galert” state that is primed for rapid entry into the cell cycle under stress or injury (41). 

The authors demonstrated that this was a universal mechanism of activation in multiple 

populations of adult, tissue-resident quiescent stem cells.

The ageing satellite cell

A body of work has now shown several critical aging related changes affecting the satellite 

cell population, including a reduction in their number, impaired response to growth factors 

and cytokines, impairment of intracellular signaling pathways regulating growth (e.g., 

Notch), changes in mitochondrial number, content, or mitophagy, increased levels of extra- 

and intracellular reactive oxygen species (ROS), and increased DNA damage (42). An 

earlier study implicated increased Wnt signaling in aging mice as the underlying cause of 

increased fibrosis, and decreased muscle regeneration (43). Myostatin, in addition to 

maintaining satellite cell quiescence, appears to contribute to age-related muscle 

degeneration by generating ROS in muscle cells via the activation of proteosomal-mediated 

catabolism of intracellular proteins (44). Indeed, haploinsufficiency of myostatin enhances 

longevity of mice, and protects against age-related decline in muscle function (45). 

Following deletion of myostatin, aging muscles exhibit enhanced activity of antioxidant 

enzymes, reduced NFκ-B levels and efficient scavenging of ROS, resulting in the 

normalization of age-related muscle damage as compared to wild-type (44). Study of 

geriatric satellite cells recently revealed that the mechanistic basis of satellite cell aging is 

the irreversible conversion of the quiescent state to a senescent state, caused by loss of 

repression of p16INK4a (46). In this context, muscle injury or stress fails to activate these 

cells, resulting in sarcopenia.

II. Muscle interstitial cells: Myogenic niche or alternative progenitor cells?

The heterogeneous population of cells located within the muscle interstitium includes a 

number of important tissue-resident progenitor cells candidates located outside the myofiber 

basement membrane (47, 48) (Figure 1A). These cells, also called myofiber-associated cells 

based on their anatomic location, have numerous subpopulations with apparently diverse 

phylogenetic origins, surface phenotypes, and capacities to serve as myogenic or 

mesenchymal progenitor cells.

Adipogenic and fibro-adipogenic progenitors

Uezumi and colleagues recently described a muscle interstitial cell population notable for 

the expression of high levels of PDGFRα and the lack of lineage markers CD31 and CD45, 

that efficiently gave rise to adipocytes in vitro, and expanded in injured muscles undergoing 

fatty degeneration (47). This population was more abundant in young, healthy skeletal 

muscle, and appeared to be the exclusive cell type in this niche committed to adipogenic 
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differentiation. The adipogenic differentiation of this lineage was dependent on the type of 

muscle injury and microenvironment, as these progenitors would proliferate and undergo 

adipogenic differentiation in a glycerol injury model, but not following cardiotoxin injury, 

consistent with the efficient induction of fatty degeneration by glycerol injury. Interestingly, 

satellite cells inhibited the adipogenic differentiation of these interstitial progenitors, and did 

so in a manner requiring direct cell-cell contact with adipogenic progenitors, whereas 

soluble factors elaborated by satellite cells were insufficient. Joe and colleagues 

subsequently found that this same PDGFRα+ interstitial population had the capacity to 

differentiate into either fibroblasts as well as adipocytes, calling them fibro-adipogenic 

progenitor (FAP) cells (48), and could be further distinguished by their 

CD31−CD45−Sca1+α7-integrin− surface marker phenotype. Subcutaneous transplantation, 

or intramuscular transplantation of FAPs into muscles was observed to yield adipocytes in 

muscles undergoing fatty infiltration but not in healthy muscles. Uezumi and colleagues 

similarly showed that the CD31−CD45−PDGFRα+ interstitial FAP population undergoes 

both fibro- and adipogenesis in vitro, as well as in cardiotoxin-damaged and myopathic 

muscles in vivo (49). FAPs are quiescent in resting muscles and do not engraft healthy 

muscles, but proliferate rapidly following tissue damage, with extensive adipocyte 

differentiation, and with their numbers returning to basal levels within 5–7 days after injury. 

In contrast to the exclusively adipogenic progenitors, FAPs were seen to promote myofiber 

differentiation and muscle regeneration, in a manner which appeared to depend on both cell-

cell contact and secreted factors such as IL-6. PDGFRα+ cells are highly responsive to TGF-

β and PDGFRα signaling, particularly in the context of injury, secreting in response high 

levels of pro-fibrotic and extracellular matrix (ECM) remodeling genes including type I and 

type III collagen, connective tissue growth factor (CTGF), and tissue inhibitor of 

metalloproteinase (TIMP1) (49).

FAPs appear to regulate satellite cell function in an age-dependent manner, by modifying the 

cytokine microenvironment. Using HDAC inhibition as a trigger for muscle regeneration, 

Mozzetta et al. demonstrated that FAPs from young Mdx−/− mice promote myotube 

formation in satellite cells, whereas the same treatment fails to induce muscle regeneration 

in older Mdx−/− mice due to repression of myotube formation by aged FAPs (50). 

Transplantation of young FAPs in old Mdx−/− mice restored the regenerative effects of 

HDAC inhibition. The myo-regenerative effect of HDAC inhibition in young mice was 

found to require the secretion of follistatin, an Activin A antagonist, and was consistent with 

the regulation of satellite cell function by the response of interstitial cells to injury and their 

ability to modify the local microenvironment (50).

Pericytes and mesangioblasts

Myofibers are invested with capillary networks that supply blood to the tissue (Figure 1A). 

Each capillary is lined by endothelial cells on the luminal surface of the vessel wall, and is 

wrapped on the abluminal surface, next to the basal lamina by mural cells or pericytes (51) 

and adventitial cells (52). Pericytes exist throughout all organ beds, with important functions 

in tissues including brain (53), heart, lung (54) and skeletal muscles (55, 56), and are 

suggested to serve as organ-specific mesenchymal cell reservoirs for tissue repair (57). 

While the lineage relationship of pericyte populations residing in different tissues remains 
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incompletely resolved, the cells which share this anatomic specialization in diverse tissues 

have in common several surface markers including NG2 and PDGFRβ (54, 56, 58).

Mural cells or pericytes are thought to be ontogenically related to ‘mesangioblasts’, a class 

of vessel-associated fetal stem cell capable of giving rise to all mesodermal lineages (59). In 

fact, one study demonstrated that intra-arterial delivery of mesangioblasts isolated from 

dorsal aortae of fetal or neonatal mice into mice with dystrophic or injured muscles resulted 

in the homing of some of these cells beneath the basal lamina, expression of the satellite cell 

marker, M-Cadherin, and integration of some into muscle capillaries close to degenerating 

and regenerating muscle areas. Homing of these cells to injured muscles was enhanced in 

the presence of cytokines such as TNF-α and SDF1, with significant restoration of damaged 

muscles in multiple muscular dystrophy models (60). Mesangioblast cells do not appear to 

participate in myogenesis in steady state muscle, but are extremely sensitive to inflammatory 

triggers.

Adult pericytes similarly exhibit impressive myoregenerative capacity. The capacity of 

muscle-resident pericytes to undergo myogenic differentiation independently of satellite 

cells was demonstrated in 2007 by Dellavalle et al. using muscle biopsy samples from 

human muscular dystrophy patients and control individuals (55). This myogenic capacity 

distinguished pericytes from the classical bone marrow derived mesenchymal stem cells 

(MSCs). Pericytes express multiple cytoskeletal and ECM proteins at high levels, such as 

Desmin, Vimentin and smooth muscle actin, in addition to NG2 and PDGFRβ. Despite their 

shared myogenic potential, pericytes contribute to myogenesis in a very distinct manner 

from satellite cells. Pericytes are typically found under the basal lamina of blood vessels 

associated with skeletal muscle, removed from the compartment of satellite cells beneath the 

myofiber basal laminae. During postnatal development, pericytes fuse with developing 

myofibers, contributing to the satellite cell pool, and more so following injury (61). Pericytes 

proliferate extensively in culture, and in contrast to satellite cells do not express M-Cadherin 

or myogenic transcription factors such as MyoD, Myogenin, or Myf5 during proliferation—

these markers are only found in pericyte-derived myofibers. Pericytes express high levels of 

alkaline phosphatase (ALP), and lack CD56, while satellite cells are ALP-CD56+. In 

addition, pericytes can home into the muscles and regenerate myofibers after systemic 

delivery through the femoral artery (55), while satellite cells fail to cross vessel walls and 

integrate in muscle, highlighting the clinical potential of pericytes in muscle regeneration 

therapy.

Within skeletal muscle, functional subsets of pericytes have been described. So-called type I 

pericytes of a Nestin−NG2+ lineage harbored important functional as well as phenotypic 

differences from Nestin+NG2+ type II pericytes. While both types of pericytes express 

PDGFRβ and CD146, only type I pericytes express PDGFRα (56). These heterogeneous 

pericyte populations in skeletal muscle appear to have distinct fate potential. 

Nestin+NG2+CD146+ type II pericytes express high levels of the early neural progenitor 

marker, Tuj1 (62, 63), and can differentiate into functional mature neural cells, unlike the 

Nestin-NG2+ type I pericytes. In contrast to most previously described pericyte populations, 

the Nestin- type I pericytes lacked α-smooth muscle actin expression (58).
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The same group demonstrated that the Nestin-NG2+CD146+PDGFRα+ type I pericytes 

could give rise to fat cells when injected in injured muscles, or give rise to fibrous tissue in 

aged skeletal muscle (64), whereas type II pericytes isolated from young muscle participated 

in muscle regeneration following injury (56). Interestingly, type II pericytes isolated from 

aged animals failed to participate in myofiber repair following injury, while type I pericytes 

contributed to enhanced fibrous tissue deposition within the interstitial space in aged muscle, 

consistent with age-dependent changes in interstitial cell myoregenerative and tissue 

remodeling function similar to that observed with FAPs. In all studies, type I pericytes did 

not differentiate into myofibers (56, 58). Given the fibro-adipogenic potential of the type I 

pericytes, it is interesting to speculate if these cells share lineage with some of the FAPs 

described earlier.

The molecular mechanisms underlying transition of pericytes from quiescence to a muscle 

regenerating or fibro-adipogenic phase are unknown. Through studies in other tissues, it 

appears that soluble factors secreted by pericytes, or its neighboring vascular smooth muscle 

cells (VSMCs) and endothelial cells (ECs) might play a role in their autocrine and paracrine 

activation in the regenerative process (65, 66). For example, thrombospondin and PDGF 

secreted by VSMCs appear to serve as promigratory and pro-proliferative signals for 

pericytes (67). A recent study revealed a role of the soluble factor, Activin A, secreted by 

ECs, in directing the differentiation of neighboring adipose stromal cells (ASCs) to mural 

cells, the precursors of pericytes and vascular smooth muscle cells (68). Whether pericytes 

from regenerating muscles secrete follistatin and promote muscle regeneration, as shown in 

case of FAPs is not known. Finally, as it holds for all other muscle interstitial cells, it would 

be interesting to investigate whether pericytes are supportive or necessary for muscle 

regeneration, by ablating their population in vivo and studying myogenesis.

The Side Population (SP)

The side population (SP) is a functionally defined set of cells identified in diverse tissues 

that exhibit considerably plasticity and stem-like properties. The side population approach 

was originally used to enrich hematopoietic stem cells (69), and in contrast to surface 

antigen based phenotypic sorting strategies, relies on the efficient ability of many stem or 

progenitor cell populations to export drug-like molecules. In this case, SP cells exclude the 

fluorescent dye Hoechst 33342 via the activity of ATP Binding Cassette (ABC) transporter 

proteins in the cell membrane. SP cells appear as a low-fluorescence retaining population 

that is readily distinguished by flow cytometry from the majority of cells that avidly retain 

dye within the main population (MP). Addition of an ABC transporter inhibitor verapamil 

abolishes the detection of SP by flow cytometry.

Using this technique, Gussoni et al. first reported the existence of Hoechst 33342 excluding 

SP interstitial cells within skeletal muscle, which were shown to have a broadly lineage 

negative, predominantly CD45−ckit−Sca1+ surface phenotype (70). Both muscle- and bone 

marrow (BM)-derived SP from wild-type C57BL/6 mice could successfully engraft into 

Mdx−/− mice, fuse with existing myofibers and form new myofibers, normalizing dystrophin 

expression in these fibers. Further characterization of muscle-derived SP by Asakura et al. 

revealed that SP and satellite cells are distinct populations, and that inductive signals from 
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myocytes were necessary for myogenic differentiation of SP (71). While muscle-derived SP 

expressed Sca1 and gives rise to hematopoietic colonies, satellite cells were Sca1− and could 

not form hematopoietic colonies. SP were localized outside the basal lamina, in proximity to 

blood vessels. Muscle SP appeared to have both a hematopoietic (CD45+) and non-

hematopoietic (CD45−) component. Subsequently it was demonstrated that muscle SP were 

derived from, and were in dynamic equilibrium with bone marrow SP cells, but had 

important functional differences from the BM-derived population of non-SP muscle 

interstitial cells (72). For example, muscle-derived SP injected in injured muscles, in 

addition to undergoing myogenic differentiation, also engrafted onto the endothelium during 

vascular regeneration, and thus at least a subset of muscle-resident SP appeared to function 

as vascular progenitors.

A recent study on SP cells isolated from WT mice demonstrated that these cells undergo 

efficient differentiation into satellite cells, and form myotubes (73), independent of myo-

inductive signals from myocytes. These SP cells were Pax7+, suggesting a lineage 

relationship to satellite cells, however their surface marker profile was 

CD45−CD31−Sca1+PDGFRα+, in contrast to the typically Sca1− and PDGFRα− phenotype 

of satellite cells. Interestingly, the SP cells expanded in dystrophic and cardiotoxin-injured 

muscle to give rise to FAPs, resulting in formation of fibrotic and fatty lesions. Hence, while 

SP cells appear to replenish satellite cells in steady state muscles, they can take on a fibro-

adipogenic fate in injured muscles.

Hematopoietic, circulating, and endothelium-derived myogenic progenitors

The contribution of the bone marrow to the replenishment of SP and other muscle resident 

progenitor populations has suggested the bone marrow might serve directly as a source of 

myogenic progenitors (72, 74). Circulating CD133+ cells derived from the bone marrow can 

engraft diseased muscles to restore dystrophin expression, and exhibit increased adherence 

in response to the expression of VCAM1 in the vasculature of diseased muscles (75). An 

earlier report had described in postnatal rat muscles the presence of a CD34+MyoD−, 

possibly hematopoietic stem cell-related subpopulation of interstitial cells that underwent 

extensive proliferation during early postnatal muscle growth, contributing to the formation 

of new myofibers (76). It is currently not known of these cells have a relationship to the 

hematopoietic subsets of SP cells.

Each layer of the vascular wall (intima, media and adventitia) appears to be a potential 

source of myogenic progenitors, including ‘myogenic endothelial cells’ (MECs, found in 

intima of human capillaries), mesoangioblasts and pericytes (associated with the media), and 

adventitial cells (77). MECs, which are present at very low frequencies in adult human 

skeletal muscles (<0.5%), coexpress myogenic (CD56) and endothelial (CD144) markers. 

CD56+CD144+CD34+CD45− MECs proliferated over long term, had enhanced survival in 

oxidative stress, and could be induced to differentiate into osteo-, chondro-, adipo- and 

myocytes in vitro (78). Huang and colleagues found that myo-endothelial cells exhibited 

myogenic potential in vitro, but did not contribute appreciably to muscle development or 

muscle regeneration in vivo (79). Rather, they found that myo-endothelial cells exerted an 

important intramuscular anti-adipogenic role in vivo which required intact type Ia bone 
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morphogenetic protein (BMP) receptor signaling, While MECs and pericytes have been 

shown to actively participate in myogenesis, the role of adventitial cells has so far been 

demonstrated only in cardiomyocyte repair (52, 77).

PW1+/Pax7- interstitial cells (PICs)

PW1 is a large zinc finger protein shown to be involved in p53 and TNF-NFκB cellular 

stress responses (80, 81). In ΔPW1 mutant mice, fetal muscle development is intact, while 

postnatally muscles are severely atrophic, associated with a significant reduction in 

quiescent muscle satellite cells. As expected, these mice showed resistance to p53 and TNF-

mediated stress pathways (82). These studies implicated PW1 as an important regulator of 

adult muscle homeostasis as well as a postnatal muscle stress sensor.

Subsequent studies demonstrated that PW1 was expressed in satellite cells, as well as a 

Pax7−, PW1+ interstitial cell population (PICs) (83) (Fig. 1B). These two populations had 

distinct origins, with satellite cells but not PICs being derived from Pax3+ precursors. PICs 

were highly enriched for a Sca1+CD34+ surface phenotype. Clonal analyses showed that a 

single PIC could give rise to both smooth and skeletal muscle (83), whereas PICs from 

Pax7−/− mice could only give rise to smooth muscle. Moreover, while PICs were 

Pax7−MyoD− in non-injured muscle, they would readily adopt a Pax7+MyoD+ phenotype 

with myogenic differentiation in vitro, a process that was amplified further in the setting of 

muscle injury. Despite the distinct origins of PICs and satellite cells, PICs could generate 

satellite cells as well as PICs. Thus, while PICs lacked Pax7 in the quiescent state, these data 

demonstrate that Pax7 is essential for myogenic specification of PICs. Interestingly, an 

inverse correlation was found between the number of PICs and satellite cells during early 

postnatal muscle development, suggesting a reciprocal relationship in the homeostatic 

regulation of these two progenitor pools.

In addition to their potential to differentiate into skeletal and smooth muscle cells, a recent 

study demonstrated that a PDGFRα+ subpopulation of PICs exhibited high adipogenic 

potential, and in fact overlapped with interstitial adipogenic or fibroadipogenic progenitors 

also expressing PDGFRα (84). In contrast, the myogenic subpopulations of PICs lacked 

PDGFRα. PW1 consistently marks adult stem cells in multiple tissues, ranging from brain, 

skin, bone, skeletal muscle and testis (85), suggesting a central role of PW1-mediated stress 

response pathways in the activity of diverse tissue-resident progenitor cells. This is not 

surprising, given the dependence of adult stem cell function on extrinsic and intrinsic 

microenvironments. Silencing PW1 inhibited the myogenic potential of vessel derived 

mesangioblasts in vitro through MyoD degradation, and abrogated their migratory ability 

from vessels into damaged muscles in vivo via disruption of a junctional adhesion molecule 

(86).

A possible unique and protective function of the PIC compartment has been observed in 

certain muscle tissues. Extraocular muscles (EOM) are not observed to undergo fibrosis or 

fat deposition even in late stages of disease in Duchenne’s muscular dystrophy, in contrast to 

other skeletal muscles including the tibialis anterior (87). Analysis of the EOM progenitor 

cell niche in Mdx−/− mice revealed that satellite cells density per myofiber was consistent 

between EOM and tibialis muscle, the number of PICs was significantly higher in EOMs 
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(88). The ratio of PIC to satellite cells remained constant in the EOM irrespective of age, 

whereas with age there were progressive declines in satellite cell and PICs in the tibialis. 

Consistent with these observations, tibialis muscles from adult Mdx−/− mice exhibit the 

effects of extensive degeneration and regeneration cycles, whereas the EOM stem cell niche 

resembled steady state healthy wild-type muscle, suggesting that the enhanced number of 

PICs in the EOM niche may create a pro-myogenic environment. The increased secretion of 

growth factors like follistatin and IGF by PICs was proposed as one of the molecular 

mechanisms by which these cells might promote EOM myogenesis.

PICs are a heterogeneous and multipotent interstitial muscle population, with subpopulations 

exhibiting myogenic potential, fibroadipogenic potential, as well as the capacity to 

regenerate the satellite cell pool. PICs may represent a primordial skeletal muscle resident 

mesenchymal progenitor population that acquires a skeletal muscle-specific myogenic 

potential in postnatal muscles, while retaining fibroadipogenic and smooth muscle potential 

within subpopulations. The potential of these

III. Misplaced regeneration: Intramuscular heterotopic ossification

While fibrosis and fatty degeneration is the most common response to injury or senescence 

in muscle, under some circumstances the formation of other mesodermal structures 

including cartilage and bone may be promoted. Heterotopic ossification (HO) as such 

describes the formation of ectopic bone in soft tissues, occurring commonly as a 

complication of tissue trauma including bone fractures, burn injuries, blast injuries, and joint 

replacement surgeries (89), which is a frequent cause of morbidity in these instances due to 

significant pain and immobility. HO can also be triggered in the setting of inflammation, 

with entheseal ossification affecting the axial skeleton in ankylosing spondylitis and other 

spondyloarthropathies (90, 91). HO can occur as part of a congenital syndrome called 

fibrodysplasia ossificans progressiva (FOP), caused by gain-of-function mutations in 

ACVR1 encoding the BMP type I receptor ALK2 (92), in which progressive replacement of 

skeletal muscle, cartilage, tendons, ligaments and fascia with endochondral bone occurs 

postnatally, frequently triggered by antecedent injury or inflammation. The HO in these 

various syndromes, including FOP, appears to spare EOM, cardiac, vascular smooth muscle, 

and diaphragmatic muscle tissues. The anatomic distribution of these HO syndromes, and 

their associated triggers may yield important clues as to the identity of the progenitors 

responsible for forming pathologic bone, providing strategies for the clinical management of 

HO, or conversely, identifying novel reservoirs of bone progenitors for tissue engineering 

applications.

Various muscle-resident populations have previously been implicated in the development of 

HO. Satellite cells have been raised as a potential contributor to HO (93), based 

circumstantially on the increase in satellite cell frequency following burn injury (18), as well 

as the widely observed in vitro osteogenic potential of these cells (17, 94). However, no 

direct evidence of a contribution has been demonstrated to date. Similarly, an ex vivo study 

of cells isolated from healthy human skeletal muscle revealed pericytes to harbor the most 

potential for in vitro osteogenic differentiation (95). More recently, enhanced frequencies of 

PDGFRα+ interstitial cells have been observed in biopsied human muscle tissues directly 
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adjoining HO lesions associated with trauma (96). In a BMP-injection induced model of 

HO, Tie2 lineage-marked cells were found to contribute to the osteocytes and chondrocytes 

of heterotopic bone, suggesting a possible vascular endothelial contribution to HO (97). A 

subsequent study refined this result by combining Tie2 lineage tracing with the analysis of 

other surface markers, showing that Lin−Tie2+CD31−PDGFRα+, NG2− interstitial cells 

contribute osteogenic and chondrogenic progenitors to HO lesions (98). These data as a 

whole appear to implicate interstitial FAP-like cells as the primary reservoir of HO disease, 

however more study must be done to determine how these cells might work in concert with 

other resident and bone-marrow derived populations to mediate this disease. The 

phenomenon of HO highlights the multipotentiality of these various muscle-resident stem 

cell populations, and demonstrates that these muscle-resident lineages represent bona fide 

mesenchymal progenitors that can contribute to multiple types of pathophysiology.

Conclusions

These studies demonstrate the importance of the muscle environment (associated with 

distinct injury stimuli) in regulating the dynamic interactions among various muscle-resident 

progenitors. The sublaminar satellite cell compartment represents a definitive self-renewing 

myogenic stem cell whose number, function and phenotype appears to be closely co-

regulated with several species of peri-laminar muscle interstitial cells. These interstitial 

populations include the PICs (Table 1), as well as other populations with overlapping surface 

and functional phenotypes including type I pericytes, FAPs, as well as a subpopulation of SP 

cells. The functional coupling of satellite cells with interstitial populations is evident in the 

sensitivity of the interstitial cells to muscle injury, leading to their joint activation, or in 

aging and myopathies, where their number, function, and sensitivity to injury-mediated 

signals are simultaneously compromised. The three principal fates imparted by these 

progenitor populations include myogenesis as part of skeletal muscle homeostasis and 

repair, or fibrosis and adipogenesis during muscle degeneration and senescence. It presently 

remains unclear whether the various subpopulations of muscle resident progenitors are 

functional segregated or overlapping in these functions. For example, are all Pax7+ 

progenitors within the sublaminar satellite cell compartment involved exclusively in 

myogenesis, and to what extent must these cells cooperate with the various other populations 

in order to mediate their effects in this regard? In order to help resolve such questions, a 

better consensus will be needed about the anatomic, and phenotypic characterization of these 

various populations (Figure 2). Continued application of traditional genetic lineage-tracing 

techniques will help to answer some of these questions of lineage and function in an in vivo 
setting. The advent of more sophisticated and unbiased tools for the phenotyping of 

individual cells, such as single cell RNA sequencing methodologies may become critical for 

resolving questions of identity and nomenclature that persist in this field: To what extent are 

type I pericytes the same as FAPs, and to what extent do these overlap with PICs? Such 

methodologies might also help address broad issues of stem cell biology, such as the 

question of whether a given muscle progenitor cell such as the satellite cell or the PIC cell 

represents a truly discrete entity, versus a state that exists along a continuum of several other 

states.
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Figure 1. Anatomical location of muscle progenitor cells
A. Diagrammatic representation of all muscle progenitor cells described so far, in context of 

the myofiber, the structural and functional unit of skeletal muscle. FAPs: Fibro-Adipogenic 

Progenitors; PICs: PW1 + Interstitial Cells. Insets shows B. Diagrammatic representation of 

the embryonic origin of satellite cells (top) and phenomenon of adult myogenesis (bottom), 

demonstrating the two hallmark properties of satellite cells: self renewal and differentiation; 

and C. the correlation of PICs with satellite cells and FAPs, in addition to its multilineage 

differentiation potential.
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Figure 2. The name trap: Function, location or genetic identity?
The muscle stem cell field, like any other stem cell field is plagued by ‘nomenclature bias’. 

A. Classification of skeletal muscle progenitor cells in three distinct categories, based on 

their nomenclature. B. A Venn diagram representing established or hypothetical correlations 

among the different progenitor populations.
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